
Parametric Classification
Prof. Dr. Goran Glavaš

1.2.2024

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Supervised ML: Categorization

• (Some) Parametric Models
• Naive Bayes

• Logistic Regression

Supervised ML

• Two important dimensions of division in supervised ML

1. Parametric vs. Non-parametric models

2. Generative vs. Discriminative models

• Today we will see some parametric models
• Naive Bayes: Generative

• Logistic regression

• Next time we will see some non-parametric models
• Decision Trees, k-Nearest Neighbors

Recap: Supervised ML

Three components of a supervised machine learning algorithm

1. Model: a set of functions among which we’re looking for the best

H = { h(x|θ)}θ

• hypothesis = a concrete function obtained for some values θ

• Model is a set of hypothesis

2. Loss function L: used to compute the empirical error E on a dataset D = {(x, y)i}

E(h|D) =
1

𝑁
σ𝑖=1
𝑁 𝐿(ℎ(𝒙𝑖|θ), yi)

3. Optimization procedure: procedure or algorithm with which we find the
hypothesis h* from the model H that minimizes the empirical error

• Equivalent to finding parameters θ* that minimize E

h* = argminh ∈ H E(h|D)

θ* = argminθ E(h|D)

Parametric vs. Non-Parametric

Model: a set of functions among which we’re looking for the best

H = { h(x|θ)}θ

• Parameters θ estimated using the annotated dataset D = {(x, y)i}

A model H = { h(x|θ)}θ is parametric if its number of parameters n, θ = [θ1, θ2, ..., θn] (estimated in
model training) is fixed and does not depend on the size of the training dataset D = {(x, y)i} (i.e.,

number of training examples). Otherwise, the model is non-parametric.

Parametric vs. non-parametric models

Recap: Linear Regression

• Linear Regression is arguably the simplest supervised ML models
• In statistics called „ordinary least squares”, or just „regression”

• Model output is a linear combination of input features

h(x = [x1, x2, ..., xn]|θ) = θ0 + θ1x1 + θ2x2 + ... + θnxn

Image from: https://rpubs.com/svoboa/64900

• Q: Is linear regression parametric or non-
parametric? Why?

https://rpubs.com/svoboa/64900

Generative vs. Discriminative Models

Discriminative models explicitly model the decision boundary between the classes (and
nothing else). In other words, the parameters of discriminative models define the

decision boundary function.

Discriminative Models

Generative models model the (probability) distributions of examples in classes. Learning
the distributions of examples within classes, they can then easily derive the decision

boundary post-hoc from those distributions. So generative models model more than just
the decision boundary between the classes.

Generative Models

• Generative models typically have more parameters than discriminative and are
typically data „hungrier”: require more data for training

Recap: Linear Regression

• Linear Regression as a classifier
• Model output is a linear combination of input features

h(x = [x1, x2, ..., xn]|θ) = θ0 + θ1x1 + θ2x2 + ... + θnxn

• Linear regression is not really suitable as a
classifier (it’s a regression model), but
assuming we use it as such...

• Q: is it a generative or discriminative
model? Why?

Image from: https://www.javatpoint.com/linear-
regression-vs-logistic-regression-in-machine-learning

https://www.javatpoint.com/linear-regression-vs-logistic-regression-in-machine-learning

Content

• Supervised ML: Categorization

• (Some) Parametric Models
• Naive Bayes

• Logistic Regression

Naive Bayes

• Naive Bayes is a generative classification algorithm based on:
• Bayes’ rule and a

• „Naive” assumption that input features x1, x2, ..., xn are mutually independent
(conditionally independent, when conditioned on classes)

• Bayes rule: P(A|B) =
P(B|A) ∗ P(A)

P(B)

• Or, in our classification case:

P(y|x) =
P(x|y) ∗ P(y)

P(x)

This is called posterior (probability of the class, having seen the
„evidence”, which is our example x)we need to compute for
every class y in order to make a decision which class is most
likely for some input x

We will estimate these from the
training set. These probabilities are
parameters of the NB.

• P(x|y) – likelihood (that x is
„generated” if y is the class)

• P(y) – prior (probability of the
class, without knowing anything
about the example)

Naive Bayes

P(y|x) =
P(x|y) ∗ P(y)

P(x)

• Note that the denominator does not depend on y: P(x) is going to be
the same for all classes y

• For classification alone, we don’t need to compute P(x)
• Whichever class has the largest value for P(x|y) ∗ P(y) is also going to have the

largest value for the full P(y|x) (as P(x) is the same for all classes)

P(y|x) ∝ P(x|y) * P(y)

• So, in order to classify x we „only” need to compute likelihoods
P(x|y) and priors P(y) for each class y

Naive Bayes

• Let Y be the set of classes we’re classifying into
• y ∈ Y denotes one (any) class from that set

• Bayes classification model is then given with

h(x) = argmaxy ∈ Y P(x|y) * P(y)

• Key question: how to compute P(y) and P(x|y) – that is our model
parameters, using the training dataset D = {(x, y)i}?

Naive Bayes (Discrete Features): Example

Naive Bayes

• How to compute P(y) using the training dataset D = {(x, y)i}?

• Maximum Likelihood Estimation = estimate probabilities based on
what is most likely according to the training data

• P(y) = count(y) / N (size of the training set)

• P(y = No) = 5/14

• P(y = Yes) = 9/14

• P(y = No) + P(y = Yes) = 1!
• When we sum the probabilities for a random variable

over all possible values it always has to sum up to 1

Naive Bayes

• How to compute P(x|y) using the training dataset D = {(x, y)i}?

• Maximum Likelihood Estimation = estimate probabilities based on
what is most likely according to the training data

• Let x = [x1 = rain, x2 = hot, x3 = high, x4 = weak]

y = No

• P(x|y) = count((x, y)) / N = 0/14 = 0
• Would also be 0 if y = Yes

• Problem: we don’t make predictions for examples seen in
the training data!
• Test/inference examples are, in principle, unseen in training data

Naive Bayes

• Naive Bayes solves this issue by „naively” factorizing P(x|y) into a
product of class-conditional probabilities of features P(xi|y)

P(x = [x1, x2, ..., xn] | y) = P(x1|y) * P(x2|y) * ... * P(xn|y)

• The above equation is only true if features x1, x2, ..., xn are all
mutually independent: no correlation between their values

• In practice, this is almost never the case and the product is merely a
naive approximation of the likelihood P(x = [x1, x2, ..., xn] | y)
• But we are much more likely to successfully conditional probability for

individual feature values P(xi|y) values on the training dataset than the
conditional probability of the whole example P(x = [x1, x2, ..., xn] | y)

Naive Bayes

• Let Y be the set of classes we’re classifying into
• y ∈ Y denotes one (any) class from that set

• Naive Bayes model is then given with

h(x) = argmaxy ∈ Y P(y) * ς𝑖=1
𝑛 P(xi|y)

• Loss function? Not obvious, but it’s actually a 0-1 loss!
• But that’s not differentiable?
• Doesn’t matter, as we’re not using any numerical optimization!

• Optimization (i.e., parameter estimation)?
• Maximum likelihood estimation

(somewhat different for numerical than for discrete feats, as we’ll see in a bit)

Naive Bayes: Parameter Estimation

• Priors: P(y = No) = 5/14, P(y = Yes) = 9/14
--

• Likelihoods:
• P(x1=sunny|No) = 3/5; P(x1=rain|No) = 2/5; P(x1=overcast|No) = 0/5

• P(x1=sunny|Yes) = 2/9; P(x1=rain|Yes) = 3/9; P(x1=overcast|Yes) = 4/9

• P(x2=hot|No) = 2/5; P(x2=mild|No) = 2/5; P(x2=cool|No) = 1/5

• P(x2=hot|Yes) = 2/9; P(x2=mild|Yes) = 4/9; P(x2=cool|Yes) = 3/9

• P(x3=high|No) = 4/5; P(x3=normal|No) = 1/5

• P(x3=high|Yes) = 3/9; P(x3=normal|Yes) = 6/9

• P(x4=weak|No) = 2/5; P(x3=strong|No) = 3/5

• P(x4=weak|Yes) = 6/9; P(x3=strong|Yes) = 3/9

Naive Bayes: Parameter Estimation

• Problem: we might still have unseen combinations of parameter values
and classes
• Like in the example: x1 = overcast, y = No

• Effectively prevents us from making a prediction for any example for which the
value of x1 is „overcast”

P(y=No| x = [x1 = overcast, x2 = cool, x3 = normal, x4 = strong]) ∝

P(y=No) * P(x1=overcast|No) * P(x2=cool|No) * P(x3=normal|No) * P(x4=strong|No)
= 5/14 * 0/5 * 1/5 * 1/5 * 3/5

= 0

• Single unseen feature-class combination pushes the whole posterior to 0.

Naive Bayes: Smoothing

• Smoothing: artificial reassignment of probability mass – to give some
of it to unseen events, in order to prevent 0 probabilities in products

• Additive (or Laplace) smoothing
• Add some small quantity α (for example 1 or 0.5) to each count of feature

value (conditioned on each of the classes)

• P(xi = value | y) =
count(xi = value | y) + α

count(y) + α ∗ Vx𝑖

• If count(xi = value | y) is 0, the nominator is α (so not zero!)
• Vxi is the number of different values x1 can have (in our example, Vxi = 3)

• Since we add α to the nominator of each of those values, adding Vxi * α to the
denominator ensures that P(xi| y) is still a probability distribution

Naive Bayes: Parameter Estimation with Smoothing

• Priors: P(y = No) = 5/14, P(y = Yes) = 9/14

• Likelihoods (with smoothing, α = 0.5):

• P(x1=sunny|No) = (3+0.5)/(5+3*0.5); ...

• P(x1=sunny|Yes) = (2+0.5)/(9 +3*0.5); ...

• P(x2=hot|No) = (2+0.5)/(5+3*0.5); ...

• P(x2=hot|Yes) = (2+0.5)/; (5+3*0.5); ...

• P(x3=high|No) = (4+0.5)/(5+2*0.5)...

• ...

Naive Bayes with Numeric Features

• How do we estimate P(xi|y) if xi is a numeric feature?
• In this case we cannot use counting

• Maximum likelihood estimation for numeric variables requires an
assumption of a distribution of the „continous random variable”
• Those distributions are defined with probability density functions

• Normal (or Gaussian distribution):

p(x) =
1

2πσ
𝑒(

− 𝑥 − µ
2

2σ2)

For a concrete value of x, p(x)
gives the „probability density” for x, which we treat as „probability” for all
intents and purposes (the notation difference is lower-cased p)

Naive Bayes with Numeric Features

• How do we estimate P(xi|y) if xi is a numeric feature?
• In this case we cannot use counting

• Normal (or Gaussian distribution):

p(x) =
1

2πσ
𝑒(

− 𝑥 − µ 2

2σ2)

• But to be able to compute p(x) for some x, we need to estimate µ and σ from
our training set

• p(x|y) – each likelihood (for each class) is assumed to be one normal distr.

• µ = mean (average) of values x across all instances of the class y

• σ = σ𝑖(𝑥𝑖 − µ)2/N (N is the number of examples/instances)

Naive Bayes with Numeric Features: Example

• We have four normal distributions to estimate
• p(x1|Yes), p(x1|No)
• p(x2|Yes), p(x2|No)
• This means computing µ and σ for each of the four

• Example
• µx1|Yes = (-0.17 – 0.89 – 2.61 – 0.91 + 1.17) / 5 = -0.68
• σx1|Yes = [(−0.17 + 0.68)2 +(−0.89 + 0.68)2 +(−2.61 + 0.68)2+(−0.91 + 0.68)2+(1.17 + 0.68)2]/5

= 1.225

• For some new value of x1 we compute p(x1|Yes) by simply
putting that value and µx1|Yes and σx1|Yes into the Gaussian formula above

• NB can seamlessly combine numeric and discrete features!

x1 x2 y

-0.17 1.54 Yes

-0.89 1.18 Yes

-2.61 0.87 Yes

-0.91 0.58 Yes

1.17 0.16 Yes

1.54 2.07 No

1.22 3.58 No

1.85 2.77 No

2.44 2.88 No

0.90 3.64 No

p(x) =
1

2πσ
𝑒(

− 𝑥 − µ 2

2σ2)

Content

• Supervised ML: Categorization

• (Some) Parametric Models
• Naive Bayes

• Logistic Regression

Logistic Regression

• Logistic regression is a discriminative and parametric supervised
machine learning algorithm for binary classification
• Despite the name, it’s a classification and not a regression algorithm!

• Model: h(x|w) = σ(xTw)

=
1

1+exp(−xTw)

=
1

1+exp(−(𝑤0+𝑤1∗𝑥1+…+𝑤𝑛∗𝑥𝑛))

• σ is the so-called sigmoid function

• w = [w0, w1, ..., wn] is the vector of parameters of logistic regression

σ(x) = 1/(1+e-x)

Logistic Regression

• Model: h(x|w) = σ(xTw)

• Loss function: cross-entropy error
• LCE (h(xi|w), yi) = -[yi * ln h(xi|w) +

(1 - yi) * ln (1 - h(xi|w))]

• True label yi is either 0 or 1 (cannot be both :)
• If yi = 0 then only (1 - yi) * ln (1 - h(xi|w)) „survives”
• If yi = 1 then only yi * ln h(xi|w) „survives”

• Optimization: find w that minimize empirical error on the training set
w* = argminw

1

𝑁
σ𝑖=1
𝑁 𝐿(ℎ(𝒙𝑖|𝐰), yi)

w* = argminw −
1

𝑁
σ𝑖=1
𝑁 [yi ∗ ln h(xi|w) + (1 − yi) ∗ ln (1 − h(xi|w))]

σ(x) = 1/(1+e-x)

Logistic Regression

w* = argminw E

Minimize per w: −
1

𝑁
σ𝑖=1
𝑁 [yi ∗ ln h(xi|w) + (1 − yi) ∗ ln (1 − h(xi|w))]

• Q: How do we find the minimum of a continuous function?
• We compute the gradient and solve the equation „gradient = 0”

∇𝐰E = 0

∇w[− 1

𝑁
σ𝑖=1
𝑁 [yi ∗ ln h(xi|w) + (1 − yi) ∗ ln (1 − h(xi|w))]] = 0

• Unlike for linear regression, this equation has no closed form solution.

• Q: What do we do then? Hint: Cross-entropy loss is differentiable per w

Logistic Regression: Features

• From the formula of the logistic regression, it’s obvious it works only with
numbers – only allows numeric features

• For many problems, we also have (good, indicative) discrete features

• Q: How to turn discrete features into numeric features?

x1 has 3 possible values: sunny, overcast, rain?

• Q: How about: sunny→ 1, overcast→ 2, rain→ 3?

• This is not good: introduces ordering between feature values

• One-hot-encoding: if a feature has V possible values,
each value is converted into V binary features
• [is_sunny, is_overcast, is_rain]

• sunny -> [1, 0, 0], overcast = [0, 1, 0], rain = [0, 0, 1]

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и

тан
н

я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w

ọ
n

ib
e

er
e

?

ค ำถำม?

	Default Section
	Slide 1: Parametric Classification Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Supervised ML
	Slide 4: Recap: Supervised ML
	Slide 5: Parametric vs. Non-Parametric
	Slide 6: Recap: Linear Regression
	Slide 7: Generative vs. Discriminative Models
	Slide 8: Recap: Linear Regression
	Slide 9: Content
	Slide 10: Naive Bayes
	Slide 11: Naive Bayes
	Slide 12: Naive Bayes
	Slide 13: Naive Bayes (Discrete Features): Example
	Slide 14: Naive Bayes
	Slide 15: Naive Bayes
	Slide 16: Naive Bayes
	Slide 17: Naive Bayes
	Slide 18: Naive Bayes: Parameter Estimation
	Slide 19: Naive Bayes: Parameter Estimation
	Slide 20: Naive Bayes: Smoothing
	Slide 21: Naive Bayes: Parameter Estimation with Smoothing
	Slide 22: Naive Bayes with Numeric Features
	Slide 23: Naive Bayes with Numeric Features
	Slide 24: Naive Bayes with Numeric Features: Example
	Slide 25: Content
	Slide 26: Logistic Regression
	Slide 27: Logistic Regression
	Slide 28: Logistic Regression
	Slide 29: Logistic Regression: Features
	Slide 30: Questions?

