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■ it suffices to consider each pair of consecutive layers individually

■ positions of vertices are fixed

■ no two edges share a common end point (vertices have distinct ports)

upper layer

lower layer



3 - 5

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments



3 - 6

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments



3 - 7

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 8

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 9

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 10

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 11

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 12

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges

■ use as few horizontal intermediate layers (tracks) as possible



3 - 13

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges

■ use as few horizontal intermediate layers (tracks) as possible



3 - 14

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges

■ use as few horizontal intermediate layers (tracks) as possible



3 - 15

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges

■ use as few horizontal intermediate layers (tracks) as possible



3 - 16

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ distinguish between left-going and right-going edges



3 - 17

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ distinguish between left-going and right-going edges

■ only edges going in the same direction and overlapping partially
in x-dimension can cross twice



3 - 18

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ distinguish between left-going and right-going edges

■ only edges going in the same direction and overlapping partially
in x-dimension can cross twice

⇒ induce a vertical order for the horizontal middle segments
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Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c

Directional interval graph:

■ vertex for each interval

a

b c

■ undirected edge if one interval contains another

■ directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:

■ vertex for each interval

■ for each two overlapping intervals: undirected or arbitrarily directed edge
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Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]
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■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm
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agenda for this talk

our contribution
not in this talk
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Overview

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm

Mixed interval graphs:
■ coloring is NP-complete

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

our contribution

n := # intervals
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Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.
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■ For the more general case of mixed interval graphs, coloring is NP-hard.
(Remark: NP-hardness requires both directed and undirected edges.)
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