Coloring Mixed and Directional Interval Graphs

GD 2022, Tokyo

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981). Input: directed graph G

Output: layered drawing of G

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981). Input: directed graph G

Output: layered drawing of G Consists of five phases:

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981). Input: directed graph G

Output: layered drawing of G
Consists of five phases:

1. cycle elimination
2. layer assignment
3. crossing minimization

Motivation

Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981). Input: directed graph G

Output: layered drawing of G
Consists of five phases:

1. cycle elimination
2. layer assignment
3. crossing minimization

4. node placement
5. edge routing

we want orthogonal edges!

Motivation

Framework for layered Input: directed graph G Consists of five phases:

1. cycle elimination
2. layer assignment
3. crossing minimiza
4. node placement

5. edge routing

Motivation - Layered Orthogonal Edge Routing

■ it suffices to consider each pair of consecutive layers individually

Motivation - Layered Orthogonal Edge Routing

■ it suffices to consider each pair of consecutive layers individually

Motivation - Layered Orthogonal Edge Routing

■ it suffices to consider each pair of consecutive layers individually

- positions of vertices are fixed

upper layer

Motivation - Layered Orthogonal Edge Routing

■ it suffices to consider each pair of consecutive layers individually

- positions of vertices are fixed
\square no two edges share a common end point (vertices have distinct ports)

Motivation - Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments

Motivation - Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments

Motivation - Layered Orthogonal Edge Routing

\square draw each edge with at most two vertical and one horizontal line segments
■ avoid overlaps and double crossings between the same pair of edges

Motivation - Layered Orthogonal Edge Routing

- draw each edge with at most two vertical and one horizontal line segments
- avoid overlaps and double crossings between the same pair of edges

Motivation - Layered Orthogonal Edge Routing

\square draw each edge with at most two vertical and one horizontal line segments
■ avoid overlaps and double crossings between the same pair of edges

Motivation - Layered Orthogonal Edge Routing

\square draw each edge with at most two vertical and one horizontal line segments

- avoid overlaps and double crossings between the same pair of edges

Motivation - Layered Orthogonal Edge Routing

\square draw each edge with at most two vertical and one horizontal line segments

- avoid overlaps and double crossings between the same pair of edges

Motivation - Layered Orthogonal Edge Routing

\square draw each edge with at most two vertical and one horizontal line segments
\square avoid overlaps and double crossings between the same pair of edges
■ use as few horizontal intermediate layers (tracks) as possible

Motivation - Layered Orthogonal Edge Routing

\square draw each edge with at most two vertical and one horizontal line segments
\square avoid overlaps and double crossings between the same pair of edges
■ use as few horizontal intermediate layers (tracks) as possible

Motivation - Layered Orthogonal Edge Routing

\square draw each edge with at most two vertical and one horizontal line segments
\square avoid overlaps and double crossings between the same pair of edges
■ use as few horizontal intermediate layers (tracks) as possible

Motivation - Layered Orthogonal Edge Routing

\square draw each edge with at most two vertical and one horizontal line segments
\square avoid overlaps and double crossings between the same pair of edges
■ use as few horizontal intermediate layers (tracks) as possible

Motivation - Layered Orthogonal Edge Routing

- distinguish between left-going and right-going edges

Motivation - Layered Orthogonal Edge Routing

- distinguish between left-going and right-going edges
\square only edges going in the same direction and overlapping partially in x-dimension can cross twice

Motivation - Layered Orthogonal Edge Routing

- distinguish between left-going and right-going edges
\square only edges going in the same direction and overlapping partially in x-dimension can cross twice
\Rightarrow induce a vertical order for the horizontal middle segments

Definition - Directional Interval Graphs

Interval representation: set of intervals

Definition - Directional Interval Graphs

Interval representation: set of intervals
Directional interval graph:

Definition - Directional Interval Graphs

Interval representation: set of intervals
Directional interval graph:
■ vertex for each interval

Definition - Directional Interval Graphs

Interval representation: set of intervals
Directional interval graph:

- vertex for each interval
- undirected edge if one interval contains another

Definition - Directional Interval Graphs

Interval representation: set of intervals
Directional interval graph:
■ vertex for each interval

- undirected edge if one interval contains another

■ directed edge (towards the right interval) if the intervals overlap partially

Definition - Directional Interval Graphs

Interval representation: set of intervals
Directional interval graph:
■ vertex for each interval

- undirected edge if one interval contains another

■ directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:

Definition - Directional Interval Graphs

Interval representation: set of intervals
Directional interval graph:
■ vertex for each interval

- undirected edge if one interval contains another

■ directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:
■ vertex for each interval

Definition - Directional Interval Graphs

Interval representation: set of intervals
Directional interval graph:
■ vertex for each interval

- undirected edge if one interval contains another
- directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:
■ vertex for each interval

■ for each two overlapping intervals: undirected or arbitrarily directed edge

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]
\star undirected edge $u v: \quad c(u) \neq c(v)$, \star directed edge $u v: \quad c(u)<c(v)$, $\star \max _{v \in V} c(v)$ is minimized.

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: $\quad \star$ undirected edge $u v: c(u) \neq c(v)$, [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]

Interval graphs (no directed edges): \star directed edge $u v: \quad c(u)<c(v)$, $\star \max _{v \in V} c(v)$ is minimized.

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: $\quad \star$ undirected edge $u v: c(u) \neq c(v)$, [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]

Interval graphs (no directed edges):
\star directed edge $u v: \quad c(u)<c(v)$,
$\star \max _{v \in V} c(v)$ is minimized.

- coloring in linear time by a greedy algorithm

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: $\quad \star$ undirected edge $u v: c(u) \neq c(v)$, [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]
Interval graphs (no directed edges):
\star directed edge $u v: \quad c(u)<c(v)$,
$\star \max _{v \in V} c(v)$ is minimized.

- coloring in linear time by a greedy algorithm

Directed graphs (only directed edges):

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: $\quad \star$ undirected edge $u v: c(u) \neq c(v)$, [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]
Interval graphs (no directed edges):
\star directed edge $u v: \quad c(u)<c(v)$,
$\star \max _{v \in V} c(v)$ is minimized.

- coloring in linear time by a greedy algorithm

Directed graphs (only directed edges):

- coloring in linear time using topological sorting

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: $\quad \star$ undirected edge $u v: c(u) \neq c(v)$, [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]
Interval graphs (no directed edges):
\star directed edge $u v: \quad c(u)<c(v)$,
$\star \max _{v \in V} c(v)$ is minimized.

- coloring in linear time by a greedy algorithm

Directional interval graphs:

Directed graphs (only directed edges):

- coloring in linear time using topological sorting

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: $\quad \star$ undirected edge $u v: c(u) \neq c(v)$, [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]
Interval graphs (no directed edges):
\star directed edge $u v: \quad c(u)<c(v)$, $\star \max _{v \in V} c(v)$ is minimized.

- coloring in linear time by a greedy algorithm

Directional interval graphs:
\square recognition in $O\left(n^{2}\right)$ time

Directed graphs (only directed edges):

- coloring in linear time using topological sorting

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: $\quad \star$ undirected edge $u v: c(u) \neq c(v)$, [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]
Interval graphs (no directed edges):
\star directed edge $u v: \quad c(u)<c(v)$, $\star \max _{v \in V} c(v)$ is minimized.

- coloring in linear time by a greedy algorithm

Directional interval graphs:

- recognition in $O\left(n^{2}\right)$ time
- coloring in $O(n \log n)$ time by a greedy algorithm

Directed graphs (only directed edges):

- coloring in linear time using topological sorting

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97

Interval graphs (no directed edges):

- coloring in linear time by a greedy algorithm

Directional interval graphs:

- recognition in $O\left(n^{2}\right)$ time

■ coloring in $O(n \log n)$ time by a greedy algorithm

* undirected edge $u v: c(u) \neq c(v)$, \star directed edge $u v: \quad c(u)<c(v)$, $\star \max _{v \in V} c(v)$ is minimized.

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97

Interval graphs (no directed edges):

- coloring in linear time by a greedy algorithm

Directional interval graphs:

- recognition in $O\left(n^{2}\right)$ time
\square coloring in $O(n \log n)$ time by a greedy algorithm Mixed interval graphs: \star undirected edge $u v: c(u) \neq c(v)$, \star directed edge $u v: \quad c(u)<c(v)$, $\star \max _{v \in V} c(v)$ is minimized.

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97

Interval graphs (no directed edges):

- coloring in linear time by a greedy algorithm

Directional interval graphs:

- recognition in $O\left(n^{2}\right)$ time
- coloring in $O(n \log n)$ time by a greedy algorithm Mixed interval graphs: \star undirected edge $u v: c(u) \neq c(v)$, \star directed edge $u v: \quad c(u)<c(v)$, $\star \max _{v \in V} c(v)$ is minimized.

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97

Interval graphs (no directed edges):

- coloring in linear time by a greedy algorithm

Directional interval graphs:
our contribution

- recognition in $O\left(n^{2}\right)$ time
- coloring in $O(n \log n)$ time by a greedy algorithm Mixed interval graphs: \star undirected edge $u v: c(u) \neq c(v)$, \star directed edge $u v: \quad c(u)<c(v)$, $\star \max _{v \in V} c(v)$ is minimized.

Coloring Mixed Graphs

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97]

Interval graphs (no directed edges): \star undirected edge $u v: c(u) \neq c(v)$, \star directed edge $u v: \quad c(u)<c(v)$, $\star \max _{v \in V} c(v)$ is minimized.

- coloring in linear time by a greedy algorithm

Directional interval graphs:

our contribution

\square recognition in $O\left(n^{2}\right)$ time \longleftarrow _ not in this talk

- coloring in $O(n \log n)$ time by a greedy algorithm

Mixed interval graphs: min. coloring
 3
coloring is NP-complete2

Directed graphs (only directed edges):

- coloring in linear time using topological sorting

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Given: an interval representation of a directional interval graph G
GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

Coloring Directional Interval Graphs

Theorem 1:

A coloring computed by GreedyColoring has the minimum number of colors.

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.
Proof sketch:

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.
Proof sketch:

- Let G^{+}be the transitive closure of G
(the graph obtained by exhaustively adding transitive directed edges to G).

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let G^{+}be the transitive closure of G
(the graph obtained by exhaustively adding transitive directed edges to G).
- Show: the size of a largest clique in G^{+}equals the maximum color m in c.

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

- Let G^{+}be the transitive closure of G (the graph obtained by exhaustively adding transitive directed edges to G).
\square Show: the size of a largest clique in G^{+}equals the maximum color m in c.
\Rightarrow the coloring c uses the minimum number of colors

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v_{0} be an interval of maximum color, i.e., $c\left(v_{0}\right)=m$.

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, i.e., $c\left(v_{0}\right)=m$.
coloring c

Coloring Directional Interval Graphs

Theorem 1:

A coloring computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, i.e., $c\left(v_{0}\right)=m$.

- Among all intervals having a directed edge to v_{0},

coloring c let v_{1} be the one with the largest color.

Coloring Directional Interval Graphs

Theorem 1:

A coloring computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, i.e., $c\left(v_{0}\right)=m$.

- Among all intervals having a directed edge to v_{0},
 let v_{1} be the one with the largest color.

Coloring Directional Interval Graphs

Theorem 1:

A coloring computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, ie., $c\left(v_{0}\right)=m$.

- Among all intervals having a directed edge to v_{0},
 let v_{1} be the one with the largest color.
\square Similarly, define v_{2} w.r.t. v_{1} and so on.

$$
v_{1}
$$

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, ie., $c\left(v_{0}\right)=m$.

- Among all intervals having a directed edge to v_{0},
 let v_{1} be the one with the largest color.
\square Similarly, define v_{2} w.r.t. v_{1} and so on.

$$
\mathcal{V}_{2} \stackrel{\mathcal{V}_{1}}{ }
$$

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, i.e., $c\left(v_{0}\right)=m$.

- Among all intervals having a directed edge to v_{0},
 let v_{1} be the one with the largest color.
\square Similarly, define v_{2} w.r.t. v_{1} and so on.

$$
v_{3} v_{2}
$$

$$
v_{4}
$$

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, i.e., $c\left(v_{0}\right)=m$.

- Among all intervals having a directed edge to v_{0},
 let v_{1} be the one with the largest color.
- Similarly, define v_{2} w.r.t. v_{1} and so on.
- By the greedy strategy, the colors between $c\left(v_{i}\right)$ and $c\left(v_{i+1}\right)$ are occupied by intervals containing the left endpoint of v_{i}

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, i.e., $c\left(v_{0}\right)=m$.

- Among all intervals having a directed edge to v_{0}, coloring c let v_{1} be the one with the largest color.
- Similarly, define v_{2} w.r.t. v_{1} and so on.
- By the greedy strategy, the colors between $c\left(v_{i}\right)$ and $c\left(v_{i+1}\right)$ are occupied by intervals containing the left endpoint of v_{i}

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, i.e., $c\left(v_{0}\right)=m$.

- Among all intervals having a directed edge to v_{0}, let v_{1} be the one with the largest color.
\square Similarly, define v_{2} w.r.t. v_{1} and so on.

- By the greedy strategy, the colors between $c\left(v_{i}\right)$ and $c\left(v_{i+1}\right)$ are occupied by intervals containing the left endpoint of v_{i}

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Let v_{0} be an interval of maximum color, i.e., $c\left(v_{0}\right)=m$.

- Among all intervals having a directed edge to v_{0}, coloring c let v_{1} be the one with the largest color.
\square Similarly, define v_{2} w.r.t. v_{1} and so on.

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Clearly, for each $S_{i} \backslash\left\{v_{i}\right\}$, all intervals contain v_{i}. (otherwise they would have a directed edge to v_{i})

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Clearly, for each $S_{i} \backslash\left\{v_{i}\right\}$, all intervals contain v_{i}. (otherwise they would have a directed edge to v_{i})
coloring c
\square Claim: for any two steps S_{i} and S_{ℓ}, every pair of intervals is adjacent in the transitive closure G^{+}.

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Clearly, for each $S_{i} \backslash\left\{v_{i}\right\}$, all intervals contain v_{i}. (otherwise they would have a directed edge to v_{i})
coloring c

- Claim: for any two steps S_{i} and S_{ℓ}, every pair of intervals is adjacent in the transitive closure G^{+}.
$\Rightarrow S=\bigcup S_{i}$ is a clique in G^{+}

Coloring Directional Interval Graphs

Theorem 1:

A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

\square Clearly, for each $S_{i} \backslash\left\{v_{i}\right\}$, all intervals contain v_{i}. (otherwise they would have a directed edge to v_{i})
coloring c

- Claim: for any two steps S_{i} and S_{ℓ}, every pair of intervals is adjacent in the transitive closure G^{+}.
$\Rightarrow S=\bigcup S_{i}$ is a clique in G^{+}
$\Rightarrow S$ alone requires m colors in G

$$
G^{+}
$$

$$
-
$$

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
u \cap v_{i+1} \neq \varnothing
$$

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{array}{r}
u \cap v_{i+1} \neq \varnothing \\
w \cap v_{\ell-1} \neq \varnothing
\end{array}
$$

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
u \cap v_{i+1} & \neq \varnothing \quad \Rightarrow \\
w \cap v_{\ell-1} & \neq \varnothing \quad \begin{array}{l}
u \cap w=\varnothing
\end{array}
\end{aligned}
$$

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
u \cap v_{i+1} \neq \varnothing & \Rightarrow \quad \\
w \cap v_{\ell-1} \neq \varnothing \quad u \cap w=\varnothing & i<k<\ell
\end{aligned}
$$

indices

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
& u \cap v_{i+1} \neq \varnothing \Rightarrow \quad \\
& w \cap v_{\ell-1} \neq \varnothing \quad u \cap w=\varnothing i<k<\ell \\
& w
\end{aligned}
$$

indices
By definition, $u \cap v_{j+1}=\varnothing$.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
& u \cap v_{i+1} \neq \varnothing \\
& w \cap v_{\ell-1} \neq \varnothing \quad \quad \Rightarrow \cap w=\varnothing
\end{aligned} \quad i<j<\ell+k<\ell .
$$

indices
By definition, $u \cap v_{j+1}=\varnothing$.
$\Rightarrow u$ and v_{j} overlap

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
& u \cap v_{i+1} \neq \varnothing \\
& w \cap v_{\ell-1} \neq \varnothing \quad \quad \Rightarrow \cap w=\varnothing
\end{aligned} \quad i<j<\ell+k<\ell .
$$

By definition, $u \cap v_{j+1}=\varnothing$.
$\Rightarrow u$ and v_{j} overlap $\Rightarrow\left(v_{j}, u\right) \in G$

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
u \cap v_{i+1} \neq \varnothing \quad \Rightarrow \quad & i<j<\ell \\
w \cap v_{\ell-1} \neq \varnothing \quad u \cap w=\varnothing & i<k<\ell
\end{aligned}
$$

indices
By definition, $u \cap v_{j+1}=\varnothing$.
$\Rightarrow u$ and v_{j} overlap $\Rightarrow\left(v_{j}, u\right) \in G$
Similarly, $\left(w, v_{k}\right) \in G$.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
& u \cap v_{i+1} \neq \varnothing \\
& w \cap v_{\ell-1} \neq \varnothing \quad \quad \Rightarrow \cap w=\varnothing
\end{aligned} \quad i<j<\ell+k<\ell .
$$

indices
By definition, $u \cap v_{j+1}=\varnothing$.
$\Rightarrow u$ and v_{j} overlap $\Rightarrow\left(v_{j}, u\right) \in G$ Similarly, $\left(w, v_{k}\right) \in G$.
If $j<k$, then $\left(v_{k}, v_{j}\right) \in G$.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
& u \cap v_{i+1} \neq \varnothing \\
& w \cap v_{\ell-1} \neq \varnothing \quad \quad \Rightarrow \cap w=\varnothing
\end{aligned} \quad i<j<\ell+k<\ell .
$$

indices
By definition, $u \cap v_{j+1}=\varnothing$.
$\Rightarrow u$ and v_{j} overlap $\Rightarrow\left(v_{j}, u\right) \in G$
Similarly, $\left(w, v_{k}\right) \in G$.
If $j<k$, then $\left(v_{k}, v_{j}\right) \in G$.

Transitivity \Rightarrow claim.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
u \cap v_{i+1} \neq \varnothing \quad \Rightarrow \quad & i<j<\ell \\
w \cap v_{\ell-1} \neq \varnothing \quad u \cap w=\varnothing & i<k<\ell
\end{aligned}
$$

indices
By definition, $u \cap v_{j+1}=\varnothing$.
$\Rightarrow u$ and v_{j} overlap $\Rightarrow\left(v_{j}, u\right) \in G$
Similarly, $\left(w, v_{k}\right) \in G$.
If $j<k$, then $\left(v_{k}, v_{j}\right) \in G$.
If $j \geq k$, then w overlaps v_{j}.
Transitivity \Rightarrow claim.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
& u \cap v_{i+1} \neq \varnothing \\
& w \cap v_{\ell-1} \neq \varnothing \quad \quad \Rightarrow \cap w=\varnothing
\end{aligned} \quad i<j<\ell+k<\ell .
$$

indices
By definition, $u \cap v_{j+1}=\varnothing$.
$\Rightarrow u$ and v_{j} overlap $\Rightarrow\left(v_{j}, u\right) \in G$
Similarly, $\left(w, v_{k}\right) \in G$.
If $j<k$, then $\left(v_{k}, v_{j}\right) \in G$.
If $j \geq k$, then w overlaps v_{j}.
Transitivity \Rightarrow claim.

Proof of the Claim

Claim: Any two intervals $u \in S_{i}$ and $w \in S_{\ell}$ are adjacent in G^{+}.
Proof. W.l.o.g., $u \cap w=\varnothing$ and $i<\ell$.
Let j be the largest index s.t. $v_{j} \cap u \neq \varnothing$.
Let k be the smallest index s.t. $v_{k} \cap w \neq \varnothing$.

$$
\begin{aligned}
& u \cap v_{i+1} \neq \varnothing \\
& w \cap v_{\ell-1} \neq \varnothing \quad \quad \Rightarrow \cap w=\varnothing
\end{aligned} \quad i<j<\ell+k<\ell .
$$

indices
By definition, $u \cap v_{j+1}=\varnothing$.
$\Rightarrow u$ and v_{j} overlap $\Rightarrow\left(v_{j}, u\right) \in G$
Similarly, $\left(w, v_{k}\right) \in G$.
If $j<k$, then $\left(v_{k}, v_{j}\right) \in G$.
If $j \geq k$, then w overlaps v_{j}.
Transitivity \Rightarrow claim.

Overview

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97

Interval graphs (no directed edges):

- coloring in linear time by a greedy algorithm

Directional interval graphs:

our contribution

\square recognition in $O\left(n^{2}\right)$ time

- coloring in $O(n \log n)$ time by a greedy algorithm

Mixed interval graphs:

- coloring is NP-complete

Directed graphs (only directed edges):

- coloring in linear time using topological sorting

Overview

Find a graph coloring $c: V \rightarrow \mathbb{N}$ such that: [Sotskov, Tanaev '76; Hansen, Kuplinsky, de Werra '97

Interval graphs (no directed edges):

- coloring in linear time by a greedy algorithm

Directional interval graphs:

our contribution

recognition in $O\left(n^{2}\right)$ time
\square coloring in $O(n \log n)$ time by a greedy algorithm
Mixed interval graphs:

- coloring is NP-complete

Directed graphs (only directed edges):

- coloring in linear time using topological sorting

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.
Proof sketch:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3 -SAT as a mixed interval graph G_{Φ}.

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3 -SAT as a mixed interval graph G_{Φ}. variable gadget for each variable v_{i} :

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph G_{Φ}.
variable gadget for each variable v_{i} :
$v_{i}^{\text {false }}$
$v_{i}^{\text {true }}$
coloring
v_{i} is true

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph G_{Φ}.
variable gadget for each variable v_{i} :

$$
\begin{array}{ll}
& v_{i}^{\text {true }} \\
v_{i} \text { is false } & v_{i}^{\text {false }} .
\end{array}
$$

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph G_{Φ}. clause c_{j} containing literal v_{i} :

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph G_{Φ}. clause c_{j} containing literal $v_{i}: \quad$ clause c_{k} containing literal $\neg v_{i}$:

coloring
v_{i} is false

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph G_{Φ}. clause c_{j} containing literal $v_{i}: \quad$ clause c_{k} containing literal $\neg v_{i}$:

coloring
v_{i} is true

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph G_{Φ}.
fix positions by adding "frame" intervals

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph G_{Φ}.
fix positions by adding "frame" intervals

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.
Proof sketch:
clause gadget:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

Coloring Mixed Interval Graphs

Theorem 2:

Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

$$
\begin{gathered}
6 n+1 \text { colors } \\
(n:=\# \text { variables })
\end{gathered}
$$

Φ is satisfiable $\Leftrightarrow G_{\Phi}$ admits a coloring with $6 n$ colors

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.
- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.
- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

■ In layered graph drawing, this corresponds to routing "left-going" edges orthogonally to the fewest horizontal tracks. (Symmetrically "right-going".)

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.
- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

■ In layered graph drawing, this corresponds to routing "left-going" edges orthogonally to the fewest horizontal tracks. (Symmetrically "right-going".)
\Rightarrow Combining the drawings of left-going and right-going edges yields a 2 -approximation for the number of tracks. (bidirectional interval graphs)

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.
■ In layered graph drawing, this corresponds to routing "left-going" edges orthogonally to the fewest horizontal tracks. (Symmetrically "right-going".)
\Rightarrow Combining the drawings of left-going and right-going edges yields a 2 -approximation for the number of tracks. (bidirectional interval graphs)

■ In our paper, we present a constructive $O\left(n^{2}\right)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.
- A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.

■ In layered graph drawing, this corresponds to routing "left-going" edges orthogonally to the fewest horizontal tracks. (Symmetrically "right-going".)
\Rightarrow Combining the drawings of left-going and right-going edges yields a 2-approximation for the number of tracks. (bidirectional interval graphs)

■ In our paper, we present a constructive $O\left(n^{2}\right)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.

■ For the more general case of mixed interval graphs, coloring is NP-hard. (Remark: NP-hardness requires both directed and undirected edges.)

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.
■ In layered graph drawing, this corresponds to routing "left-going" edges orthogonally to the fewest horizontal tracks. (Symmetrically "right-going".)
\Rightarrow Combining the drawings of left-going and right-going edges yields a 2 -approximation for the number of tracks. (bidirectional interval graphs)

■ In our paper, we present a constructive $O\left(n^{2}\right)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.

- For the more general case of mixed interval graphs, coloring is NP-hard. (Remark: NP-hardness requires both directed and undirected edges.)

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.
■ In layered graph drawing, this corresponds to routing "left-going" edges orthogonally to the fewest horizontal tracks. (Symmetrically "right-going".)
\Rightarrow Combining the drawings of left-going and right-going edges yields 2 -approximationfor the number of tracks. (bidirectional interval graphs)
can we do better?

■ In our paper, we present a constructive $O\left(n^{2}\right)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.

- For the more general case of mixed interval graphs, coloring is NP-hard. (Remark: NP-hardness requires both directed and undirected edges.)

Conclusion and Open Problems

- We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in $O(n \log n)$ time.
■ In layered graph drawing, this corresponds to routing "left-going" edges orthogonally to the fewest horizontal tracks. (Symmetrically "right-going".)
\Rightarrow Combining the drawings of left-going and right-going edges yields a 2 -approximationfor the number of tracks. (bidirectional interval graphs)

can we do better?

- In our paper, we present a constructive $O\left(n^{2}\right)$-time algorithm for recognizing directional interval graphs, which is based on PQ-trees.
bidirectional?
- For the more general case of mixed interval graphs, coloring is NP-hard. (Remark: NP-hardness requires both directed and undirected edges.)

