

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Intro to Machine Learning Prof. Dr. Goran Glavaš

29.1.2024

Content

- Intro to ML
- Supervised ML
- Linear Regression

What is Machine Learning?

Image from: <u>https://becominghuman.ai/how-to-make-machines-learn-f0c32cf84e28</u>

Machine Learning

- Machine learning or learning from data is the beating heart of modern Al
 - (Un)supervised learning
 - Reinforcement learning
 - Representation (self-supervised) learning
 - Deep Learning
 - Bayesian Learning
 - Transfer Learning
 - ...
- Successful AI that's not ML driven is very rare, and effectively limited to rules
 - Not suited for tackling complex problems "in the wild", that is, in any domain

Machine Learning

Machine learning denotes the multitude of algorithms for (semi-)automatic extraction of new and useful knowledge from arbitrary collections of data (aka datasets). This knowledge is typically captured in the form of rules, patterns, or <u>models</u>.

Image from: https://tinyurl.com/mpd39647

Why Machine Learning?

• We normally solve (computational) problems with algorithms

A process or set of rules to be followed in calculations or other **problem-solving operations**, especially by a computer.

Oxford dictionary

A finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation.

Wikipedia

Why Machine Learning?

• Write an algorithm (in pseudocode) for the following problems...

Image Classification

Given an **arbitrary image**, determine which object, from a set of objects C of interest (e.g., O = {*cat*, *dog*, *chicken*}) is on the image.

Sentiment Analysis

Given an **arbitrary product review** (natural language text), determine whether it expresses positive or negative sentiment towards the product.

Image from: https://cfml.se/blog/sentiment_classification

AI-Complete Problems

- AI-Complete Problems: Problems that seem to require "human-like" intelligence, not solvable in classic "algorithmic" way
- Classic Al Approach: Search
 - Humans know how to define and tackle the problem
 - This knowledge is "codifiable" into a set of instructions
 - Machines solve the problems more efficiently
- Modern Al Approach: Learning
 - There is no human knowledge about the process / domain / solution or
 - Humans don't know how to explain the solution to the problem (e.g., speech recognition)
 - Humans, however, typically solve these problems easily!

Image from https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

Image from: <u>https://tinyurl.com/yhtnxm3x</u>

ML Paradigms

ML Paradigms

Image from: https://vitalflux.com/great-mind-maps-for-learning-machine-learning/

Machine learning paradigms

1. Supervised ML: we have labeled data

- **Classification**: output is a **discrete label** (but no ordering between the labels)
- **Regression**: output is a score on a scale (integer or real number)

2. Unsupervised ML: we have no labels

- **Clustering**: grouping of data examples (aka instances)
- Outlier detection: Finding data points/instances that are in some aspect significantly different from most other instances
- **Dimensionality reduction**: compress the data in lower-dimensional representations in order to find hidden regularities
- 3. Reinforcement learning: a form of indirect supervision
 - Cumulative reward/punishment, known only after several consecutive decisions

Why Machine Learning?

- Alternative: rule (knowledge)-based systems
 - Sometimes we don't even know how to define the rules for a problem
 - E.g., how much word overlap we need to to treat texts as similar?
 - Even when we can think of some meaningful rules, we just need too many rules to cover all the cases
 - There are many exceptions that need to be handled
 - What about exceptions in exceptions?
- We need expert knowledge
 - If processing natural language, perhaps a linguist
- Rules are difficult to...
 - Design: rules interact in unpredictable ways
 - Maintain: adding new rules can easily break everything
 - Adopt to new domains: we need to modify/add rules
- Some tasks are inherently subjective: it is difficult to model subjectivity with rules (rules are strict)

Machine learning paradigm

- For AI-Complete problems it is often **easier** to manually label the data and show for concrete what the solution should look like
- Learning from data: "let the data speak"
 - Supervised learning: train a ML model to associate different inputs to different labels/classes
 - Unsupervised learning: find regularities between instances

"I love this movie. I've seen it many times and it's still awesome."	\rightarrow	
"This movie is bad. I don't like it it all. It's terrible."	\rightarrow	?
Image from: <u>https://ctml.se/k</u>	olog/sentiment	<u>classification</u>

ML Paradigm: Disadvantages

- Data labeling can be expensive, especially if large amounts of data are required and/or expert (linguistic) knowledge
 - E.g., Annotating syntactic of natural language sentences
- Data labeling can be tedious (= slow, error-prone)
- Sometimes, it requires quite of lot of training/coaching and many discussion rounds to settle the annotation disagreements between annotators
- Unlike the rules, ML models are difficult to interpret (typically it's just a bunch of parameters/numbers) – a "black box"
- It is difficult to perform "small tweaks" on the system: we can't add a couple of rules to fix something to make the user happy
 - Hybrid rules-ML approaches are, of course, possible and sometimes make sense

Content

- Intro to ML
- Supervised ML
- Linear Regression

ML Cookbook

- Steps in creating an ML solution to a problem
 - 1. Data preprocessing and analysis (e.g., cleaning)
 - 2. Data annotation (typically manual)
 - 3. Feature extraction (aka "how to represent instances")
 - 4. Model selection (choose the right model and learning algorithm)
 - 5. Training/learning (estimate model's parameters from the data)
 - 6. Evaluation (estimate how good/accurate your model is)
 - 7. Error analysis (when does the model make wrong predictions and why?)
 - 8. Deployment/usage (move the model "to production" to make predictions)

Space of Examples

- We typically operate in (vector) spaces of examples in which individual examples (aka instances) are concrete points
 - We have kind of already seen this in numerical optimization

Space of Examples in ML

In machine learning, individual examples (or instances) $\mathbf{x} = [x_1, x_2, ..., x_n]$ are **points** in a space **X**, consisting of values for **features** $x_1, x_2, ..., x_n$. The space **X** is the determined (i.e., spanned) by the domains of the features: $\mathbf{D}_1, \mathbf{D}_2, ..., \mathbf{D}_n$. The domains of different features can be **discrete** (the so-called categorical or multinomial features) or **continuous**.

• [x₁, x₂, ..., x_n] is a feature vector of the example/instance

Supervised ML

- Input: example represented by the feature vector: x = [x₁, x₂, ..., x_n]
- Output: the label y assigned to the example
 - y is a discrete class (in classification problems) or a score (in regression problems)
- A machine learning **model** *h* maps an input [x₁, x₂, ..., x_n] to a label y:
- The model has a set of *k* parameters $\theta = [\theta_1, \theta_2, ..., \theta_k]$: $y = h(x | \theta)$

Supervised ML: Toy Example

- You want to **learn** a **classifier** that can differentiate between an apple and a banana
- Instance/example: some concrete apple or some concrete banana.
 - Feature vector $\mathbf{x} = [x_1, x_{2}, x_3, x_4, ...]$

x₁: length of the fruit x₂: circumference x₃: weight x₄: color

• Label: $y \in \{ c_1 = apple, c_2 = banana \}$

...

• Binary classification: just two classes (yes/no, 0/1)

$$h: \mathcal{X} \to \{0, 1\}$$

• Multi-class classification: an instance belongs to strictly one of K classes

$$h: \mathcal{X} \to \mathcal{Y}, \quad \mathcal{Y} = \{1, \dots, K\}, \quad K > 2$$

• Multi-label classification: an instance can belong to two or more classes

$$h: \mathcal{X} \to \wp(\mathcal{Y})$$

Classification tasks

- Many good classification models are binary classifiers
 - Can "out of the box" be applied only to binary classification problems
 - E.g., logistic regression, support vector machines (SVM)
- How to use those models in **multi-class classification** too?
 - Change the model: invent a multi-class version of it
 - E.g., softmax regression is a multi-class version of logistic regression
 - Train and combine **multiple binary classifiers**: two main schemes
 - One-vs-rest (or one-vs-all): one binary classifier per class
 - **One-vs-one**: one binary classifier for each pair of classes

Classification tasks

- Binary classifiers typically produce some kind of score indicating probability or confidence that instance x belongs to class y, conf(x, y)
- Multi-class classification schemes for binary classifiers leverage these confidence scores
 - Multi-class problem: Y set of N classes, y₁, y₂, ..., y_N
- One-vs-rest: one binary classifier for each class y_i
 - **Training**: instances of y_i assigned class y = 1, instances of all other classes y = 0
 - Prediction (aka inference):
 - After training we have N binary classifiers C = {c₁, c₂, ..., c_n}, one for each class y₁, y₂, ..., y_N
 - Make prediction with each classifier c_i and get its confidence score for the new instance x (i.e., confidence that x belongs to y_i)
 - Assign the class y_i the classifier c_i of which was the most confident
- Q: how would you do it (implement prediction) with one-vs-one?

```
one_vs_all_rest(x, C, Y)
best = -inf
cls = null
for i in 1 to len(C):
   cf = C[i].conf(x, Y[i])
   if cf > best
      best = cf
      cls = Y[i]
return cls
```

```
one_vs_one_pred(x, C, Y):
    ...
    Q: how many classifiers in C?
    Q: how to get one score for
        each class?
```

- How do we choose the function *h*?
 - How do we find good values for its parameters θ ?
- We have the annotated dataset $D = \{(x, y)_i\}, i \text{ in } \{1, 2, ..., N\}$
 - N examples with correct labels (classes or scores)
 - N inputs for *h* for which we know the output we would like *h* to give

- We need to "find" h using D = {(x, y); , i in {1, 2, ..., N}
- We need to start from <u>some set of candidate functions</u> for <u>h</u>
 - Simplification: let's say we only have one feature x = [x]
 - E.g., a 3rd degree polynomial function: $h(\mathbf{x} | \mathbf{\theta}) = x^3 \theta_3 + x^2 \theta_2 + x \theta_1 + \theta_0$
- **Model** = set of candidate functions *h* (up to the parameter values)
- Model selection = choosing the model
- Training/learning: finding the optimal values of the parameters θ using the annotated data D = {(x, y)_i}
 - Optimization problem!
 - How to optimize θ using D?
 - What is the **function** that we should optimize?

Supervised ML

- Training/learning: finding the optimal values of the parameters θ using the annotated data D = {(x, y)_i}
 - How to optimize θ using D?
 - What is the **function** that we should optimize?
- We want *h* to make correct predictions
 - We know correct labels y for inputs x in the training set D
 - For some concrete values of parameters θ , we quantify how much $h(\mathbf{x} | \theta)$ differs from y
- Empirical error quantifies how much predictions of h (for some concrete parameter values θ) deviate from true labels for annotated examples from D

$$\mathsf{E}(\mathsf{h}|\mathsf{D}) = \frac{1}{N} \sum_{i=1}^{N} L(h(\boldsymbol{x}_{i}|\boldsymbol{\theta}), \mathsf{y}_{i})$$

 L is a loss function – a concrete function that quantifies the difference between the prediction and true label of an individual example x

$$E(h|D) = \frac{1}{N} \sum_{i=1}^{N} L(h(x_i|\theta), y_i)$$

 L is a loss function – a concrete function that quantifies the difference between the prediction and true label of an individual example x

• Example loss functions

- **0-1 loss** (classification): L = 1 if $h(x | \theta) \neq y$ else 0 (not differentiable)
- Absolute loss (classification and regression): $|h(\mathbf{x}|\theta) \mathbf{y}|$ (not differentiable)
- Quadratic loss (regression): $(h(\mathbf{x} | \mathbf{\theta}) \mathbf{y})^2$
- Cross-entropy loss (classification): -y ln $h(\mathbf{x}|\theta)$ (1-y) ln(1- $h(\mathbf{x}|\theta)$)
- Some loss functions are not differentiable
 - Thus cannot be used in gradient-based numerical optimization

Three components of a supervised machine learning algorithm

1. Model: a set of functions among which we're looking for the best

 $\mathsf{H} = \{ h(\mathbf{x} | \mathbf{\Theta}) \}_{\mathbf{\Theta}}$

- **hypothesis** = a concrete function obtained for some values θ
- Model is a set of hypothesis

2. Loss function L: used to compute the empirical error E on a dataset $D = \{(x, y)_i\}$

$$\mathsf{E}(\mathsf{h} | \mathsf{D}) = \frac{1}{N} \sum_{i=1}^{N} L(h(\boldsymbol{x}_{i} | \boldsymbol{\theta}), \mathbf{y}_{i})$$

3. Optimization procedure: procedure or algorithm with which we find the hypothesis *h** from the model H that **minimizes** the empirical error

• Equivalent to finding parameters θ^* that minimize E

 $h^* = \operatorname{argmin}_{h \in H} E(h|D)$ $\theta^* = \operatorname{argmin}_{\theta} E(h|D)$

- Ideally, in the set of hypotheses (i.e., model) H = { h(x|θ)}_θ we can find at least one h for which the empirical error E(h|D) is 0
- If there is no such hypothesis, then the model is of insufficient complexity for the data
- Example: Binary classification dataset, instances x = [x₁, x₂]
 - Model 1 (lines): $h_1(\mathbf{x} \mid \mathbf{\theta}) = \mathbf{\theta}_1 \mathbf{x}_1 + \mathbf{\theta}_2 \mathbf{x}_2$
 - Model 2 (circles): $h_2(\mathbf{x} \mid \mathbf{\theta}) = (x_1 \theta_1)^2 + (x_2 \theta_2)^2 \theta_3^2$
 - Note: Model 2 has more parameters than Model 1
 - No hypothesis from Model 1 can successfully divide the examples of the two classes (green from red)

Model Selection

- In a supervised ML problem, we only have the data $D = \{(x, y)_i\}$
 - In principle, we don't know the complexity of the actual function that generated the data (i.e., maps x into y)
 - Data is always noisy
- **Model selection** = find the model of an appropriate complexity
 - Most model families have some values that determine the model complexity
 - These values are called hyperparameters
 - Setting values for (all) hyperparameters gives a concrete model
 - Once we have a concrete model, we find the optimal hypothesis (optimal values of actual parameters θ) via training

Model Selection: Example

- Model family: polynomial functions (of a single variable)
 - $H = \{h(\mathbf{x} | \mathbf{\Theta})\} = \Theta_n \mathbf{x}^n + \Theta_{n-1} \mathbf{x}^{n-1} + \dots + \Theta_1 \mathbf{x} + \Theta_0$
 - Hyperparameter: the degree of the polynomial n
 - Different choice of n, different number of actual parameters: $\theta = \{\theta_0, \theta_1, \dots, \theta_n\}$
 - Each concrete value of n instantiates one model
 - For n = 1, the model is $h(x | \theta) = \theta_1 x + \theta_0$
 - For n = 2, the model $h(\mathbf{x} | \mathbf{\theta})$ = $\theta_2 \mathbf{x}^2 + \theta_1 \mathbf{x} + \theta_0$
 - ...
- Hyperparameter values need to be fixed before training
 - Training then finds the optimal values of model parameters
 - Bigger n (hyperparam. value), more parameters, the more complex the model

Model Selection

- Toy examples: single feature, x = x
- Let's assume our data was generated with a 2nd degree polynom (and then some noise was added to the labels)

- Optimal hyperparameter value would be n = 2
 - Model with three parameters: $h(\mathbf{x} | \mathbf{\theta}) = \theta_2 \mathbf{x}^2 + \theta_1 \mathbf{x} + \theta_0$

- In a supervised ML problem, we only have the data $D = \{(x, y)_i\}$
 - In principle, we don't know the complexity of the actual function that generated the data (i.e., maps x into y)
 - Data is always noisy
- Q: How do we find the optimal values for hyperparameters then?
 - Answer: search, we try different values and see which "works best"
 - For that we need another **annotated dataset**, **different from training set**
- Validation (or development) data
 - An annotated dataset we use for model selection

Model Selection: Cross-Validation

- Two non-overlapping annotated datasets
 - Training dataset: D_{tr} = {(x, y)_i}
 - Validation dataset: D_{val} = {(x, y)_j}

• Model selection algorithm:

- 1. Define the set of hyperparameter values (models of different complexity) to examine
- 2. For each hyperparameter value:
 - Train the model on the training set D_{tr} : $h^* = \operatorname{argmin}_{h \in H} E(h|D)$ (or $\theta^* = \operatorname{argmin}_{\theta} E(h|D)$)
 - Measure the **empirical error** of the trained model on the validation set D_{val} : $E(h^* | D_{val})$
- 3. Select the model that corresponds to the hyperparameter value for which the smallest empirical error $E(h^*|D_{val})$ on the validation data was observed

Overfitting and Underfitting

- **Overfitting**: model too complex for the data (too many parameters)
 - Too expressive model will learn the noise rather than the underlying function
- Underfitting: model complexity too low, insufficient to model the data
 - No matter which parameters we find for the model, it won't work well
 - "No line can match a parabole"

Overfitting and Underfitting

- **Q**: How to recognize underfitting and overfitting?
 - Underfitting \rightarrow large empirical error on both D_{tr} and D_{val}
 - **Overfitting** \rightarrow small empirical error on D_{tr} but large on D_{val}

- Optimal model: the one with smallest empirical error on D_{val}
 - Model that generalizes best (to "unseen examples")

Supervised ML: Evaluation

Q: What do we report as model performance

- Different tasks have different evaluation metrics
- But on which data should we measure model's performance?
- An annotated dataset must not inform <u>anything</u> about the model
 - Not D_{val} because we determined the optimal hyperparameter values using it (i.e., did the model selection on it)
 - Not D_{tr} because we trained the model on it (determined the optimal parameter values using it)
- Test set: third annotated dataset D_{test}, not overlapping with D_{tr} and D_{val}
 - We measure the empirical error (or some highly correlated performance measure) on the D_{test} and report that as a fair estimate of model's performance

Content

- Intro to ML
- Supervised ML
- Linear Regression

- Linear Regression is arguably the simplest supervised ML models
 - In statistics called "ordinary least squares", or just "regression"
 - Model output is a linear combination of input features

 $h(\mathbf{x} = [x_1, x_2, \dots, x_n] | \mathbf{\Theta}) = \mathbf{\Theta}_0 + \mathbf{\Theta}_1 x_1 + \mathbf{\Theta}_2 x_2 + \dots + \mathbf{\Theta}_n x_n$

- Linear regression assumes that
 - y is **linearly** dependent on each feature x_i
 - Features mutually independent
 - Value of x_i has no effect on value of x_i and vice versa
 - y values represent a normal (Gaussian) distribution over x
- Linear regression is a poor model choice if data
 D does not satisfy these assumptions

Price vs Square Footage and Features (with Regression)

Linear Regression

- Every machine learning algorithm has three components:
 - Model, loss function, and optimization procedure
- Loss function for linear regression: squared error

 $L(\mathbf{y}, h(\mathbf{x})) = (\mathbf{y} - h(\mathbf{x} | \boldsymbol{\theta}))^2$

• Empirical error (average L on a dataset D): mean square error (MSE)

 $E(\mathbf{h} | \mathbf{D}) = \frac{1}{2} \sum_{i=1}^{N} (\mathbf{y}_{i} - \mathbf{h}(\mathbf{x}_{i} | \boldsymbol{\theta}))^{2}$

- **Optimization procedure**: minimize MSE on training data, $\theta^* = \operatorname{argmin}_{\theta} E(h|D_{tr})$
 - **Q**: How do we find a minimum of a function?
 - Solve the equation: $\nabla_{\theta} \left[\frac{1}{2} \sum_{i=1}^{n} (\mathbf{y}_{i} \mathbf{h}(\mathbf{x}_{i} | \theta))^{2} \right] = 0$

Linear Regression

- **Optimization procedure**: minimize MSE on training data, $\theta^* = \operatorname{argmin}_{\theta} E(h|D_{tr})$
 - Solve the equation: $\nabla_{\boldsymbol{\theta}} \left[\frac{1}{2} \sum_{i=1}^{n} (\mathbf{y}_i \mathbf{h}(\mathbf{x}_i | \boldsymbol{\theta}))^2 \right] = 0$
- Luckily, this equation actually has a closed form solution
 - It means there is a formula by which we can directly compute θ^*
 - For many other models and their loss functions, this is not the case, and we have to resort to numerical optimization (typically gradient-based)
- Let us stack all the examples of the training set D_{tr} in a matrix X and corresponding labels in the same order in a vector y

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_N \end{bmatrix} = \begin{bmatrix} 1 & x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ 1 & xN, 1 & \cdots & x_{N,n} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_N \end{bmatrix}$$

Solution is then computed as: $\theta^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$

Questions?

