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Supervised ML

• Two important dimensions of division in supervised ML

1. Parametric vs. Non-parametric models

2. Generative vs. Discriminative models

• Today we will see some parametric models
• Naive Bayes: Generative

• Logistic regression

• Next time we will see some non-parametric models
• Decision Trees, k-Nearest Neighbors



Recap: Supervised ML

Three components of a supervised machine learning algorithm

1. Model: a set of functions among which we’re looking for the best

H = { h(x|θ)}θ

• hypothesis = a concrete function obtained for some values θ

• Model is a set of hypothesis

2. Loss function L: used to compute the empirical error E on a dataset D = {(x, y)i}  

E(h|D) = 
1

𝑁
σ𝑖=1
𝑁 𝐿( ℎ(𝒙𝑖|θ), yi)

3. Optimization procedure: procedure or algorithm with which we find the 
hypothesis h* from the model H that minimizes the empirical error 

• Equivalent to finding parameters θ*  that minimize E

h* = argminh ∈ H E(h|D)  

θ* = argminθ E(h|D)



Parametric vs. Non-Parametric

Model: a set of functions among which we’re looking for the best

H = { h(x|θ)}θ

• Parameters θ estimated using the annotated dataset D = {(x, y)i}

A model H = { h(x|θ)}θ is parametric if its number of parameters n, θ = [θ1, θ2, ..., θn] (estimated in 
model training) is fixed and does not depend on the size of the training dataset  D = {(x, y)i} (i.e., 

number of training examples). Otherwise, the model is non-parametric. 

Parametric vs. non-parametric models



Recap: Linear Regression

• Linear Regression is arguably the simplest supervised ML models
• In statistics called „ordinary least squares”, or just „regression”

• Model output is a linear combination of input features

h(x = [x1, x2, ..., xn]|θ) = θ0 + θ1x1 + θ2x2 + ... + θnxn

Image from: https://rpubs.com/svoboa/64900

• Q: Is linear regression parametric or non-
parametric? Why?

https://rpubs.com/svoboa/64900


Generative vs. Discriminative Models

Discriminative models explicitly model the decision boundary between the classes (and 
nothing else). In other words, the parameters of discriminative models define the 

decision boundary function. 

Discriminative Models

Generative models model the (probability) distributions of examples in classes. Learning 
the distributions of examples within classes, they can then easily derive the decision 

boundary post-hoc from those distributions. So generative models model more than just 
the decision boundary between the classes. 

Generative Models

• Generative models typically have more parameters than discriminative and are 
typically data „hungrier”: require more data for training



Recap: Linear Regression

• Linear Regression as a classifier
• Model output is a linear combination of input features

h(x = [x1, x2, ..., xn]|θ) = θ0 + θ1x1 + θ2x2 + ... + θnxn

• Linear regression is not really suitable as a 
classifier (it’s a regression model), but 
assuming we use it as such...

• Q: is it a generative or discriminative
model? Why?

Image from: https://www.javatpoint.com/linear-
regression-vs-logistic-regression-in-machine-learning

https://www.javatpoint.com/linear-regression-vs-logistic-regression-in-machine-learning
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Naive Bayes

• Naive Bayes is a generative classification algorithm based on: 
• Bayes’ rule and a 

• „Naive” assumption that input features x1, x2, ..., xn are mutually independent 
(conditionally independent, when conditioned on classes)

• Bayes rule:    P(A|B) = 
P(B|A) ∗ P(A)

P(B)

• Or, in our classification case: 

P(y|x) = 
P(x|y) ∗ P(y)

P(x)

This is called posterior (probability of the class, having seen the 
„evidence”, which is our example x)we need to compute for 
every class y in order to make a decision which class is most 
likely for some input x

We will estimate these from the 
training set. These probabilities are 
parameters of the NB.

• P(x|y) – likelihood (that x is 
„generated” if y is the class)

• P(y) – prior (probability of the 
class, without knowing anything 
about the example)



Naive Bayes

P(y|x) = 
P(x|y) ∗ P(y)

P(x)

• Note that the denominator does not depend on y: P(x) is going to be 
the same for all classes y 

• For classification alone, we don’t need to compute P(x)
• Whichever class has the largest value for P(x|y) ∗ P(y) is also going to have the 

largest value for the full P(y|x) (as P(x) is the same for all classes)

P(y|x) ∝ P(x|y) * P(y)

• So, in order to classify x we „only” need to compute likelihoods
P(x|y) and priors P(y) for each class y



Naive Bayes

• Let Y be the set of classes we’re classifying into 
• y ∈ Y denotes one (any) class from that set

• Bayes classification model is then given with

h(x) = argmaxy ∈ Y P(x|y) * P(y)

• Key question: how to compute P(y) and P(x|y) – that is our model 
parameters, using the training dataset D = {(x, y)i}?



Naive Bayes (Discrete Features): Example



Naive Bayes

• How to compute P(y) using the training dataset D = {(x, y)i}?

• Maximum Likelihood Estimation = estimate probabilities based on  
what is most likely according to the training data 

• P(y) = count(y) / N (size of the training set)

• P(y = No) = 5/14

• P(y = Yes) = 9/14 

• P(y = No) + P(y = Yes) = 1!  
• When we sum the probabilities for a random variable 

over all possible values it always has to sum up to 1



Naive Bayes

• How to compute P(x|y) using the training dataset D = {(x, y)i}?

• Maximum Likelihood Estimation = estimate probabilities based on  
what is most likely according to the training data 

• Let x = [x1 = rain, x2 = hot, x3 = high, x4 = weak] 

y = No

• P(x|y) = count((x, y)) / N = 0/14 = 0
• Would also be 0 if y = Yes 

• Problem: we don’t make predictions for examples seen in 
the training data!
• Test/inference examples are, in principle, unseen in training data   



Naive Bayes

• Naive Bayes solves this issue by „naively” factorizing P(x|y) into a 
product of class-conditional probabilities of features P(xi|y)  

P(x = [x1, x2, ..., xn] | y) = P(x1|y) * P(x2|y) * ... * P(xn|y) 

• The above equation is only true if features x1, x2, ..., xn are all 
mutually independent: no correlation between their values

• In practice, this is almost never the case and the product is merely a 
naive approximation of the likelihood P(x = [x1, x2, ..., xn] | y)
• But we are much more likely to successfully conditional probability for 

individual feature values  P(xi|y) values on the training dataset than the 
conditional probability of the whole example P(x = [x1, x2, ..., xn] | y)



Naive Bayes

• Let Y be the set of classes we’re classifying into 
• y ∈ Y denotes one (any) class from that set

• Naive Bayes model is then given with

h(x) = argmaxy ∈ Y P(y)  * ς𝑖=1
𝑛 P(xi|y)

• Loss function? Not obvious, but it’s actually a 0-1 loss!
• But that’s not differentiable?
• Doesn’t matter, as we’re not using any numerical optimization! 

• Optimization (i.e., parameter estimation)?
• Maximum likelihood estimation 

(somewhat different for numerical than for discrete feats, as we’ll see in a bit)



Naive Bayes: Parameter Estimation

• Priors: P(y = No) = 5/14, P(y = Yes) = 9/14 
----------------------------------------------------------

• Likelihoods: 
• P(x1=sunny|No) = 3/5; P(x1=rain|No) = 2/5; P(x1=overcast|No) = 0/5  

• P(x1=sunny|Yes) = 2/9; P(x1=rain|Yes) = 3/9; P(x1=overcast|Yes) = 4/9  

• P(x2=hot|No) = 2/5; P(x2=mild|No) = 2/5; P(x2=cool|No) = 1/5  

• P(x2=hot|Yes) = 2/9; P(x2=mild|Yes) = 4/9; P(x2=cool|Yes) = 3/9  

• P(x3=high|No) = 4/5; P(x3=normal|No) = 1/5

• P(x3=high|Yes) = 3/9; P(x3=normal|Yes) = 6/9

• P(x4=weak|No) = 2/5; P(x3=strong|No) = 3/5

• P(x4=weak|Yes) = 6/9; P(x3=strong|Yes) = 3/9



Naive Bayes: Parameter Estimation

• Problem: we might still have unseen combinations of parameter values 
and classes
• Like in the example: x1 = overcast, y = No

• Effectively prevents us from making a prediction for any example for which the 
value of x1 is „overcast” 

P(y=No| x = [x1 = overcast, x2 = cool, x3 = normal, x4 = strong]) ∝

P(y=No) * P(x1=overcast|No) * P(x2=cool|No) * P(x3=normal|No) * P(x4=strong|No)  
=  5/14 * 0/5 * 1/5 * 1/5 * 3/5

= 0

• Single unseen feature-class combination pushes the whole posterior to 0. 



Naive Bayes: Smoothing

• Smoothing: artificial reassignment of probability mass – to give some 
of it to unseen events, in order to prevent 0 probabilities in products

• Additive (or Laplace) smoothing
• Add some small quantity α (for example 1 or 0.5) to each count of feature 

value (conditioned on each of the classes)

• P(xi = value | y) = 
count(xi = value | y) + α

count(y) + α ∗ Vx𝑖

• If count(xi = value | y) is 0, the nominator is α (so not zero!)
• Vxi is the number of different values x1 can have (in our example, Vxi = 3)

• Since we add α to the nominator of each of those values, adding Vxi * α to the 
denominator ensures that P(xi| y) is still a probability distribution



Naive Bayes: Parameter Estimation with Smoothing

• Priors: P(y = No) = 5/14, P(y = Yes) = 9/14 

• Likelihoods (with smoothing, α = 0.5): 

• P(x1=sunny|No) = (3+0.5)/(5+3*0.5); ...

• P(x1=sunny|Yes) = (2+0.5)/(9 +3*0.5); ...

• P(x2=hot|No) = (2+0.5)/(5+3*0.5); ...

• P(x2=hot|Yes) = (2+0.5)/; (5+3*0.5); ...

• P(x3=high|No) = (4+0.5)/(5+2*0.5)...

• ...



Naive Bayes with Numeric Features

• How do we estimate P(xi|y) if xi is a numeric feature?
• In this case we cannot use counting

• Maximum likelihood estimation for numeric variables requires an 
assumption of a distribution of the „continous random variable”
• Those distributions are defined with probability density functions

• Normal (or Gaussian distribution):

p(x) = 
1

2πσ
𝑒(

− 𝑥 − µ
2

2σ2 )

For a concrete value of x, p(x)
gives the „probability density” for x, which we treat as „probability” for all 
intents and purposes (the notation difference is lower-cased p)



Naive Bayes with Numeric Features

• How do we estimate P(xi|y) if xi is a numeric feature?
• In this case we cannot use counting

• Normal (or Gaussian distribution):

p(x) = 
1

2πσ
𝑒(

− 𝑥 − µ 2

2σ2 )

• But to be able to compute p(x) for some x, we need to estimate µ and σ from 
our training set 

• p(x|y) – each likelihood (for each class) is assumed to be one normal distr.

• µ = mean (average) of values x across all instances of the class y

• σ = σ𝑖(𝑥𝑖 − µ)2/N (N is the number of examples/instances)



Naive Bayes with Numeric Features: Example

• We have four normal distributions to estimate
• p(x1|Yes), p(x1|No)
• p(x2|Yes), p(x2|No)
• This means computing µ and σ for each of the four

• Example
• µx1|Yes = (-0.17 – 0.89 – 2.61 – 0.91 + 1.17) / 5 = -0.68
• σx1|Yes = [(−0.17 + 0.68)2 +(−0.89 + 0.68)2 +(−2.61 + 0.68)2+(−0.91 + 0.68)2+(1.17 + 0.68)2]/5

= 1.225

• For some new value of x1 we compute p(x1|Yes) by simply
putting that value and µx1|Yes and σx1|Yes into the Gaussian formula above

• NB can seamlessly combine numeric and discrete features!

x1 x2 y

-0.17 1.54 Yes

-0.89 1.18 Yes

-2.61 0.87 Yes

-0.91 0.58 Yes

1.17 0.16 Yes

1.54 2.07 No

1.22 3.58 No

1.85 2.77 No

2.44 2.88 No

0.90 3.64 No

p(x) = 
1

2πσ
𝑒(

− 𝑥 − µ 2

2σ2 )
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Logistic Regression

• Logistic regression is a discriminative and parametric supervised 
machine learning algorithm for binary classification
• Despite the name, it’s a classification and not a regression algorithm! 

• Model: h(x|w) = σ(xTw) 

= 
1

1+exp(−xTw)

= 
1

1+exp(−(𝑤0+𝑤1∗𝑥1+…+𝑤𝑛∗𝑥𝑛))

• σ is the so-called sigmoid function

• w = [w0, w1, ..., wn] is the vector of parameters of logistic regression  

σ(x) = 1/(1+e-x)



Logistic Regression

• Model: h(x|w) = σ(xTw) 

• Loss function: cross-entropy error
• LCE (h(xi|w), yi) = -[  yi * ln h(xi|w) + 

(1 - yi) * ln (1 - h(xi|w)) ]

• True label yi is either 0 or 1 (cannot be both :)
• If yi = 0 then only (1 - yi) * ln (1 - h(xi|w)) „survives”
• If yi = 1 then only yi * ln h(xi|w) „survives”

• Optimization: find w that minimize empirical error on the training set
w* = argminw

1

𝑁
σ𝑖=1
𝑁 𝐿( ℎ(𝒙𝑖|𝐰), yi)

w* = argminw −
1

𝑁
σ𝑖=1
𝑁 [ yi ∗ ln h(xi|w) + (1 − yi) ∗ ln (1 − h(xi|w)) ]

σ(x) = 1/(1+e-x)



Logistic Regression

w* = argminw E

Minimize per w: −
1

𝑁
σ𝑖=1
𝑁 [ yi ∗ ln h(xi|w) + (1 − yi) ∗ ln (1 − h(xi|w)) ]

• Q: How do we find the minimum of a continuous function?
• We compute the gradient and solve the equation „gradient = 0” 

∇𝐰E = 0

∇w[− 1

𝑁
σ𝑖=1
𝑁 [ yi ∗ ln h(xi|w) + (1 − yi) ∗ ln (1 − h(xi|w)) ] ] = 0

• Unlike for linear regression, this equation has no closed form solution. 

• Q: What do we do then? Hint: Cross-entropy loss is differentiable per w



Logistic Regression: Features

• From the formula of the logistic regression, it’s obvious it works only with 
numbers – only allows numeric features

• For many problems, we also have (good, indicative) discrete features

• Q: How to turn discrete features into numeric features?

x1 has 3 possible values: sunny, overcast, rain?

• Q: How about: sunny→ 1, overcast→ 2, rain→ 3?

• This is not good: introduces ordering between feature values

• One-hot-encoding: if a feature has V possible values,                                        
each value is converted into V binary features
• [is_sunny, is_overcast, is_rain]

• sunny -> [1, 0, 0],  overcast =  [0, 1, 0], rain =  [0, 0, 1]  
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