
1

Coloring Mixed and Directional
Interval Graphs

GD 2022, Tokyo

Grzegorz Florian Ignaz Joachim Alexander Johannes
Gutowski Mittelstädt Rutter Spoerhase Wolff Zink

Uniwersytet
Jagielloński
Kraków



2 - 1

Motivation
Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).



2 - 2

Motivation
Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).

Input: directed graph G Output: layered drawing of G



2 - 3

Motivation
Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).

Input: directed graph G Output: layered drawing of G

Consists of five phases:



2 - 4

Motivation
Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

Input: directed graph G Output: layered drawing of G

Consists of five phases:



2 - 5

Motivation
Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

Input: directed graph G Output: layered drawing of G

Consists of five phases:

we want orthogonal edges!



2 - 6

Motivation
Framework for layered graph drawing by Sugiyama, Tagawa, and Toda (1981).

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

Input: directed graph G Output: layered drawing of G

Consists of five phases:

we want orthogonal edges!

1
e9800998ecf8427e

1
e9800998ecf8427e

10 11
6b6e62eb564685f2

2 136 5
c635f6e09270f5c8

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

1
e9800998ecf8427e

e9800998ecf8427e
1

e9800998ecf8427e

12
4579c4eac51e2253

12
34a69ee760fe2d4a

12
3cd06a61f09a96a2

2 1
e4c87efe1102eb84

12
4579c4eac51e2253

12
bb34ddd5a309c27f

2
44723d2261035bf1

1
391d690d60cabb90

4.64.7
f678984c58227b19

67
c12ba30b1017ff0f

2 1
79db755ef31442c3

2 8 4 1411 67 13 95 10 1
6723408a81062ede

4.8 4.4 4.5

5.2 5.1 3.2 3.8 3.4 3.143.11 3.63.7 3.133.93.5 3.103.1

2.5 2.42.3 2.6 2.12.2
f678984c58227b19

5 3 12 6 4
34dfa0dc955821bd

8 4 5
41a6cc61fc0d18c7

19 51
a9c130e611b2220a

19 51
c8548a16ec792da7

24 68
4d5debab1bc14eb5

3086 8587
15a84b5e5a56f0ce

1 4
d2f7712bc5cce494

1 4
e8ed34f2b694b103

L Mh. g. F W KJ H G
65e2d35e2a20c627

F WL KJ Mh. g. GH
69e1713fe58318a9

2524
57dad501361b91d7

B.25B.24
eb986d92da2d17b5

1 1411 28 15 29
125fc6b9db76cdd8

1.1 1.141.11 1.281.151.29
99427d769158ba25

4
7e37276b20bbae63

4
6edad1bf3156e173

2 1
9b6d3c09f75bd58f

18 531 428 14 229 30 16
81e27ba1cd400908

P.3P.4P.5

A.18 A.5A.31 A.4A.28 A.14A.2A.29 A.30 A.16TNC.2 TNC.1

C.3C.2 C.32C.4 C.33C.1 C.31
eb986d92da2d17b5

345
99320c0b3c04e77f

3 324 33 312 1
c8793e4a773c96da

12
094d66a0c659235f

2 1
fb6d1f0171225288

8
fa7250b173086122

2.8

1.5 1.6 1.31.21.41.1
c3f952e265d79715

5 2 361 4
ec91f678ebc56d8d

10 84 511 1 723
84e5268912be3573

1.10 1.8 1.71.3 1.4 1.11.51.11 1.2
ab16776902ca6d3b

cable plan
[Zink, Walter, Baumeister, Wolff; CGTA’22]



3 - 1

Motivation – Layered Orthogonal Edge Routing

■ it suffices to consider each pair of consecutive layers individually



3 - 2

Motivation – Layered Orthogonal Edge Routing

■ it suffices to consider each pair of consecutive layers individually

upper layer

lower layer



3 - 3

Motivation – Layered Orthogonal Edge Routing

■ it suffices to consider each pair of consecutive layers individually

■ positions of vertices are fixed

upper layer

lower layer



3 - 4

Motivation – Layered Orthogonal Edge Routing

■ it suffices to consider each pair of consecutive layers individually

■ positions of vertices are fixed

■ no two edges share a common end point (vertices have distinct ports)

upper layer

lower layer



3 - 5

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments



3 - 6

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments



3 - 7

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 8

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 9

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 10

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 11

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges



3 - 12

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges

■ use as few horizontal intermediate layers (tracks) as possible



3 - 13

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges

■ use as few horizontal intermediate layers (tracks) as possible



3 - 14

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges

■ use as few horizontal intermediate layers (tracks) as possible



3 - 15

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ draw each edge with at most two vertical and one horizontal line segments

■ avoid overlaps and double crossings between the same pair of edges

■ use as few horizontal intermediate layers (tracks) as possible



3 - 16

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ distinguish between left-going and right-going edges



3 - 17

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ distinguish between left-going and right-going edges

■ only edges going in the same direction and overlapping partially
in x-dimension can cross twice



3 - 18

Motivation – Layered Orthogonal Edge Routing

upper layer

lower layer

■ distinguish between left-going and right-going edges

■ only edges going in the same direction and overlapping partially
in x-dimension can cross twice

⇒ induce a vertical order for the horizontal middle segments



4 - 1

Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c



4 - 2

Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c

Directional interval graph:



4 - 3

Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c

Directional interval graph:

■ vertex for each interval

a

b c



4 - 4

Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c

Directional interval graph:

■ vertex for each interval

a

b c

■ undirected edge if one interval contains another



4 - 5

Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c

Directional interval graph:

■ vertex for each interval

a

b c

■ undirected edge if one interval contains another

■ directed edge (towards the right interval) if the intervals overlap partially



4 - 6

Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c

Directional interval graph:

■ vertex for each interval

a

b c

■ undirected edge if one interval contains another

■ directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:



4 - 7

Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c

Directional interval graph:

■ vertex for each interval

a

b c

■ undirected edge if one interval contains another

■ directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:

■ vertex for each interval



4 - 8

Definition – Directional Interval Graphs
Interval representation: set of intervals

a
b c

Directional interval graph:

■ vertex for each interval

a

b c

■ undirected edge if one interval contains another

■ directed edge (towards the right interval) if the intervals overlap partially

Mixed interval graph:

■ vertex for each interval

■ for each two overlapping intervals: undirected or arbitrarily directed edge



5 - 1

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.



5 - 2

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.



5 - 3

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.



5 - 4

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directed graphs (only directed edges):

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.



5 - 5

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.



5 - 6

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.



5 - 7

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

n := # intervals



5 - 8

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

n := # intervals



5 - 9

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

n := # intervals

1 2

31

1
2
3

min. coloring

min.-track assignment



5 - 10

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm

Mixed interval graphs:

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

n := # intervals

1 2

31

1
2
3

min. coloring

min.-track assignment



5 - 11

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm

Mixed interval graphs:
■ coloring is NP-complete

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

n := # intervals

1 2

31

1
2
3

min. coloring

min.-track assignment



5 - 12

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm

Mixed interval graphs:
■ coloring is NP-complete

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

our contribution

n := # intervals

1 2

31

1
2
3

min. coloring

min.-track assignment



5 - 13

Coloring Mixed Graphs

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm

Mixed interval graphs:
■ coloring is NP-complete

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

agenda for this talk

our contribution
not in this talk

n := # intervals

1 2

31

1
2
3

min. coloring

min.-track assignment



6 - 1

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G



6 - 2

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges



6 - 3

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

a b c d e f g h



6 - 4

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a b c d e f g h



6 - 5

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a

b c d e f g h



6 - 6

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a

c d e f g h

b



6 - 7

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a

d e f g h

b
c



6 - 8

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a

e f g h

b
c

d



6 - 9

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a

f g h

b
c

d

e



6 - 10

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a

g h

b
c

d

e
f



6 - 11

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a

h

b
c

d

e
f

g



6 - 12

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a
b

c

d

e
f

g
h



6 - 13

Coloring Directional Interval Graphs
Given: an interval representation of a directional interval graph G

GreedyColoring:

1. sort all intervals by left endpoint
2. for each interval, assign the smallest available color respecting incident edges

1
2
3
4
5
6

a
b

c

d

e
f

g
h



7 - 1

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.



7 - 2

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:



7 - 3

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let G+ be the transitive closure of G
(the graph obtained by exhaustively adding transitive directed edges to G).



7 - 4

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let G+ be the transitive closure of G
(the graph obtained by exhaustively adding transitive directed edges to G).

■ Show: the size of a largest clique in G+ equals the maximum color m in c.



7 - 5

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let G+ be the transitive closure of G
(the graph obtained by exhaustively adding transitive directed edges to G).

■ Show: the size of a largest clique in G+ equals the maximum color m in c.

⇒ the coloring c uses the minimum number of colors



7 - 6

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.



7 - 7

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

..
.

m

coloring c

1
2



7 - 8

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

..
.

m

coloring c■ Among all intervals having a directed edge to v0,
let v1 be the one with the largest color.

1
2



7 - 9

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

v1

..
.

m

coloring c■ Among all intervals having a directed edge to v0,
let v1 be the one with the largest color.

1
2



7 - 10

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

v1

..
.

m

coloring c■ Among all intervals having a directed edge to v0,
let v1 be the one with the largest color.

■ Similarly, define v2 w.r.t. v1 and so on.

1
2



7 - 11

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

v1v2 ..
.

m

coloring c■ Among all intervals having a directed edge to v0,
let v1 be the one with the largest color.

■ Similarly, define v2 w.r.t. v1 and so on.

1
2



7 - 12

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

v1v2
v3

v4

..
.

m

coloring c■ Among all intervals having a directed edge to v0,
let v1 be the one with the largest color.

■ Similarly, define v2 w.r.t. v1 and so on.

1
2



7 - 13

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

v1v2
v3

v4

..
.

m

coloring c■ Among all intervals having a directed edge to v0,
let v1 be the one with the largest color.

■ Similarly, define v2 w.r.t. v1 and so on.

■ By the greedy strategy, the colors
between c(vi) and c(vi+1) are
occupied by intervals contai-
ning the left endpoint of vi 1

2



7 - 14

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

v1v2
v3

v4

..
.

m

coloring c■ Among all intervals having a directed edge to v0,
let v1 be the one with the largest color.

■ Similarly, define v2 w.r.t. v1 and so on.

■ By the greedy strategy, the colors
between c(vi) and c(vi+1) are
occupied by intervals contai-
ning the left endpoint of vi 1

2



7 - 15

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

v1v2
v3

v4

..
.

m

coloring c■ Among all intervals having a directed edge to v0,
let v1 be the one with the largest color.

■ Similarly, define v2 w.r.t. v1 and so on.

■ By the greedy strategy, the colors
between c(vi) and c(vi+1) are
occupied by intervals contai-
ning the left endpoint of vi 1

2



7 - 16

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

■ Let v0 be an interval of maximum color, i.e., c(v0) = m.

v0

v1v2
v3

v4

..
.

m

coloring c■ Among all intervals having a directed edge to v0,
let v1 be the one with the largest color.

■ Similarly, define v2 w.r.t. v1 and so on.

■ By the greedy strategy, the colors
between c(vi) and c(vi+1) are
occupied by intervals contai-
ning the left endpoint of vi 1

2

︸︷︷
︸

S0

S1 ︸︷︷︸ S2︸︷︷︸ S3

︸︷︷︸ S4

︸︷︷︸



7 - 17

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

v0

v1v2
v3

v4

..
.

m

coloring c

1
2

︸︷︷
︸

S0

S1 ︸︷︷︸ S2︸︷︷︸ S3

︸︷︷︸ S4

︸︷︷︸

■ Clearly, for each Si \ {vi}, all intervals contain vi.
(otherwise they would have a directed edge to vi)



7 - 18

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

v0

v1v2
v3

v4

..
.

m

coloring c

1
2

︸︷︷
︸

S0

S1 ︸︷︷︸ S2︸︷︷︸ S3

︸︷︷︸ S4

︸︷︷︸

■ Clearly, for each Si \ {vi}, all intervals contain vi.
(otherwise they would have a directed edge to vi)

■ Claim: for any two steps Si and Sℓ,
every pair of intervals is adjacent
in the transitive closure G+.



7 - 19

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

v0

v1v2
v3

v4

..
.

m

coloring c

1
2

︸︷︷
︸

S0

S1 ︸︷︷︸ S2︸︷︷︸ S3

︸︷︷︸ S4

︸︷︷︸

■ Clearly, for each Si \ {vi}, all intervals contain vi.
(otherwise they would have a directed edge to vi)

■ Claim: for any two steps Si and Sℓ,
every pair of intervals is adjacent
in the transitive closure G+.

⇒ S =
⋃

Si is a clique in G+



7 - 20

Coloring Directional Interval Graphs
Theorem 1:
A coloring c computed by GreedyColoring has the minimum number of colors.

Proof sketch:

v0

v1v2
v3

v4

..
.

m

coloring c

1
2

︸︷︷
︸

S0

S1 ︸︷︷︸ S2︸︷︷︸ S3

︸︷︷︸ S4

︸︷︷︸

■ Clearly, for each Si \ {vi}, all intervals contain vi.
(otherwise they would have a directed edge to vi)

■ Claim: for any two steps Si and Sℓ,
every pair of intervals is adjacent
in the transitive closure G+.

⇒ S =
⋃

Si is a clique in G+

⇒ S alone requires
m colors in G □



8 - 1

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vℓ

︸︷︷
︸

Siu

w ︸︷︷︸ Sℓ



8 - 2

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.

︸︷︷︸ Sℓ

indices



8 - 3

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vj

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.

︸︷︷︸ Sℓ

indices



8 - 4

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

indices



8 - 5

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅
indices



8 - 6

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅
w ∩ vℓ−1 ̸= ∅ indices



8 - 7

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅
w ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
indices



8 - 8

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
indices



8 - 9

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.

indices



8 - 10

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.
⇒ u and vj overlap

indices



8 - 11

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.
⇒ u and vj overlap ⇒ (vj, u) ∈ G

indices



8 - 12

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.
⇒ u and vj overlap ⇒ (vj, u) ∈ G
Similarly, (w, vk) ∈ G.

indices



8 - 13

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.
⇒ u and vj overlap ⇒ (vj, u) ∈ G
Similarly, (w, vk) ∈ G.

indices

If j < k, then (vk, vj) ∈ G.



8 - 14

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.
⇒ u and vj overlap ⇒ (vj, u) ∈ G
Similarly, (w, vk) ∈ G.

indices

If j < k, then (vk, vj) ∈ G.

Transitivity ⇒ claim.



8 - 15

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.
⇒ u and vj overlap ⇒ (vj, u) ∈ G
Similarly, (w, vk) ∈ G.

indices

If j < k, then (vk, vj) ∈ G.
If j ≥ k, then w overlaps vj.

Transitivity ⇒ claim.



8 - 16

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.
⇒ u and vj overlap ⇒ (vj, u) ∈ G
Similarly, (w, vk) ∈ G.

indices

If j < k, then (vk, vj) ∈ G.
If j ≥ k, then w overlaps vj.

Transitivity ⇒ claim.



8 - 17

Proof of the Claim
Any two intervals u ∈ Si and w ∈ Sℓ are adjacent in G+.Claim:

vi

vi+1vj
vk

vℓ

︸︷︷
︸

Siu

w

Proof. W.l.o.g., u ∩ w = ∅ and i < ℓ.
Let j be the largest index s.t. vj ∩ u ̸= ∅.
Let k be the smallest index s.t. vk ∩ w ̸= ∅.

︸︷︷︸ Sℓ

u ∩ vi+1 ̸= ∅ i < j < ℓ
i < k < ℓw ∩ vℓ−1 ̸= ∅ u ∩ w = ∅

⇒
By definition, u ∩ vj+1 = ∅.
⇒ u and vj overlap ⇒ (vj, u) ∈ G
Similarly, (w, vk) ∈ G.

indices

If j < k, then (vk, vj) ∈ G.
If j ≥ k, then w overlaps vj.

Transitivity ⇒ claim.



9 - 1

Overview

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm

Mixed interval graphs:
■ coloring is NP-complete

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

our contribution

n := # intervals



9 - 2

Overview

Find a graph coloring c : V → N such that:
[Sotskov, Tanaev ’76; Hansen, Kuplinsky, de Werra ’97]

Interval graphs (no directed edges):
■ coloring in linear time by a greedy algorithm

Directional interval graphs:

■ recognition in O(n2) time

■ coloring in O(n log n) time by a greedy algorithm

Mixed interval graphs:
■ coloring is NP-complete

Directed graphs (only directed edges):
■ coloring in linear time using topological sorting

⋆ undirected edge uv: c(u) ̸= c(v),
⋆ directed edge uv: c(u) < c(v),
⋆ maxv∈V c(v) is minimized.

our contribution

n := # intervals



10 - 1

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.



10 - 2

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:



10 - 3

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph GΦ.



10 - 4

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph GΦ.

variable gadget for each variable vi:



10 - 5

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph GΦ.

variable gadget for each variable vi:

vfalsei

vtruei

coloring vi is true



10 - 6

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph GΦ.

variable gadget for each variable vi:

coloring vi is false

vfalsei

vtruei



10 - 7

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph GΦ.

coloring vi is false

vfalsei

vtruei

clause cj containing literal vi: clause ck containing literal ¬vi:

oj
i



10 - 8

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph GΦ.

coloring vi is false

vfalsei

vtruei

clause cj containing literal vi: clause ck containing literal ¬vi:

oj
i

ok
i



10 - 9

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph GΦ.

vfalsei

vtruei

coloring vi is true

clause cj containing literal vi: clause ck containing literal ¬vi:

ok
i

oj
i



10 - 10

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph GΦ.

vfalsei

vtruei

coloring vi is true

ok
i

oj
i

fix positions by adding “frame” intervals



10 - 11

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

We model an instance Φ of 3-SAT as a mixed interval graph GΦ.

vfalsei

vtruei

coloring vi is true

ok
i

oj
i

fix positions by adding “frame” intervals

lower free strip

upper free strip



10 - 12

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

vfalsei

vtruei

coloring vi is true

ok
i

oj
i

clause gadget:

lower free strip

upper free strip



10 - 13

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

vfalsei

vtruei

coloring vi is true

ok
i

oj
i

clause gadget:

lower free strip

upper free strip

bj
i bk

i



10 - 14

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

vfalsei

vtruei

coloring vi is true

ok
i

oj
i

clause gadget:

lower free strip

upper free strip

bj
i bk

i

sj

sk



10 - 15

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

coloring vi is false

vfalsei

vtruei

oj
i

ok
i

clause gadget:

lower free strip

upper free strip

bj
i bk

i

sj

sk



10 - 16

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

coloring vi is false

vfalsei

vtruei

oj
i

ok
i

clause gadget:

lower free strip

upper free strip

bj
i bk

i

sj

sk



10 - 17

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:



10 - 18

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

︸
︷︷

︸
6n colors

(n := # variables)



10 - 19

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

︸
︷︷

︸
6n colors

(n := # variables)



10 - 20

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

clause gadget:

︸
︷︷

︸
6n + 1 colors

(n := # variables)



10 - 21

Coloring Mixed Interval Graphs
Theorem 2:
Deciding whether a mixed interval graph admits a k-coloring is NP-complete.

Proof sketch:

Φ is satisfiable ⇔ GΦ admits
a coloring with 6n colors

clause gadget:

□

︸
︷︷

︸
6n + 1 colors

(n := # variables)



11 - 1

Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.
a

b c

a

b c



11 - 2

Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in O(n log n) time.
n := # vertices

a
b c

a

b c



11 - 3

Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in O(n log n) time.
n := # vertices

■ In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

a
b c

a

b c



11 - 4

Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in O(n log n) time.
n := # vertices

■ In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

a
b c

a

b c

⇒ Combining the drawings of left-going and
right-going edges yields a 2-approximation for the
number of tracks. (bidirectional interval graphs)



11 - 5

Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in O(n log n) time.
n := # vertices

■ In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

a
b c

a

b c

⇒ Combining the drawings of left-going and
right-going edges yields a 2-approximation for the
number of tracks. (bidirectional interval graphs)

■ In our paper, we present a constructive O(n2)-time algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.



11 - 6

Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in O(n log n) time.
n := # vertices

■ In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

a
b c

a

b c

⇒ Combining the drawings of left-going and
right-going edges yields a 2-approximation for the
number of tracks. (bidirectional interval graphs)

■ In our paper, we present a constructive O(n2)-time algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.

■ For the more general case of mixed interval graphs, coloring is NP-hard.
(Remark: NP-hardness requires both directed and undirected edges.)



11 - 7

Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in O(n log n) time.
n := # vertices

■ In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

a
b c

a

b c

⇒ Combining the drawings of left-going and
right-going edges yields a 2-approximation for the
number of tracks. (bidirectional interval graphs)

■ In our paper, we present a constructive O(n2)-time algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.

■ For the more general case of mixed interval graphs, coloring is NP-hard.
(Remark: NP-hardness requires both directed and undirected edges.)



11 - 8

Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in O(n log n) time.
n := # vertices

■ In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

a
b c

a

b c

⇒ Combining the drawings of left-going and
right-going edges yields a 2-approximation for the
number of tracks. (bidirectional interval graphs)

■ In our paper, we present a constructive O(n2)-time algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.

■ For the more general case of mixed interval graphs, coloring is NP-hard.
(Remark: NP-hardness requires both directed and undirected edges.)

can we do better?



11 - 9

Conclusion and Open Problems

■ We have introduced the natural concept of directional interval graphs.

■ A simple greedy algorithm colors these graphs optimally in O(n log n) time.
n := # vertices

■ In layered graph drawing, this corresponds to routing “left-going” edges
orthogonally to the fewest horizontal tracks. (Symmetrically “right-going”.)

a
b c

a

b c

⇒ Combining the drawings of left-going and
right-going edges yields a 2-approximation for the
number of tracks. (bidirectional interval graphs)

■ In our paper, we present a constructive O(n2)-time algorithm for recogni-
zing directional interval graphs, which is based on PQ-trees.

■ For the more general case of mixed interval graphs, coloring is NP-hard.
(Remark: NP-hardness requires both directed and undirected edges.)

can we do better?

bidirectional?


	Title page
	Proof of the Claim
	Overview

