

Antiinfektiva - Antibiotika

Pharmakologie und Toxikologie für Studierende der Zahnheilkunde WS2023/2024

Dr. Sabine RebsInstitut für Pharmakologie und Toxikologie
Universität Würzburg

Disclaimer für Vorlesungen/Präsentationen

Dringender Hinweis

Vorlesungsinhalte und deren Abfolge genießen urheberrechtlichen Schutz (§ 2 Abs. 1 Nr. 1 UrhG).

Abbildungen von Patientinnen und Patienten inkl. Röntgenbilder sowie auch **Fotos/Film- und Audioaufnahmen mit den Dozierenden** unterliegen dem Persönlichkeitsrecht (§ 823 Abs.1 BGB, Art. 2 Abs.1 GG und § 22 KUG).

Eine Vervielfältigung, Weitergabe an Dritte oder Veröffentlichungen jeglicher Art, insbesondere im Internet, ohne vorherige Einwilligung des Urhebers, sind verboten und können rechtliche Ansprüche (Unterlassungsund Schadensersatzansprüche) oder strafrechtliche Konsequenzen nach sich ziehen.

Inhalt Antiinfektiva

1. Antibiotika

- β-lactam AB
- Aminoglykoside
- Tetrazykline
- Makrolide
- Lincosamide
- Chinolone
- Nitroimidazole

2. Antimykotika

- Echinocandine
- Polyen-AM
- Allylamine
- Azole
- Flucytosin

3. Virostatika

- Herpesviren
- Nucleosid Analogika

Verordnungsstärkste Indikationsgruppen 2018

■ Tabelle 1.2 Umsatzstärkste Arzneimittelgruppen 2018

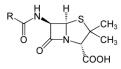
Rang	Arzneimittelgruppe Nettokosten		1	Verordnungen		DDD	
		Mio.	% Änd.	Mio.	% Änd.	Mio.	% Änd.
1	Onkologika	8.206,43	13,7	7,45	1,6	247,76	3,4
2	Immunsuppressiva	5.623,61	7,5	3,19	3,3	153,21	6,1
3	Antithrombotika	2.638,05	10,0	24,35	2,7	1.896,99	3,7
4	Antidiabetika	2.604,85	5,2	30,83	1,8	2.335,56	2,3
5	Dermatika	1.934,00	13,5	24,64	0,0	750,45	2,3
6	Antiasthmatika	1.915,71	5,9	26,30	1,1	1.386,43	2,2
7	Psychopharmaka	1.776,85	3,1	48,92	1,0	2.368,30	2,2
8	Analgetika	1.734,07	2,8	50,88	3,1	714,41	2,4
9	Angiotensinhemmstoffe	1.605,69	3,8	63,50	2,5	9.974,23	5,0
10	Ophthalmika	1.274,90	5,4	18,74	2,9	839,42	2,6
11	Virostatika	1.203,44	-12,4	1,78	-0,9	49,49	2,1
12	Immunstimulanzien	979,02	-6,8	0,56	-5,5	19,88	-4,4
13	Lipidsenker	737,35	0,7	25,15	5,9	2.741,80	8,9
14	Antiepileptika	705,50	-0,7	12,68	4,7	467,13	4,0
15	Antibiotika	639,71	-4,8	33,55	-6,2	302,99	-5,2
16	Ulkustherapeutika	628,61	-3,2	31,23	-1,8	3.715,91	-1,2

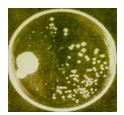
Einsatz von Antibiotika in der Zahnheilkunde

- Lokale Infektionen mit Zeichen einer Generalisierung
- Endokarditis Prophylaxe

Eingeschränkte Infektabwehr

Verletzungen im Kiefer-Gesichtsbereich




(ursprüngliche) Definitionen

> Antibiotika

biosynthetisch gewonnene, antibakteriell wirksame Naturstoffe

z.B. Penicillin aus Penicillium-Kulturen

Chemotherapeutika

chemisch-synthetisch hergestellte, antibakteriell wirksame Substanzen

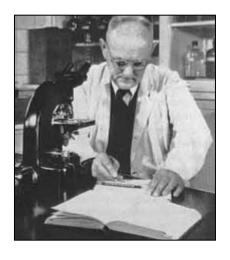
z.B. Sulfonamide

- -zid (bakterizid, fungizid, viruzid)Abtötung/ Zelltod
- -statisch (bakteriostatisch, ...)
 Hemmen das Wachstum bzw die Vermehrung

Entdeckung antibakteriell wirksamer Verbindungen

Paul Ehrlich *1854, † 1915 (Deutschland) erkannte 1909 die Heilwirkung des Salvarsans gegenüber den Erregern der Syphilis

Sir Alexander Fleming


*1881, † 1955

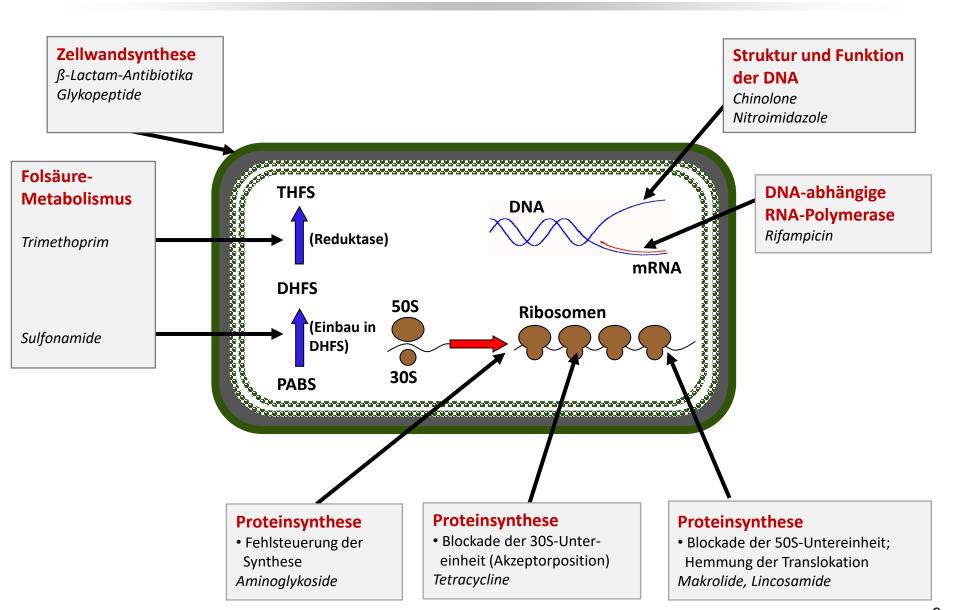
(Großbritannien)

Nobelpreis für Medizin 1945

"Für die Entdeckung des Penizillins und seiner Heilwirkung bei verschiedenen Infektionskrankheiten"

(gemeinsam mit Ernst Boris Chain und Sir Howard Walter Florey)

Gerhard Domagk
*1895, † 1964
(Deutschland)
Nobelpreis für Medizin 1939
"Für die Entdeckung der antibakteriellen
Wirkung des Prontosil"


Pharmakodynamik - Angriffspunkte von Antibiotika

Vergleich humaner Zelle:
Keine Zellwand
Kein Folsäuremetabolismus
60s-40s Ribosomen
Zellkern

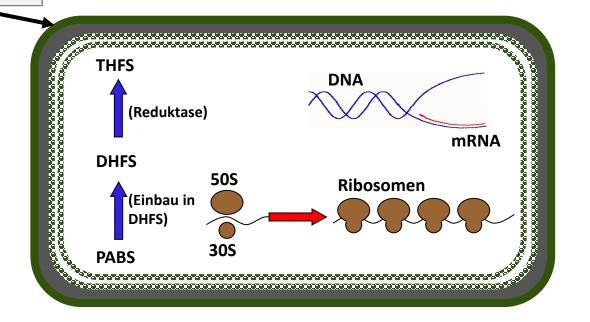
Pharmakodynamik - Angriffspunkte von Antibiotika

Leitregeln der Antibiotika-Therapie

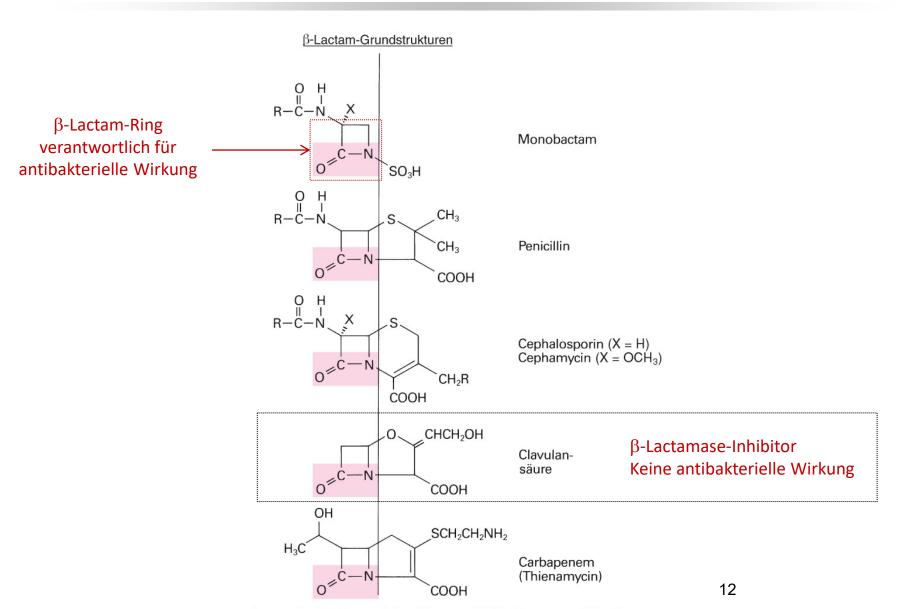
> Unnötige Antibiotika-Therapie vermeiden!

- Resistenzentwicklung (MRSA, MRGN, ...)
- UAWs: Risiko-Nutzen-Abwägung

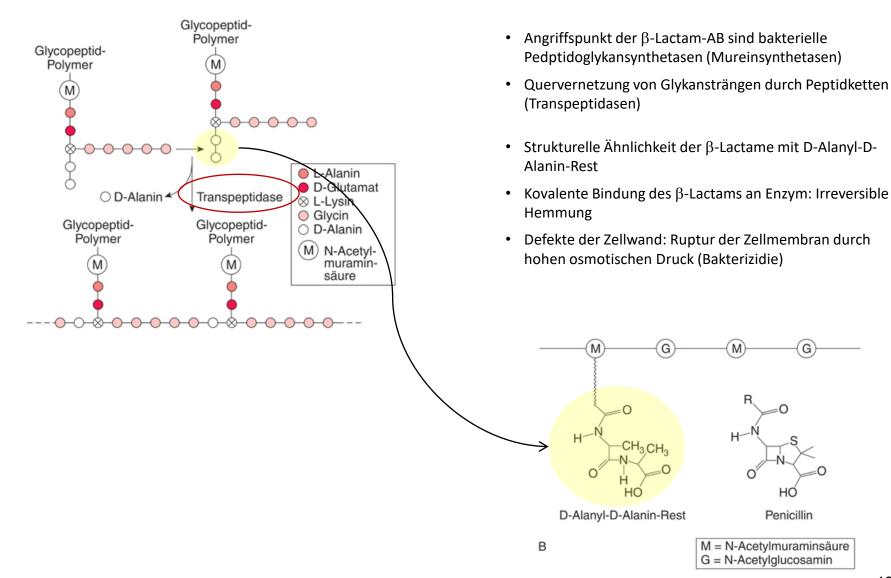
Gezielte Therapie!


- Schmalspektrum vs. Breitspektrum-Antibiotika
- > Antibiotika Einnahme durchgängig bis zum Schluss
- > Prophylaxe nur in Ausnahmefällen, z.B.
 - Infektionsprophylaxe z.B. Malaria
 - Perioperative Prophylaxe bei chirurgischen Eingriffen
 - Endokarditisprophylaxe bei Patienten mit Herzfehlern

Pharmakodynamik - Angriffspunkte von Antibiotika

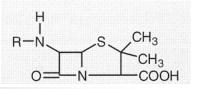

Zellwandsynthese

ß-Lactam-Antibiotika



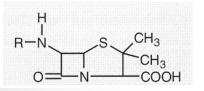
β-Lactam-Antibiotika Struktur

β-Lactam-Antibiotika Molekularer Angriffspunkt

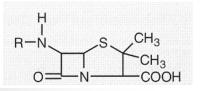


β-Lactam-Antibiotika Wirkspektrum, Wirktyp

- **bakterizide Wirkung**, aber nur auf proliferierende Keime (nur da findet Mureinsynthese statt!)
- Wirkspektrum umfasst sowohl grampositive als auch gramnegative Erreger starke Unterschiede zwischen den einzelnen Verbindungen (Schmalspektrum – Breitspektrum) abhängig von:
 - Penetrationsgeschwindigkeit
 - **Wirkortaffinität:** Mureinsynthetasen (<u>P</u>enicillin <u>b</u>indende <u>P</u>roteine, PBP) sind eine heterogene Gruppe von Enzymen, AB, die an essentielle PBP binden: hohe antibakterielle Potenz
 - β -Lactamase-Stabilität: häufigste Resistenz durch hydrolytische Spaltung des β -Lactamasen β -Lactamasen
- > Grundsätzlich nicht wirksam bei
 - zellwandlosen Bakterien (z.B. Mykoplasmen)
 - intrazellulär wachsenden Bakterien (Chlamydien, Legionellen)
 - langsam wachsenden Bakterien (z.B. Mykobakterien)


Penicilline

	Penicillin G	Oralpenicilline		
Substanz, z.B.	Penicillin G	Penicillin V		
Struktur (-R)	O	O-CH ₂ -C-		
Orale Resorption	- (Magensäure-labil)	60 %		
Wirkspektrum	überwiegend grampositive Ba			
Penicillinase-fest	-	-		
Indikation	schwere Infektionen (z.B. Sepsis, akute Endokarditis, Syphilis, Tetanus od. Diphtherie)	leichte bis mittelschwere Infektionen (Streptokokken- Angina, Otitis, Sinusitis, Bronchitis)		
Resistenz				


Penicilline

	Penicillin G	Oralpenicilline	Isoxazolyl- penicilline			
Substanz, z.B.	Penicillin G	Penicillin V	Dicloxacillin Flucloxacillin			
Struktur (-R)	O	O-CH ₂ -C-	F O CH ₃			
Orale Resorption	- (Magensäure-labil)	60 %	50 %			
Wirkspektrum	überwiegend grampositive Bakterien					
Penicillinase-fest		-	+			
Indikation	schwere Infektionen (z.B. Sepsis, akute Endokarditis, Syphilis, Tetanus od. Diphtherie)	leichte bis mittelschwere Infektionen (Streptokokken- Angina, Otitis, Sinusitis, Bronchitis)	leichtere Infektionen durch Penicillinase- bildende Staphylokokken			
Resistenz			Veränderung PBP: MRSA (Methicillin- oder Multi-resistente S. aureus)			

Penicilline

	Penicillin G	Oralpenicilline	Isoxazolyl- penicilline	Aminopenicilline	Acylamino- penicilline
Substanz, z.B.	Penicillin G	Penicillin V	Dicloxacillin Flucloxacillin	Ampicillin Amoxicillin	Mezlocillin Piperacillin
Struktur (-R)	O	O-CH ₂ -C-	F 0 CH ₃	но	H ₃ C-SO ₂ -N-C-NH-CH-C-
Orale Resorption	- (Magensäure-labil)	60 %	50 %	30 % (Ampicillin) 75 % (Amoxicillin)	-
Wirkspektrum	überv	viegend grampositive Bak	grampositive / gramnegative Bakterien		
Penicillinase-fest	-	-	+	-	-
Indikation	schwere Infektionen (z.B. Sepsis, akute Endokarditis, Syphilis, Tetanus od. Diphtherie)	leichte bis mittelschwere Infektionen (Streptokokken- Angina, Otitis, Sinusitis, Bronchitis)	leichtere Infektionen durch Penicillinase- bildende Staphylokokken	leichte bis mittelschwere Infektionen HNO, Atemwege, Endokarditis- prophylaxe	schwere Infektionen (Pneumonien, infizierte Verbrennungen, Endokarditis, Sepsis)
Resistenz			Veränderung PBP: MRSA (Methicillin- oder Multi-resistente S. aureus)		

Vergleich: Wirkungsschwerpunkte Penicilline: +++ sehr gut; ++ gut, + mittel, +/- schwach o. Resistenz; - keine

Substanz	Strept okokk en	Pneumo- kokken (gram +)	S. Aureus (gram +)	Haem. Inluenzae (gram -)	E.Coli (gram -)	Entero- kokken (gram +)	Proteus (gram -)	Pseudo. Aerug. (gram-)	B. Fragilis (gram -)
Pen G Derivate ("C	Pralpenicill	ine"; nicht Pen	cillinase-fest)						
Pen G, V	+++	+++	-	-	-	-	-	-	-
Isoxazolylpen. (per	nicillase-fe	st)							
Flucoloxa-cillin	++	+	+++	-	-	-	-	-	-
Aminopen. (nicht p	Aminopen. (nicht penicillinase-fest; erweitertes WS gegen gram -)								
Ampicillin (nur parenteral)	+++	+++	-	++	+/-	++	-	-	-
Amoxicillin	+++	+++	-	++	+/-	++	-	-	-
Amoxi + Clavulansre	+++	+++	+++	+++	++	++	+/-	-	++
Acylamino-pens (nur parenteral) nicht penicillinase-fest; erweitertes WS gegen gram -									
Mezlocillin	+++	+++	-	+++	+	++	+/-	-	+
Piperacillin	+++	+++	-	+++	+	+	+/-	++	+

Quelle: verändert und ergänzt von: Aktories, Flockerzi, Förstermann, Hoffmann: Allgemeine und spezielle Pharmakologie und Toxikologie * 13. Auflage

Cephalosporine Cephalosporine zur oralen Anwendung

Gruppe 1 Cefalexin, Cefaclor

- Wirkspektrum: Streptokokken und Staphylokokken
- stabil gegenüber Penicillinasen aus Staphylokokken

Gruppe 2 Cefuroxim-Axetil

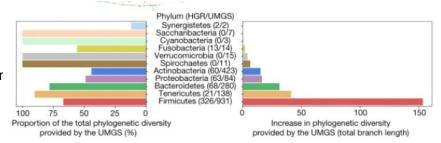
- auch gegen gramnegative Bakterien
- ± stabil gegenüber β-Lactamasen gramnegativer Bakterien
- Orale Bioverfügbarkeit ↑

Gruppe 3 Cefpodoxim-Proxetil, Cefixim

- besser wirksam gegen gramnegative Bakterien (stabil gegenüber β-Lactamasen)
- schwächer wirksam gegen grampositive Bakterien

- Atemwegsinfekte
- Harnwegsinfekte
- Haut- und. Weichteil-Infektionen

Grundgerüst	0 R ¹ —C = N	ON R ² COOR ³	
Freiname	R ¹	R ²	R ³
Gruppe 1			
Cefalexin	CH- NH ₂	—CH ₃	—н
Cefaclor	CH- I NH ₂	—сі	—н
Cefadroxil	но-Сн- I NH ₂	—сн ₃	—н
Gruppe 2 Cefuroxim- axetil	C-INCO-CH3	O	
Gruppe 3 Cefpodoxim- proxetil	N C C C C C C C C C C C C C C C C C C C	—СH ₂ -О-СН ₃	O CH ₃
Cefixim	N C C II N O − CH₂ − COOH	—CH=CH ₂	—н
Ceftibuten	N C C II N O - CH2 - COOH	—н	—н



β-Lactam-Antibiotika (Pen. und Cephalo.) UAWs

geringe Toxizität, große therapeutische Breite, Tagesdosen bis zu 20 g/Tag

> Gastrointestinale Störungen

- durch Veränderung der Darmflora
- <u>Selten aber schwerwiegend</u>: Colitis durch Toxine vor Clost. difficile

Almaida et al., Nature 568 (499-504) 2019

- Allergien, pseudoallergische Reaktionen
- Neurotoxizität (z.B. Krämpfe) bei Gabe sehr hoher Dosen

> Hämostase-Störungen mit Blutungsneigung

Störung des Vitamin K-Haushalts durch
 Beeinträchtigung der Vitamin K-produzierenden
 Darmflora

ABB. 3 Exanthem am Unterarm einer 29-jährigen Frau nach 6 Tagen Therapie mit 3 x 1000 mg Amoxicillin pro Tag aufgrund einer Otitis media.

Pharm. Unserer Zeit 5 | 2006 (35)

Interaktionen: östrogenhaltige Kontrazeptiva!!

Antibiotoka unterbrechen durch Schädigung der Darmflora den enterohepatischen Kreislauf der Estrogene

Exkurs: Resistenzentwicklung β-lactam Antibiotika (Pen. und Cepahlo.)

1. Penetration

- AB müssen die bakterielle Zellwand überwinden
- · Durchlässigkeit gram ist veränderlich

2. Wirkaffinität / PBP (Penicillin-Bindende-Proteine)

- PBP sind die Enzyme die für die Wirkung verantwortlich sind: Enzyme mit Transpeptidase Aktivität (= Mureinsynthetasen) sind PBP
- Mutationen in PBP (chromosomal): strukurell verändert = Affinität der AB zu PBP sinkt
- Bsp: MRSA: mut. PBP + veringerte Zellwandpenetration

3. β-lactamase Stabilität (am häufigsten)

- Resistenzmechanismus: Produktion von β-lactamasen
- Enzyme die β-Lactam bindung hydrolytisch spalten = Inaktivierung
- Strategie: β-Lactamase Inhibitoren mit dem AB kombinieren (z.B.: Clavulansäure (Kombipräparat) oder Sulbactam (Monopräparat)

Exkurs: Resistenzentwicklung wachsendes globales Problem

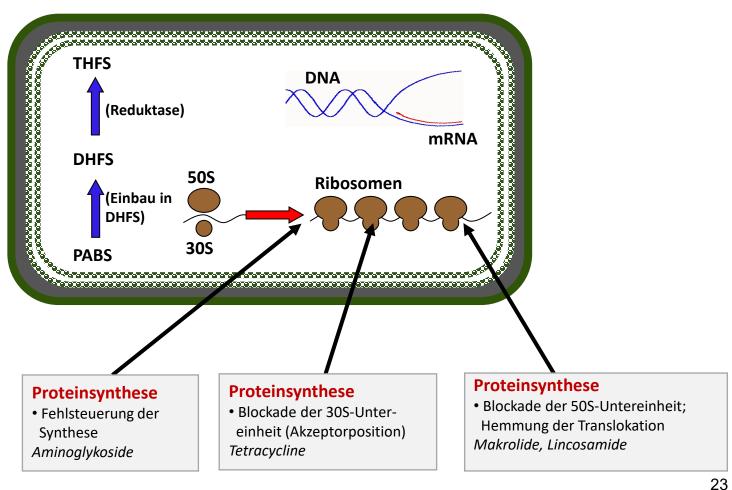
WHO priority pathogens list for R&D of new antibiotics

Priority 1: CRITICAL

- Acinetobacter baumannii, carbapenem-resistant
- Pseudomonas aeruginosa, carbapenem-resistant
- Enterobacteriaceae, carbapenem-resistant, ESBL-producing

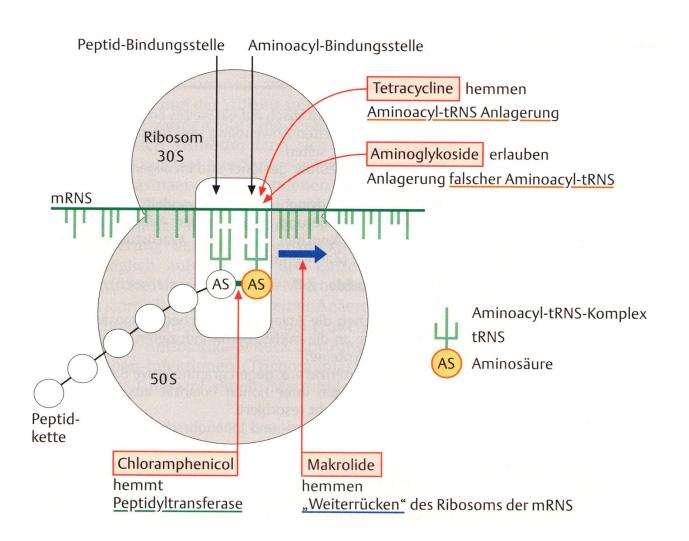
Priority 2: HIGH

- Enterococcus faecium, vancomycin-resistant
- Staphylococcus aureus, methicillin-resistant, vancomycin-intermediate and resistant
- Helicobacter pylori, clarithromycin-resistant
- Campylobacter spp., fluoroquinolone-resistant
- Salmonellae, fluoroquinolone-resistant
- Neisseria gonorrhoeae, cephalosporin-resistant, fluoroquinolone-resistant


Priority 3: MEDIUM

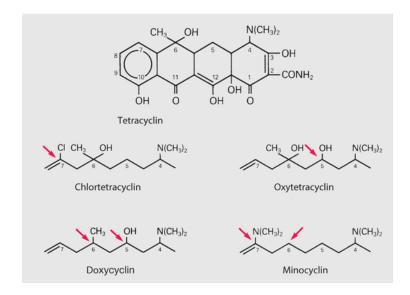
- Streptococcus pneumoniae, penicillin-non-susceptible
- Haemophilus influenzae, ampicillin-resistant
- · Shigella spp., fluoroquinolone-resistant

WHO publishes list of bacteria for which new antibiotics are urgently needed



Pharmakodynamik -**Angriffspunkte von Antibiotika**

Hemmstoffe der Proteinsynthese



Tetrazykline Struktur, Wirkung, Indikation

- > isoliert aus Streptomyces-Arten
- Blockade der Anlagerung der Aminoacyl- tRNA an ribosomale Akzeptorstelle: Bakteriostase
- breites Wirkspektrum
 - grampositive Erreger
 - gramnegative Bakterien
 - Zellwandlose (z.B. Mykoplasmen)
 - intrazellulär lokalisierte Erreger (z.B. Chlamydien)
 - einige Protozoen

Indikationen

- Atemwegsinfektionen
- Harnwegsinfektionen
- Akne
- Lyme-Borreliose
- Cholera / Pest
- Malaria (Chloroquin-resistente Plasmodien)
- Tetracyclinfaden bei Paradontitis

Tetrazykline UAWs, Interaktionen, KI

> UAWs

- · Knochen- und Zahnschädigung
- Phototoxizität
- Leberschäden
- Gastrointestinale Störungen
- Allergien

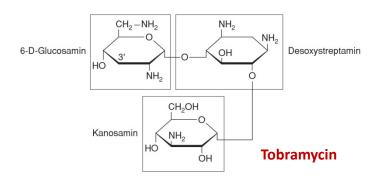
Interaktionen

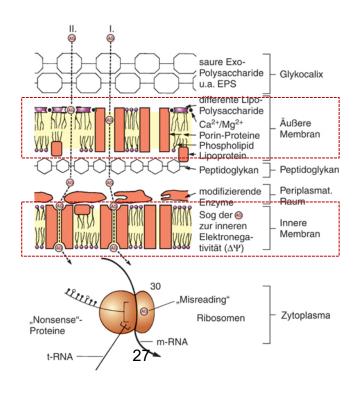
 Komplexbildung mit Metallionen → verminderte Resorption bei gleichzeitiger Einnahme von Antacida, Eisen-Präparate, Milch!

Kontraindikationen

- Schwangerschaft
- Kinder < 9 Jahre

Aminoglykoside Struktur, Mechanismus


- Gentamicin, Amikacin, Tobramycin, (Streptomycin)
- Bindung an 30S-Untereinheit der Ribosomen: Bildung von Nonsense-Proteinen (Bakterizid!)
- > breites Wirkspektrum (unter aeroben Bedingungen):
 - Staphylokokken
 - A-Streptokokken
 - gramnegative Bakterien


Wichtig: Wirksamkeit ist ph-abhängig:

Penetration durch Verdrängung von Ca²⁺/Mg²⁺ im neutralen/basischen Milieu (→ keine orale Gabe)

Penetration nach Aufnahme von H+ (nur bei oxidativer Energiegewinnung!) → unwirksam gegen alle Anaerobier

Unwirksam in saurem und/oder anaeroben Milieu (z.B. Sanierung Sepsisherd!)

Aminoglykoside Resistenz

Plasmid-vermittelte Resistenz

- Bildung von Acetyltransferasen, Adenyltransferasen, Phosphotransferasen
- Modifikation von NH₂-/ OH-Gruppen
- Aminoglykoside können keine positive Ladung mehr annehmen (keine Aufnahme in Bakterien)

Aminoglykoside Indikation, UAWs

- > keine Resorption nach oraler Gabe
- systemisch (i.v. Kurzinfusion, i.m.)
 - bei akut lebensbedrohlichen Infekten, Sepsis (meist in Kombination mit β-Lactamen)
 - Endocarditis
 - Infektionen durch Pseudomonas, Mykobakterien
 - (bei Tuberkulose: Streptomycin in Kombination mit anderen Antituberkulotika)
- lokal (Augentropfen, Salben)
- in Knochenzementen (Gentamicin)
- UAWs
 - Nephrotoxizität
 - Ototoxizität
- Einmal-täglich Dosierung
 - Konzentrationsabhängige Bakterizidie, post-antibiotischer Effekt
 - Einmalig hohe Konzentrationen weniger toxisch als langanhaltende Exposition gegenüber

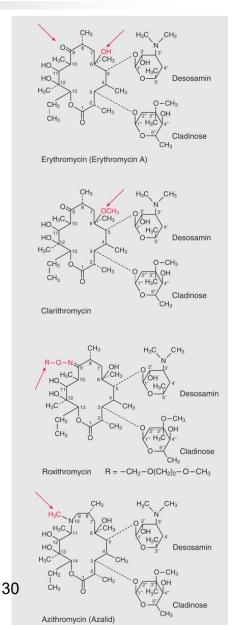
niedrigen Konzentrationen

Kontraindikation

- Schwangerschaft
- Vorschädigung des Innenohrs
- fortgeschrittene Niereninsuffizienz

initial + repetitiv otologische Untersuchung inkl.: Frenzel-Brille Audiogramm

Dosierung nach endogener Kreatinin-Clearance (nicht nur Serumkreatinin!)



Makrolid-Antibiotika Struktur, Wirkung, Indikation

- > isoliert aus Streptomyces-Arten
- Blockade der Translokation der Peptidyl- tRNA von Akzeptorstelle zur Donorstelle: Bakteriostase
- breites Wirkspektrum
 - grampositive Erreger
 - gramnegative Bakterien
 - Anaerobier (z.B. Bacteroides)
 - Zellwandlose (z.B. Mykoplasmen)
 - Schraubenförmige (z.B. Borellien)
 - Intrazellulär lokalisierte Erreger (z.B. Chlamydien)
- Indikation
 - Atemwegsinfektionen (Bronchitis, Pneumonie, Otitis media, Sinusitis)
 - Scharlach, Prophylaxe des rheuma. Fiebers (hämolysierende A-Streptokokken)
 - Sexuell übertragbare Infektionen
 - äußerlich gegen Akne
 - u.v.m.

Makrolid-Antibiotika Derivate, UAWs, Interaktionen

Erythromycin

- oral oder i.v.
- Base ist magensäure-labil → geringe Bioverfügbarkeit
- Pro-drugs: Esterverbindung (Stearat, Succinat)
- Clarithromycin (Klacid®)
- Roxithromycin (Rulid®)
- > Azithromycin (Zithromax®)
 - lange Halbwertszeit (10-40h) + Anreicherung im Gewebe
 - 3-Tage Therapie (bessere Compliance)

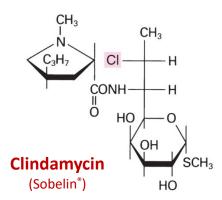
UAWs

- sehr gute Verträglichkeit
- UAWs selten (gastrointestinale Störungen, QT-Verlängerung)
- > CAVE: Interaktionen mit anderen Medikamenten durch Hemmung von CYP 3A4!!

Lincosamide Struktur, Mechanismus, Wirkspektrum

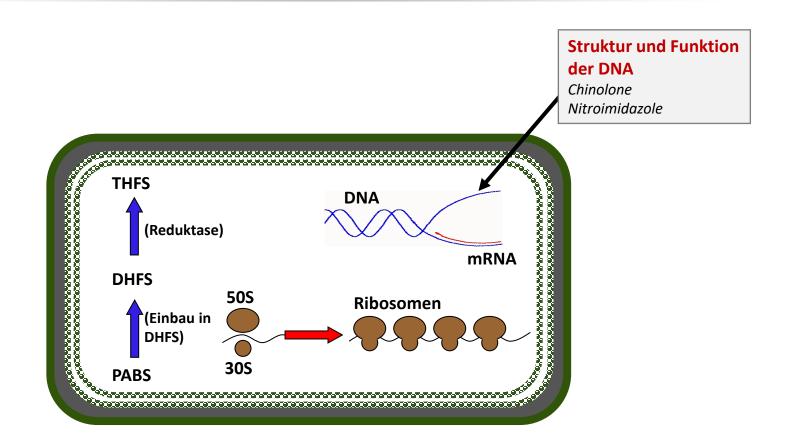
- > isoliert aus Streptomyces-Arten
- bakteriostatisch
- Wirkmechanismus wie Makrolide: Bakteriostase

Wirkspektrum


- grampositive Erreger (Staphylokokken)
- anaerob wachsende gramnegative Stäbchen (z.B. Bacterioides fragilis)

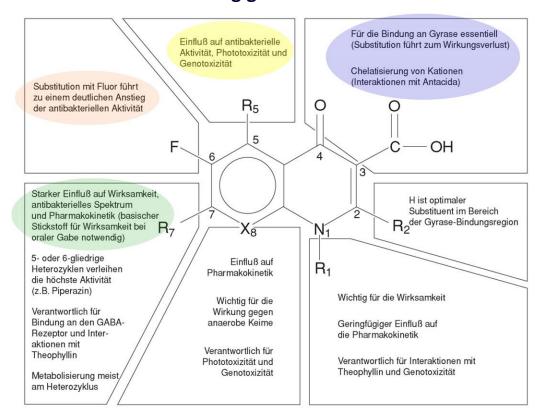
Indikation

- akute Infektionen mit Anaerobierbeteiligung (z.B. Peritonitis, Leberabszess...)
- gute Penetration in Weichteil- und Knochengewebe, daher Einsatz bei Osteomyelitis, Furunkeln, Abszessen, Tonsillitis (v.a. bei Penicillin-Allergie)
- Endokarditis-Prophylaxe

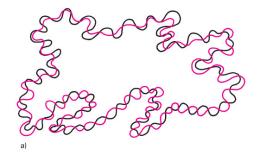

UAWs

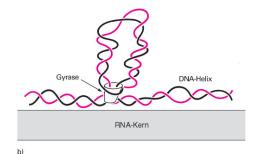
· Diarrhö, pseudomembranöse Enterokolitis (C. difficile)

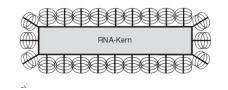
Pharmakodynamik - Angriffspunkte von Antibiotika



Fluorchinolone Struktur, Mechanismus


Hemmung bakterieller Topoisomerasen


- Topoisomerase II = Gyrase ("Gyrase-Hemmer"!)
- Topoisomerase IV (Trennung von zwei verbundenen DNA-Molekülen nach Replikation)


> Konzentrationsabhängige Bakterizidie

1000 µm langes Chromosom in 1 µm große Bakterienzelle

Fluorchinolone Wirkspektrum, Indikation

Gramnegative und einige grampositive Keime

Gruppe I

Norfloxacin

oral v.a. bei

Harnwegsinfekten

v.a. gramnegative Erreger

Gruppe II

Ciprofloxacin (Ciprobay®)

oral, i.v.

- Harnwegsinfekte
- Atemwegsinfekte
- Haut-, Weichteil- und Knocheninfekte
- systemische Infektionen, Sepsis
- Ofloxacin (Tarivid®) (= Racemat)

oral, i.v.

Anwendung wie Ciprofloxacin

Gruppe III

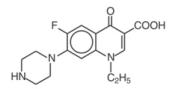
Levofloxacin (Tavanic®)

Wie Gruppe II, auch Pneumokokken

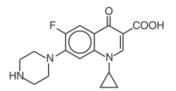
(=linksdrehendes Enatiomer des Ofloxacins) oral, i.v.

Anwendung wie Ciprofloxacin, zusätzlich bei Pneumokokken

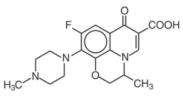
Gruppe IV


Moxifloxacin (Avalox®)

oral, i.v.


- Atemwegsinfekte

verbesserte Aktivität gegenüber


- · grampositiven Erregern
- Atypischen Erregern (Chlamydien, Mykoplasmen)
- Anaerobier
- komplizierter Haut- und Weichgewebsinfektionen

Norfloxacin

Ciprofloxacin

Ofloxacin/Levofloxacin

Moxifloxacin

Fluorchinolone UAWs, Kontraindikationen, Interaktionen

z.B. Norfloxacin, Ciprofloxazin, Levofloxacin, Moxifloxacin

UAWs

- Magen-Darm Störungen
- Störungen des Nervensystems (Erregbarkeit, Verwirrtheit, Halluzinationen, Krämpfe)
- Phototoxizität (Sonnenbaden vermeiden!!)
- Knorpelzellschäden (Sehnenscheidenentzündung, Sehnenrisse)
- Lebertoxizität, Kardiotoxizität (QT-Zeit Verlängerung)

Kontraindikation

- Schwangerschaft
- Stillzeit
- Wachstumsalter (< 16 Jahre)

> Interaktionen

- Chelatbildung mit zwei- oder dreiwertigen Metallionen (Fe, Zn, Ca, Mg, Al)
- Interaktion mit anderen Medikamenten durch Hemmung der CYP1A2

Nitroimidazole Struktur, Mechanismus

Nitroimidazole, z.B. Metronidazol (Clont®)

O_2N N CH_3 CH_2 CH_2

- Wirkmechanismus (Bakterizid)
 - Reduktion der Nitro-Gruppe zu reaktiven Zwischenprodukten
 - DNA-Schädigung durch Adduktbildung bzw. DNA-Strangbrüche
 - Nitro-Reduktion erfolgt unter anaeroben Bedingungen, menschliche Zellen durch oxidativen Stoffwechsel weitgehend geschützt
- mutagene und kanzerogene Wirkung: Anwendungsbeschränkung (Dauer, Dosis)
- Indikation
 - Anaerobier-Infektionen
 - Triple-Therapie zur Eradikation von Helicobacter pylori
 - Protozoen: Trichomonaden, Lamblien, Amöben
 - Clostridium difficile assoziierte Colitis (obligat anerobes grampositives Stäbchenbakterium)

Wechselwirkung mit Alkohol!

 Hemmt die Alkoholdehyddehyrogenase = Abbau von Acetaldehyd wird gehemmt (führt zu Alkoholunverträglichkeit)

Zahnärztliche Antibiotika-Verordnungen

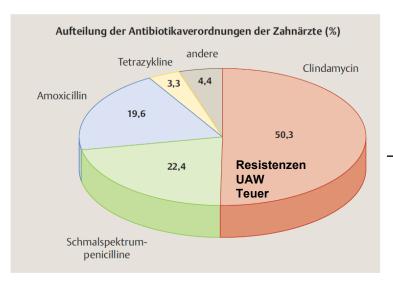


Abb. 5 Struktur der zahnärztliche Antibiotikaverordnungen in Deutschland innerhalb eines Jahres (Sept. 2008 – Aug. 2009; 3,3 Mio. Verordnungen = 100%) [14].

Gesunken auf 27.7% zahnärtzliche Clindamycinverschreibungen

Aber: Der Verordnungsanteil an Clindamycin ist im der Zahnmedizin immernoch anteilig sehr hoch: Von allen Clindamycinverordnungen stammen davon 53.5% von Zahnärtz*Innen

Arzneimittelverordnungsreport 2019; Kapitel 44 S.876

Antiinfektiva – Antimykotika

Pharmakologie und Toxikologie für Studierende der Zahnheilkunde WS2023

Dr. Sabine RebsInstitut für Pharmakologie und Toxikologie
Universität Würzburg

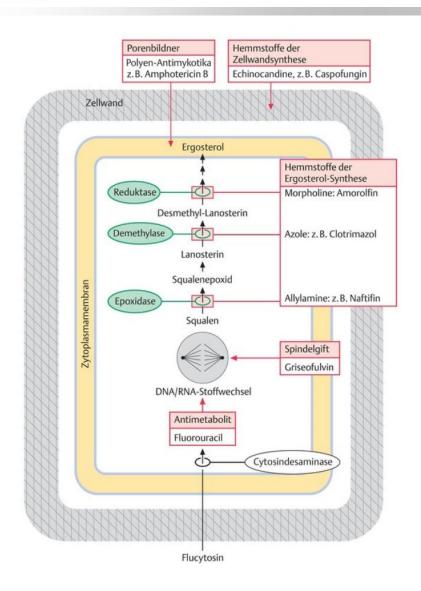
Antimykotika

Mykosen sind durch Pilze ausgelöste Infektionskrankheiten.

Häufige Erreger:

- Dermatophyten (=Fadenpilze, z.B. Trichophyton)
- Hefen (= Sprosspilze, z.B. Candida)
- Schimmelpilze (z.B. Asperigillen)

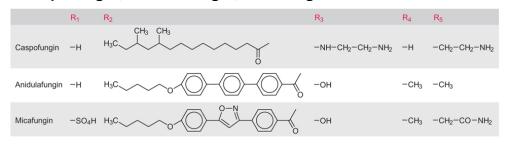
Oberflächliche Mykosen


- Mykosen der Haut, Haare oder Nägel (meist von Dermatophyten verursacht)
- Mykosen der Schleimhäute (meist durch Pilze der Gattung Candida verursacht)

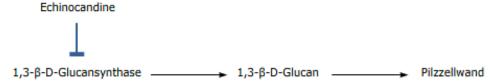
Systemische Mykosen

Aspergillus, Candida, Kryptokokken

Antimykotika-Wirkprinzipien



Beide eukaryontisch Vergleich humaner Zelle: Keine Zellwand Cholesterol statt Ergosterol


Echinocandine Mechanismus, Indikation, UAWs

Caspofungin, Anidulafungin, Micafungin

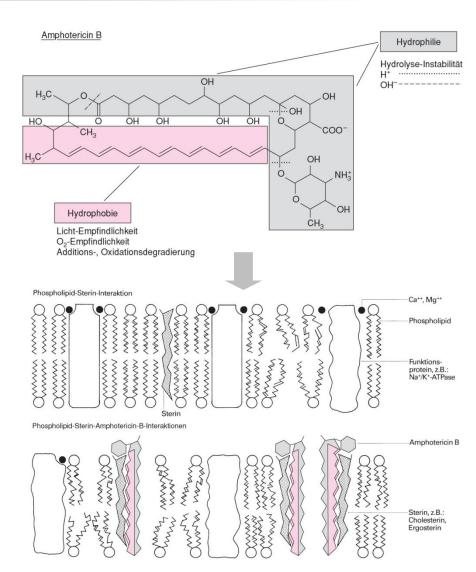
Mechanismus

- Hemmung der β-(1,3)-D-Glucan-Synthase
- Hemmung der Bildung von β-(1,3)-D-Glucan (Essentieller Bestandteil der **Zellwand** von Pilzen)

Indikation: (bei Systemmykosen)

- · i.v. bei invasiver Candidiasis
- · i.v. Reserve bei Aspergillose

UAWs


• Überwiegend unspezifisch (Übelkeit, Erbrechen, Durchfall, Fieber, Haut, Herzrasen, ...)

Polyen-Antimykotika Struktur, Mechanismus

Amphothericin B, Nystatin, Natamycin

- Anlagerung an Ergosterin in der Zellmembran der Pilze aufgrund hydrophober Wechselwirkungen
- Bildung von **Poren** in der Zellmembran
- Efflux von Elektrolyten und cytoplasmatischen Stoffen
- fungistatisch bis fungizid

Polyen-Antimykotika Wirkspektrum, Indikation, UAWs

Wirkspektrum

- alle Erreger tiefer Organmykosen (z.B. Candida, Cryptococcen, Aspergillus)
- Einige Protozoen
- Keine Resistenz (bisher)

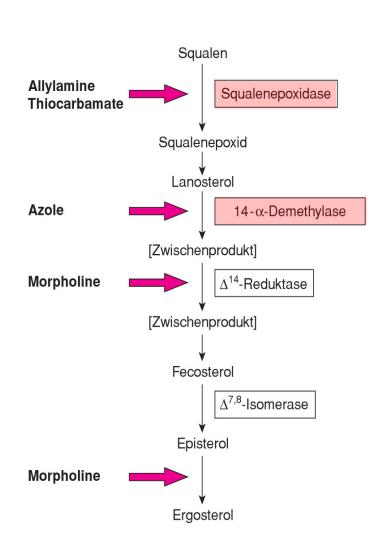
Kinetik

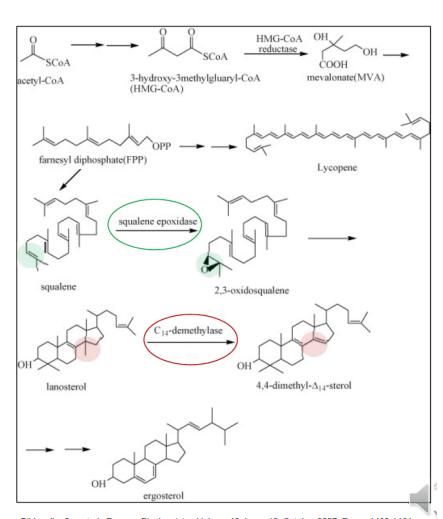
- keine Resorption bei oraler Applikation
- Infusion, meist als liposomales Amphotericin B
- Nystatin und Natamycin als kutane Anwendung

Indikation

- systemisch bei Organmykosen (Amphotericin B ® pro infusione, AmBiosome ®)
- bei lokalen Candida albicans Infektionen (Nystatin-Lederle ®, Candio-Hermal ®, Ampho-Moronal ®)

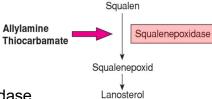
UAWs


- Unverträglichkeitsreaktionen (50-80% aller Patienten): Fieber, Kopfschmerz, Übelkeit, Blutbildveränderungen
- Nephrotoxizität
- Leberfunktionsstörungen


Kontraindikation

Schwere Leber- und Niereninsuffizienz

Hemmstoffe der Ergosterolsynthese



Bildquelle: Sun et al., Process Biochemistry, Volume 42, Issue 10, October 2007, Pages 1460-1464

Allylamine: Mechanismus, Indikation

Mechanismus

• Hemmung der Ergosterol-Synthese der Pilze durch Hemmung der Squalenepoxidase

Wirkspektrum

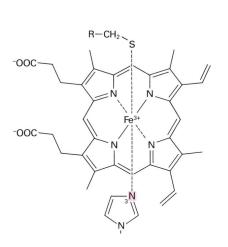
- Dermatophyten
- (Aspergillus)
- Nicht wirksam gegen Candida (Resistenz)

Präparate, Indikation

• Naftifin (Exoderil ®) ausschließlich topische Anwendung (da hoher first-pass effect); bei Nagel- und Hautmykosen

• **Terbinafin** (Lamisil ®) Systemische Behandlung therapieresistenter Nagel- und Hautmykosen

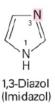
UAW


Steve-Johnson Syndrome bzw toxisch epidermale Nekrolyse

Azol-Antimykotika Mechanismus, Interaktionen

Hemmung der Ergosterol-Synthese durch Hemmung von 14α -Demethylase

(pilzspezifisches Cytochrom-P450-Isoenzym, CYP51A1)


Azol-Eisen-Protoporphyrin-Komplex

CAVE: Arzneimittelinteraktionen durch Enzymhemmung bei gleichzeitiger Einnahme von Azolen und Arzneimitteln, die durch CYP-Isoenzyme metabolisiert werden (z.B. Ciclosporin, Digoxin, Warfarin); humanes CYP450 wird gehemmt

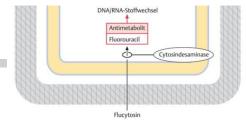
Azol-Antimykotika Wirkspektrum, Indikation

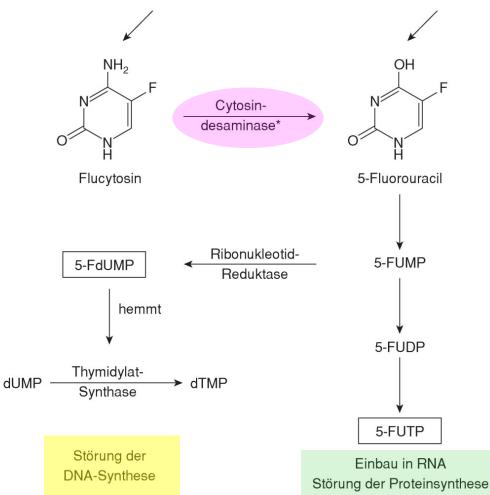
- breites Wirkspektrum (Sprosspilze, Fadenpilze, Dermatophyten)
- > Anwendung der verschiedenen Azole richtet sich nach
 - physiko-chemischen Eigenschaften
 - Pharmakokinetik
 - Pharmakologisch-toxikologischen Wirkungen
- Präparate, Indikation
- Clotrimazol: lokale Therapie von Pilzinfektionen (Vaginalcandidosen, Fußpilz, Windelsoor)
- Miconazol: lokale Therapie von Pilzinfektionen der Haut und Schleimhäute
- Ketoconazol: lokale Therapie von Pilzinfektionen (Schuppen-Shampoos)

- Itraconazol: oberflächliche Mykosen; Systemmykosen (Candidose, Aspergillose, Kryptokokkose)
- Fluconazol: oberflächliche Mykosen; Systemmykosen (Candidose, Kryptokokkose) v.a. bei AIDS, NICHT gegen Aspergillosen
- Voriconazol: Bei lebensbedrohlichen Systemmykosen

Azol-Antimykotika UAWs

UAWs (bei systemische Anwendung)


- Gastrointestinale Störungen
- Zentralnervöse Störungen
- Allergische Reaktionen
- Leberfunktionsstörungen
- Sehstörungen (v.a. bei Voriconazol)
- Endokrine Störungen (Gynäkomastie, Oligospermie, Menstruationsstörungen) durch IA mit CYPs


Kontraindikationen

- Schwangerschaft (teratogenes Potenzial)
- Stillzeit

Flucytosin Mechanismus

- Biotransformation zum wirksamen Metaboliten 5-FU findet selektiv in Pilzzellen statt
- keine Cytosin-Desaminase beim Menschen!

fungistatisch bis fungizid

Flucytosin Wirkspektrum, Indikation, UAWs

Wirkspektrum

- Candida (Primärresistenz 5-10%) → daher Kombination mit AmphoB
- Kryptokokken
- Aspergillen (Primärresistenz 40%)
- Sekundärresistenzen unter Therapie häufig!

Kinetik

- Gute orale Bioverfügbarkeit, aber obsolet (siehe UAWs)
- Gute Verteilung im Gewebe (auch Liquor)
- Überwiegend renale Ausscheidung (unverändert, 90-95 % der Dosis

Indikation

Schwere Organmykosen (z.B. durch Kryptokokken, Candida) meist i.v. in Kombination mit Amphothericin B

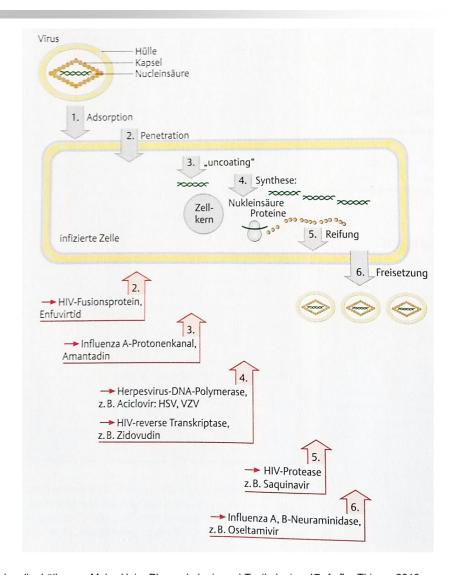
UAWs

- gastrointestinale Störungen (bakterielle Darmflora kann 5-FC in 5-FU umwandeln)
- Lebertoxizität
- hämatologische Störungen (schwere Knochenmarksdepression → Blutbildkontrollen!!)

Kontraindikation

Schwangerschaft

Antiinfektiva - Virustatika


Pharmakologie und Toxikologie für Studierende der Zahnheilkunde WS2023

Dr. Sabine RebsInstitut für Pharmakologie und Toxikologie
Universität Würzburg

Viren

- infektiöse Partikel, die aus Nukleinsäuren (DNA oder RNA), Proteinen und ggf. einer Virushülle bestehen
- besitzen keinen eigenen Stoffwechselapparat und sind zur Vermehrung auf Wirtszellen angewiesen
- verursachen Krankheiten
 - Coronaviren Gastroenteritis, SARS, COVID
 - Hepadnaviren/Flaviviren Hepatitis B u. C
 - Herpesviren u.a. Herpes simplex und labialis/genitalis, Windpocken
 - Influenzaviren Grippe, Vogelgrippe
 - Papillomaviren Verrucae vulgares,
 Zervixkarzinom
 - Paramyxoviren Masern, Mumps, Krupp
 - Picornaviren Polio (Kinderlähmung)
 - Rabiesviren Tollwut
 - Retroviren AIDS, Leukämie
 - Rhinoviren, Adenoviren Schnupfen, Erkältungen

Virustatika zur Behandlung von Herpesinfektionen Nucleosid-Analoga

Desoxyguanosin (physiologisches Nucleosid)

Aciclovir (Zovirax®)

- Spezifisch wirksam gegen
 - Herpes simplex Virus
 - Variezella zoster Virus

Indikation

 Herpes simplex und Herpes zoster Infektionen (insbesondere bei immunsupprimierten Patienten)

➤ UAWs

- Nephrotoxizität (Kristalle in Tubuli)
- Neurologische + gastrointestinale Störungen

Bildquelle: U. Steger • UKW

Virustatika zur Behandlung von Herpesinfektionen Nucleosid-Analoga

Desoxyguanosin (physiologisches Nucleosid)

Aciclovir (Zovirax®)

- Spezifisch wirksam gegen
 - Herpes simplex Virus
 - Variezella zoster Virus

Indikation

 Herpes simplex und Herpes zoster Infektionen (insbesondere bei immunsupprimierten Patienten)

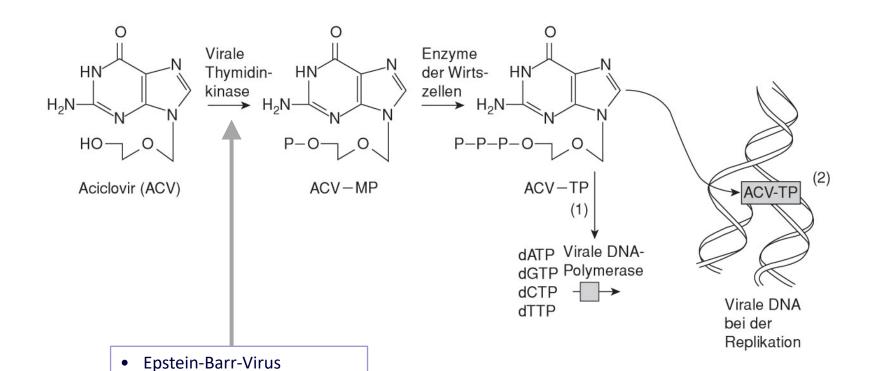
UAWs

- Nephrotoxizität (Kristalle in Tubuli)
- Neurologische + gastrointestinale Störungen

Penciclovir bzw. Famiciclovir (prodrug)

- wirksam gegen
 - Herpes simplex Virus
 - Variezella zoster Virus

Indikation


- Herpes labialis (Penciclovir, topisch)
- Herpes zoster und Herpes genitalis Infektionen (Famciclovir, oral)

UAWs

• Neurologische + gastrointestinale Störungen

Virustatika zur Behandlung von Herpesinfektionen Wirkmechanismus

Cytomegalie-Virus→ keine Thymidinkinase

→ Keine Wirkung gegen EBVund CMV-Infektionen

61