
Intro to Machine Learning
Prof. Dr. Goran Glavaš

29.1.2024

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Intro to ML

• Supervised ML

• Linear Regression

What is Machine Learning?

Image from: https://becominghuman.ai/how-to-make-machines-learn-f0c32cf84e28

https://becominghuman.ai/how-to-make-machines-learn-f0c32cf84e28

Machine Learning

• Machine learning – or learning from data is
the beating heart of modern AI
• (Un)supervised learning
• Reinforcement learning
• Representation (self-supervised) learning
• Deep Learning
• Bayesian Learning
• Transfer Learning
• ...

• Successful AI that’s not ML driven is very
rare, and effectively limited to rules
• Not suited for tackling complex problems „in the

wild”, that is, in any domain

Images from: https://tinyurl.com/4c86ts2f

https://tinyurl.com/4c86ts2f

Machine learning

Machine learning denotes the multitude of algorithms for (semi-)automatic extraction of
new and useful knowledge from arbitrary collections of data (aka datasets). This

knowledge is typically captured in the form of rules, patterns, or models.

Machine Learning

Image from: https://tinyurl.com/mpd39647

https://tinyurl.com/mpd39647

Why Machine Learning?

• We normally solve (computational) problems with algorithms

A process or set of rules to be followed in calculations or other problem-solving
operations, especially by a computer.

Oxford dictionary

A finite sequence of rigorous instructions, typically used to solve a class of specific
problems or to perform a computation.

Wikipedia

Why Machine Learning?

• Write an algorithm (in pseudocode) for the following problems...

Given an arbitrary image, determine which
object, from a set of objects C of interest

(e.g., O = {cat, dog, chicken}) is on the image.

Image Classification

Given an arbitrary product review (natural
language text), determine whether it

expresses positive or negative sentiment
towards the product.

Sentiment Analysis

Image from: https://cfml.se/blog/sentiment_classification

Image from: https://tinyurl.com/yhtnxm3x

https://cfml.se/blog/sentiment_classification
https://tinyurl.com/yhtnxm3x

AI-Complete Problems

• AI-Complete Problems: Problems that seem to
require „human-like” intelligence, not solvable in
classic „algorithmic” way

• Classic AI Approach: Search
• Humans know how to define and tackle the problem
• This knowledge is „codifiable” into a set of instructions
• Machines solve the problems more efficiently

• Modern AI Approach: Learning
• There is no human knowledge about the process /

domain / solution or
• Humans don’t know how to explain the solution to the

problem (e.g., speech recognition)
• Humans, however, typically solve these problems easily!

Image from: https://tinyurl.com/yhtnxm3x

Image from https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

vs.

https://tinyurl.com/yhtnxm3x
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

ML Paradigms

Image from: https://vitalflux.com/great-mind-maps-for-learning-machine-learning/

https://vitalflux.com/great-mind-maps-for-learning-machine-learning/

ML Paradigms

Image from: https://vitalflux.com/great-mind-maps-for-learning-machine-learning/

https://vitalflux.com/great-mind-maps-for-learning-machine-learning/

Machine learning paradigms

1. Supervised ML: we have labeled data

• Classification: output is a discrete label (but no ordering between the labels)

• Regression: output is a score on a scale (integer or real number)

2. Unsupervised ML: we have no labels

• Clustering: grouping of data examples (aka instances)

• Outlier detection: Finding data points/instances that are in some aspect significantly
different from most other instances

• Dimensionality reduction: compress the data in lower-dimensional representations in order
to find hidden regularities

3. Reinforcement learning: a form of indirect supervision
• Cumulative reward/punishment, known only after several consecutive decisions

Why Machine Learning?

• Alternative: rule (knowledge)-based systems
• Sometimes we don’t even know how to define the rules for a problem

• E.g., how much word overlap we need to to treat texts as similar?

• Even when we can think of some meaningful rules, we just need too many rules to cover all
the cases
• There are many exceptions that need to be handled
• What about exceptions in exceptions?

• We need expert knowledge
• If processing natural language, perhaps a linguist

• Rules are difficult to...
• Design: rules interact in unpredictable ways
• Maintain: adding new rules can easily break everything
• Adopt to new domains: we need to modify/add rules

• Some tasks are inherently subjective: it is difficult to model subjectivity with rules
(rules are strict)

Machine learning paradigm

• For AI-Complete problems it is often easier to
manually label the data and show for concrete
what the solution should look like

• Learning from data: „let the data speak”

• Supervised learning: train a ML model to associate
different inputs to different labels/classes

• Unsupervised learning: find regularities between
instances

Image from: https://cfml.se/blog/sentiment_classification

https://cfml.se/blog/sentiment_classification

ML Paradigm: Disadvantages

• Data labeling can be expensive, especially if large amounts of data are
required and/or expert (linguistic) knowledge
• E.g., Annotating syntactic of natural language sentences

• Data labeling can be tedious (= slow, error-prone)

• Sometimes, it requires quite of lot of training/coaching and many
discussion rounds to settle the annotation disagreements between
annotators

• Unlike the rules, ML models are difficult to interpret (typically it’s just a
bunch of parameters/numbers) – a „black box”

• It is difficult to perform “small tweaks” on the system: we can’t add a
couple of rules to fix something to make the user happy
• Hybrid rules-ML approaches are, of course, possible and sometimes make sense

Content

• Intro to ML

• Supervised ML

• Linear Regression

ML Cookbook

• Steps in creating an ML solution to a problem

1. Data preprocessing and analysis (e.g., cleaning)

2. Data annotation (typically manual)

3. Feature extraction (aka „how to represent instances”)

4. Model selection (choose the right model and learning algorithm)

5. Training/learning (estimate model’s parameters from the data)

6. Evaluation (estimate how good/accurate your model is)

7. Error analysis (when does the model make wrong predictions and why?)

8. Deployment/usage (move the model „to production” to make predictions)

Space of Examples

• We typically operate in (vector) spaces of examples in which individual
examples (aka instances) are concrete points
• We have kind of already seen this in numerical optimization

• [x1, x2, ..., xn] is a feature vector of the example/instance

In machine learning, individual examples (or instances) x = [x1, x2, ..., xn] are points in a
space X, consisting of values for features x1, x2, ..., xn. The space X is the determined (i.e.,
spanned) by the domains of the features: D1, D2, ..., Dn. The domains of different features

can be discrete (the so-called categorical or multinomial features) or continuous.

Space of Examples in ML

Supervised ML

• Input: example represented by the feature vector: x = [x1, x2, ..., xn]

• Output: the label y assigned to the example
• y is a discrete class (in classification problems) or a score (in regression problems)

• A machine learning model h maps an input [x1, x2, ..., xn] to a label y:

• The model has a set of k parameters θ = [θ1, θ2, ..., θk]: y = h(x|θ)

Supervised ML: Toy Example

• You want to learn a classifier that can differentiate between an apple
and a banana

• Instance/example: some concrete apple or some concrete banana.
• Feature vector x = [x1, x2, x3, x4, ...]

• Label: y ∈ { c1 = apple, c2 = banana}

x1: length of the fruit
x2: circumference
x3: weight
x4: color
…

Classification tasks

• Binary classification: just two classes (yes/no, 0/1)

• Multi-class classification: an instance belongs to strictly one of K classes

• Multi-label classification: an instance can belong to two or more classes

Classification tasks

• Many good classification models are binary classifiers
• Can „out of the box” be applied only to binary classification problems

• E.g., logistic regression, support vector machines (SVM)

• How to use those models in multi-class classification too?
• Change the model: invent a multi-class version of it

• E.g., softmax regression is a multi-class version of logistic regression

• Train and combine multiple binary classifiers: two main schemes
• One-vs-rest (or one-vs-all): one binary classifier per class

• One-vs-one: one binary classifier for each pair of classes

Classification tasks

• Binary classifiers typically produce some kind of score indicating
probability or confidence that instance x belongs to class y,
conf(x, y)

• Multi-class classification schemes for binary classifiers leverage
these confidence scores

• Multi-class problem: Y – set of N classes, y1, y2, ..., yN

• One-vs-rest: one binary classifier for each class yi

• Training: instances of yi assigned class y = 1, instances of all other classes y = 0

• Prediction (aka inference):

• After training we have N binary classifiers C = {c1, c2, ..., cn}, one for
each class y1, y2, ..., yN

• Make prediction with each classifier ci and get its confidence score
for the new instance x (i.e., confidence that x belongs to yi)

• Assign the class yi the classifier ci of which was the most confident

• Q: how would you do it (implement prediction) with one-vs-one?

one_vs_all_rest(x, C, Y)

best = -inf

cls = null

for i in 1 to len(C):

cf = C[i].conf(x, Y[i])

if cf > best

best = cf

cls = Y[i]

return cls

one_vs_one_pred(x, C, Y):

...

Q: how many classifiers in C?

Q: how to get one score for

each class?

Supervised ML

• How do we choose the function h?
• How do we find good values for its parameters θ?

• We have the annotated dataset D = {(x, y)i}, i in {1, 2, ..., N}
• N examples with correct labels (classes or scores)

• N inputs for h for which we know the output we would like h to give

Supervised ML

• We need to „find” h using D = {(x, y)i}, i in {1, 2, ..., N}

• We need to start from some set of candidate functions for h
• Simplification: let’s say we only have one feature – x = [x]

• E.g., a 3rd degree polynomial function: h(x|θ) = x3θ3 + x2θ2 + xθ1 + θ0

• Model = set of candidate functions h (up to the parameter values)

• Model selection = choosing the model

• Training/learning: finding the optimal values of the parameters θ using the
annotated data D = {(x, y)i}
• Optimization problem!

• How to optimize θ using D?

• What is the function that we should optimize?

Supervised ML

• Training/learning: finding the optimal values of the parameters θ using the
annotated data D = {(x, y)i}
• How to optimize θ using D?
• What is the function that we should optimize?

• We want h to make correct predictions
• We know correct labels y for inputs x in the training set D
• For some concrete values of parameters θ, we quantify how much h(x|θ) differs from y

• Empirical error quantifies how much predictions of h (for some concrete
parameter values θ) deviate from true labels for annotated examples from D

E(h|D) =
1

𝑁
σ𝑖=1
𝑁 𝐿(ℎ(𝒙𝑖|θ), yi)

• 𝐿 is a loss function – a concrete function that quantifies the difference between
the prediction and true label of an individual example x

Supervised ML

E(h|D) =
1

𝑁
σ𝑖=1
𝑁 𝐿(ℎ(𝒙𝑖|θ), yi)

• 𝐿 is a loss function – a concrete function that quantifies the difference between
the prediction and true label of an individual example x

• Example loss functions
• 0-1 loss (classification): L = 1 if h(x|θ) ≠ y else 0 (not differentiable)

• Absolute loss (classification and regression): |h(x|θ) – y| (not differentiable)

• Quadratic loss (regression): (h(x|θ) – y)2

• Cross-entropy loss (classification): -y ln h(x|θ) - (1-y) ln(1-h(x|θ))

• Some loss functions are not differentiable
• Thus cannot be used in gradient-based numerical optimization

Supervised ML

Three components of a supervised machine learning algorithm

1. Model: a set of functions among which we’re looking for the best

H = { h(x|θ)}θ
• hypothesis = a concrete function obtained for some values θ

• Model is a set of hypothesis

2. Loss function L: used to compute the empirical error E on a dataset D = {(x, y)i}

E(h|D) =
1

𝑁
σ𝑖=1
𝑁 𝐿(ℎ(𝒙𝑖|θ), yi)

3. Optimization procedure: procedure or algorithm with which we find the
hypothesis h* from the model H that minimizes the empirical error

• Equivalent to finding parameters θ* that minimize E

h* = argminh ∈ H E(h|D)

θ* = argminθ E(h|D)

Model Complexity

• Ideally, in the set of hypotheses (i.e., model) H = { h(x|θ)}θ we can find
at least one h for which the empirical error E(h|D) is 0

• If there is no such hypothesis, then the model is of insufficient
complexity for the data

• Example: Binary classification dataset, instances x = [x1, x2]
• Model 1 (lines): h1(x|θ) = θ1x1 + θ2x2

• Model 2 (circles): h2(x| θ) = (x1 - θ1)2 + (x2 – θ2)2 - θ3
2

• Note: Model 2 has more parameters than Model 1

• No hypothesis from Model 1 can successfully divide

the examples of the two classes (green from red)

Model Selection

• In a supervised ML problem, we only have the data D = {(x, y)i}
• In principle, we don’t know the complexity of the actual function that

generated the data (i.e., maps x into y)
• Data is always noisy

• Model selection = find the model of an appropriate complexity
• Most model families have some values that determine the model complexity
• These values are called hyperparameters
• Setting values for (all) hyperparameters gives a concrete model
• Once we have a concrete model, we find the optimal hypothesis (optimal

values of actual parameters θ) via training

Model Selection: Example

• Model family: polynomial functions (of a single variable)
• H = {h(x|θ)} = θnxn + θn-1xn-1 + ... + θ1x + θ0

• Hyperparameter: the degree of the polynomial n

• Different choice of n, different number of actual parameters: θ = {θ0, θ1, ..., θn}

• Each concrete value of n instantiates one model
• For n = 1, the model is h(x|θ)} = θ1x + θ0

• For n = 2, the model h(x|θ)} = θ2x2 + θ1x + θ0

• ...

• Hyperparameter values need to be fixed before training
• Training then finds the optimal values of model parameters

• Bigger n (hyperparam. value), more parameters, the more complex the model

Model Selection

• Toy examples: single feature, x = x

• Let’s assume our data was generated with a 2nd degree polynom (and
then some noise was added to the labels)

• Optimal hyperparameter value would be n = 2
• Model with three parameters: h(x|θ)} = θ2x2 + θ1x + θ0

n = 1

underfitting

n = 2

optimal overfitting

n = 6

Model Selection

• In a supervised ML problem, we only have the data D = {(x, y)i}
• In principle, we don’t know the complexity of the actual function that

generated the data (i.e., maps x into y)

• Data is always noisy

• Q: How do we find the optimal values for hyperparameters then?
• Answer: search, we try different values and see which „works best”

• For that we need another annotated dataset, different from training set

• Validation (or development) data
• An annotated dataset we use for model selection

Model Selection: Cross-Validation

• Two non-overlapping annotated datasets
• Training dataset: Dtr = {(x, y)i}
• Validation dataset: Dval = {(x, y)j}

• Model selection algorithm:
1. Define the set of hyperparameter values (models of different complexity)

to examine

2. For each hyperparameter value:

• Train the model on the training set Dtr: h* = argminh ∈ H E(h|D) (or θ* = argminθ E(h|D))

• Measure the empirical error of the trained model on the validation set Dval: E(h*|Dval)

3. Select the model that corresponds to the hyperparameter value for which
the smallest empirical error E(h*|Dval) on the validation data was observed

Overfitting and Underfitting

• Overfitting: model too complex for the data (too many parameters)
• Too expressive model will learn the noise rather than the underlying function

• Underfitting: model complexity too low, insufficient to model the data
• No matter which parameters we find for the model, it won’t work well

• „No line can match a parabole”

n = 1

underfitting

n = 2

optimal overfitting

n = 6

Overfitting and Underfitting

• Q: How to recognize underfitting and overfitting?
• Underfitting→ large empirical error on both Dtr and Dval

• Overfitting→ small empirical error on Dtr but large on Dval

• Optimal model: the one with smallest empirical error on Dval

• Model that generalizes best (to „unseen examples”)

Training data

Validation data

Supervised ML: Evaluation

• Q: What do we report as model performance
• Different tasks have different evaluation metrics

• But on which data should we measure model’s performance?

• An annotated dataset must not inform anything about the model
• Not Dval because we determined the optimal hyperparameter values using it (i.e.,

did the model selection on it)

• Not Dtr because we trained the model on it (determined the optimal parameter
values using it)

• Test set: third annotated dataset Dtest, not overlapping with Dtr and Dval

• We measure the empirical error (or some highly correlated performance
measure) on the Dtest and report that as a fair estimate of model’s performance

Content

• Intro to ML

• Supervised ML

• Linear Regression

Linear Regression

• Linear Regression is arguably the simplest supervised ML models
• In statistics called „ordinary least squares”, or just „regression”

• Model output is a linear combination of input features

h(x = [x1, x2, ..., xn]|θ) = θ0 + θ1x1 + θ2x2 + ... + θnxn

Image from: https://rpubs.com/svoboa/64900

• Linear regression assumes that
• y is linearly dependent on each feature xi

• Features mutually independent
• Value of xi has no effect on value of xj and vice versa

• y values represent a normal (Gaussian) distribution
over x

• Linear regression is a poor model choice if data
D does not satisfy these assumptions

https://rpubs.com/svoboa/64900

Linear Regression

• Every machine learning algorithm has three components:
• Model, loss function, and optimization procedure

• Loss function for linear regression: squared error

L(y, h(x)) = (y – h(x|θ))2

• Empirical error (average L on a dataset D): mean square error (MSE)

E(h|D) = ½ σ𝑖=1
𝑁 (yi – h(xi|θ))2

• Optimization procedure: minimize MSE on training data, θ* = argminθ E(h|Dtr)
• Q: How do we find a minimum of a function?

• Solve the equation: ∇θ [½ σ𝑖=1
𝑛 (yi – h(xi|θ))2] = 0

Linear Regression

• Optimization procedure: minimize MSE on training data, θ* = argminθ E(h|Dtr)

• Solve the equation: ∇θ [½ σ𝑖=1
𝑛 (yi – h(xi|θ))2] = 0

• Luckily, this equation actually has a closed form solution
• It means there is a formula by which we can directly compute θ*

• For many other models and their loss functions, this is not the case, and we have to resort to
numerical optimization (typically gradient-based)

• Let us stack all the examples of the training set Dtr in a matrix X and
corresponding labels in the same order in a vector y

X =

𝒙1
𝒙2

…
𝒙𝑁

=
1 𝑥1,1 ⋯ 𝑥1, 𝑛

⋮ ⋱ ⋮
1 𝑥𝑁, 1 ⋯ 𝑥𝑁, 𝑛

y =

𝑦1
𝑦2

…
𝑦𝑁

Solution is then computed as:

θ* = (XTX)-1 XTy

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и
тан

н
я

?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w
ọ
n

ib
e

e
re

?

ค ำถำม?

	Default Section
	Slide 1: Intro to Machine Learning Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: What is Machine Learning?
	Slide 4: Machine Learning
	Slide 5: Machine learning
	Slide 6: Why Machine Learning?
	Slide 7: Why Machine Learning?
	Slide 8: AI-Complete Problems
	Slide 9: ML Paradigms
	Slide 10: ML Paradigms
	Slide 11: Machine learning paradigms
	Slide 12: Why Machine Learning?
	Slide 13: Machine learning paradigm
	Slide 14: ML Paradigm: Disadvantages
	Slide 15: Content
	Slide 16: ML Cookbook
	Slide 17: Space of Examples
	Slide 18: Supervised ML
	Slide 19: Supervised ML: Toy Example
	Slide 20: Classification tasks
	Slide 21: Classification tasks
	Slide 22: Classification tasks
	Slide 23: Supervised ML
	Slide 24: Supervised ML
	Slide 25: Supervised ML
	Slide 26: Supervised ML
	Slide 27: Supervised ML
	Slide 28: Model Complexity
	Slide 29: Model Selection
	Slide 30: Model Selection: Example
	Slide 31: Model Selection
	Slide 32: Model Selection
	Slide 33: Model Selection: Cross-Validation
	Slide 34: Overfitting and Underfitting
	Slide 35: Overfitting and Underfitting
	Slide 36: Supervised ML: Evaluation
	Slide 37: Content
	Slide 38: Linear Regression
	Slide 39: Linear Regression
	Slide 40: Linear Regression
	Slide 41: Questions?

