[l CAIDAS WiNLP

ALGORITHMS IN Al & DATA SCIENCE 1 (AKIDS 1)

A ‘
L N Numerical Optimization

Prof. Dr. Goran Glavas

25.1.2024

Content

e Calculus Basics

* Gradient-Based Optimization
e Newton Method
 Gradient Descent

e Search-Based Optimization
* Genetic Algorithm

Recap: Discrete Constrained Optimization

Discrete Constrained Optimization Problems

In discrete constrained optimization, we search for an optimal state in large space of
possible states. Each state X can be seen as consisting of n variables X = x,, x,, ..., x_, each
with a corresponding domain D, D, ..., D € 7 (whole numbers). The optimal state is
the one that maximizes/minimizes the objective function /: D, x --- x D_ — R. Finally, the
constraints C,, ..., C_, withC. < D, D,, ..., D define the subsets of the state space that
/

\ encompass valid solutions to the problem

e Optimal state (or the state with the best f that was found) is the solution
* No path between start and goal state — often there isn’t a clear start state

* We're not making moves like in classic SSS problems, just searching for the best
possible solution over a very large space of candidate solutions

Numerical Optimization

* In numerical optimization, instead of a space of discrete states, we’re
optimizing (minimizing or maximizing) some real-valued function

[Numerical Optimization

Numerical optimization refers to optimizing real-valued functions f(x): R" = R, x = x,
X5, ..., X, € R. This means finding values x,, x,, ..., x,, for which f obtains the minimal or
maximal value. The input variables x,, x,, ..., x, may be subject to constraints (e.g., linear
inequality constraints such as x; > m or non-linear constraints such as x” - x;> < m) in which
case we are dealing with constrained numerical optimization.

_ /

Numerical Optimization

* Some assumptions

* We will talk about unconstrained optimization
* No constraints on the input variables x, ..., x

n

* For gradient-based methods
* The function f(x) is differentiable on the whole input domain D € [R"
* O: What does it mean for a function to be differentiable?

* In some cases (e.g., for the Newton method) the function f(x) will have to
be doubly differentiable (two times differentiable)

Differentiable functions

Differentiable functions

A function f(x) or (of one variable x) is differentiable if its derivative f’(x) exists in
every point of the domain D € R of the input variable (or parameter) x. A
function of multiple parameters f(x = x,, %, ..., x.) is differentiable if its gradient
V. f—a vector of partial derivatives V| = [g—)fl, g—)g, e a—){] — exists for every point
on the input domain D © R", If function is differentiablne, then it also continuous.
Qﬂost continuous functions used in Al are differentiable. /

* Recap: how to compute a derivative of a function ©

y ar _ . f(x+h)—f(x)
f(x) = P limy, 54 n

Optimum of a Differentiable Function

e For an infinitesimal change in x, dx, the
corresponding infinitesimal change in f(x), dy, is
such that the slope of the tangential in any
point x corresponds to dy/dx = f’(x)

* |n the turning point of the function, the function
has a (possibly local) optimum, and the
tangential is horizontal (slope is 0)

* So, solving f'(x) = O gives us the turning point(s) mage from:
Offand itS optimum https://math.fel.cvut.cz/mt/txtc/1/txe3calb.htm

* O: How do we tell if its @ minimum or maximum?

https://math.fel.cvut.cz/mt/txtc/1/txe3ca1b.htm

Optimum of a Differentiable Function

 So, solving f'(x) = O gives us the turning point(s) of
fand its optimum

* Algebraic conditions for min/max: e
* MIN: derivative sign changes from negative to positive 7 1 X
 MAX: derivative sign changes from positive to negative
* Change of derivative = second derivative f/(x) / z R/F/ s
X

* So, the function f(x) has a minimum in a if /”(a) >
O and d maXimum iff//(a) < O Ihr'?tag)gse::/;riw\'/\/.themathpage.com/aCaIc/max.htm

https://www.themathpage.com/aCalc/max.htm

Differentiation & Optima: Example

° f(x)=2x3—-9x?+12x -3
o f'(x) =6x2—18x + 12
* f7(x)=12x—-18

f(x)=0, x2=3x+2=0, »
(x—1)*(x—=2)=0 :

XU =1 x@ =7

f/(x1) =12 -18 ==6<0, so in x'"), maximum 05 o

f7(x2) =24 -18=+6 >0, so in x?, minimum

Plot generated via https://www.geogebra.org/graphing

https://www.geogebra.org/graphing

Content

e Calculus Basics

* Gradient-Based Optimization
* Newton Method
 Gradient Descent

e Search-Based Optimization
* Genetic Algorithm

Newton’s Method

* Newton’s method is an iterative method for finding the root of a
function f(x), that is, where f(x) =0

* Note: this is different then finding the optimum, where we solve '(x) = 0

* We start from some initial value x'° for which the function value,
f(x'9), is ,not too far” from 0O

* Then we iteratively update x as follows:
X(k"'l) — X(k)—f(X(k)) /f’(x(k))

* Q: why does this work? Why do we converge to x for which f(x) = 07

Newton’s Method

* We iteratively update x as follows:
X(k"'l) — X(k)—f(x(k)) /f’(x(k))

* Q: why does this work? Why do we
converge to x for which f(x) =07

* We have four possibilities:
1. f(x) > 0 and f’(x) > 0 = x gets smaller
2. f([x) <0 and f(x) >0 = x gets larger
3. f(x) >0 and f’(x) < 0 = x gets larger
4. f(x) <0 and f’(x) < 0 = x gets smaller

case1(f>0,f >0)

. case4 (f<0,f'<0)

Newton’s Method: Example

X(k"‘l) — X(k)—f(X(k)) /f’(x(k))

o f(x) =2x3—-9x?+ 12x— 3 2
o f'(x) =6x2—18x + 12
* For example, x\% = -1

« f(x9)=-2-9-12-3= -24

* f(x9)=6+18 +12 = +36

e xX)=-1-(-24/+36)=-1+2/3=-1/3

* The closer we are to f(x) = 0, the smaller the update to x — because f(x)
is in the nominator of update rule and it’s getting smaller (in absolute)

* The update is O (convergence) when f(x) = 0 ©

Newton’s Method

* Newton’s method finds x for which f(x) = 0

* But we're looking for an optimum of /, not its root — we’re looking for
x such that /(x) =0

* So we need to apply Newton’s method to f’(x) (not f) in order to find
the optimum of f

X(k+1) — X(k)—f’(x(k)) /f”(x(k))

e But for this (1) / has to be doubly differentiable and (2) we must know
it’s first derivative /" (w.r.t. all parameters) in a closed form

Content

e Calculus Basics

* Gradient-Based Optimization
e Newton Method
 Gradient Descent

e Search-Based Optimization
* Genetic Algorithm

Gradient Descent/Ascent

* Gradient descent is a method that moves the parameter values in the
direction opposite of the function’s gradient in the current point

 Thisis guaranteed to lead to a

minimum only for convex functions*

* Gradient ascent moves the parameter
values in the direction of the function’s
gradient in the current point

e Used to find a maximum of a function

* Guaranteed to find it only for concave
functions

(xh

|||||||||||||

ok

. 222072 A0
. P . p

G UB)LH 43 25

3 -2 A o 1 2 3 4 5 6 7 8 9 10

"

Convex Functions

P

Convex function is a function / : R" - R whose domain is a convex set and for all
X, X, in its domain, and all A € [0,1], the following inequality holds true:

FINRx, + (1-0)*%,) € A*f(x,) + (1 = A)*f(x,)
_ J

* Convex set, simplified, means a M) + (1— N f(e)

,contiguous” function domain ,'
faxi+(1 —\)\)wz) / 'i

* A convex function has a unique
minimum

Z1 Az + (1= Nao T2

Concave Functions

P

Concave function is a function / : R" - IR whose domain is a convex set and for
all x,, %, inits domain, and all A € [0,1], the following inequality holds true:

AN+ (1-0)*%,) 2 A*f(x) + (1 = A)*£(x,)
_ J

* Convex set basically means a v |
,contiguous” function domain : A(on) + (=N

* A concave function has a unique
maximum

z1 Az +(1—=Nzg -~ T2

Gradient Descent

Gradient descent
2 Gradient descent g

Gradient descent (sometimes also called steepest descent) is an iterative
algorithm for (continuous) optimization that finds a minimum of a convex (single)

differentiable function.
__ y,

* In each iteration GD moves the values of variables (vector x = [x,, x,, ..., x])
opposite to the gradient in the current point

x(k"'l) - x(k)— r)* vxf(x(k))

xKl—values of the input variables (arguments, parameters) in step k

V., f(x) —value of the gradient (if more than one parameter, then also vector) of
the function f in the point x

* 1) —step size (in ML called learning rate), defines how much to move the
parameters in the direction opposite of the gradient

Gradient Descent — Properties

* Gradient descent: xk*1)= k- n* 7 f(xk)

* Q,: where to start? Which point to set as initial x/”/?
* O,: when does this iterative computation stop (does it at stop at all)?

* Q,: assuming it stops, will we have found the minimum of /?
 What does it depend on?

Gradient Descent — Convergence

* In principle, unless we know something more about the function f, we
would randomly choose an initial point x'/

* Convergence
* Natural ending of the GD, when the next 03
point, x“*1) is the same as the previous, x"

* Given the update formula, this is only
possible if the gradient is zero: Vf(x) =0

 This means we have found a minimum —if
is convex, gradient is O only in the minimum

Gradient Descent — Convergence

Gradient Descent: x(k1) = xkl— n* 7 f(x(k)

Convergence
* Whether GD converges depends
also on the value of the step size 1

Q: What values for 1) could lead to
divergence (never converging)?

(xn

12

ol

|||||||||||||

. [122)=072 .,
. P : ;

Fi(5.08)-0.432

1 'I 1 1 IE 1 1 1 iI IIII

-3 -2 - 0 1 2 3 4 8 6 T 8 9 10

n

Gradient Descent — Convergence

Gradient Descent: x(k1) = xkl— n* 7 f(x(k)
Convergence

Whether GD converges depends also on
the value of the step size

If 1 is too large, gradient descent will
diverge

If n is too small, gradient descent may not
converge in reasonable time (moving too
slowly to the minimum)

A good step size is usually determined
empirically

12 .

(xn

ol

s f22=072 y

b Al

 F(5.08)R0.432]

P

Ll I I
o B B | 1] 1 2 i 4 5 6 7 B 9

X

I
10

n

Gradient Descent — Example

* Let’s find the minimum of a single-
parameter square function:

f(x) = 0.2(x-4)% + 2

e Of course, in this case, we can easily find
the solution analytically

f(x)=04*(x—4)=0>x=4,f(4)=2

fix)

 We'd find the same value if we applied
GD iteratively, with a suitable step size

Gradient Descent — Example

* Let’s find the minimum of a single-parameter square function:
f(x) = 0.2(x-4)% + 2
f(x)=0.4 * (x—4)
e GD: let’s start with x'° =-1 and n = 0.5
e x0=-1-0.5%0.4%*(-1-4)=0
e x2= 0-05%0.4%(0-4)=0.8
e X3 = 0.8-0.5%0.4%(0.8—4)=1.44

i)

Try with) = 3. What happens?
Try with) = 6. What happens?
Try to start in another point, say x'”/ = 9

-3 -2 - o 1 2 3 4 5 G T B 8 1M Nn

Gradient Descent — Non-Convex Optimization

* If the function is non-convex, gradient
descent will not necessarily find a global
minimum

e There are other, local minimums that it can
end up in

e Gradient (,,steepest”) descent is guaranteed
to end up in the closest local minimum
* Closest to the starting point
* Assuming a small enough step size

* Where we end up depends on the start

Gradient Descent — Non-Convex Optimization

* Most complex functions that we optimize in practice
are non-convex

* GD may not find the global minimum, but maybe
the local minimum it finds is good enough ,T\

* Improvement strategies /
1. Multiple GD runs (from different initial points) & ™ / "

e Take the smallest of the local optima (|
e Computationally expensive (multiple optimizations)

2. Dynamic (adaptable) step size
* Not the same step size throughout the optimization
* Not necessarily the same step size for all parameters
* Several different adaptable GD variants
 AdaGrad, RMSProp, Adam

Gradient Ascent

-

Gradient ascent (sometimes also called steepest ascent) is an iterative algorithm
for (continuous) optimization that finds a maximum of a (single) differentiable

concave function.
_)

* In each iteration GD moves the values of input variables (vector x =
(X, %5, ..., X,]) in the direction of the gradient in the current point

w(k+1) = ye(K) 4 n * vxf(x(k))

* In practice, gradient ascent is rarely used (especially in Al)

* In machine learning we commonly compute error/loss functions (distance
between predictions and correct labels) which we minimize (so GD, not GA)

* Maximizing a function f is equivalent to minimizing -/

Content

e Calculus Basics

* Gradient-Based Optimization
e Newton Method
 Gradient Descent

* Search-Based Optimization
e Genetic Algorithm for Numeric Optimization

Search-Based Optimization

e Gradient-based optimization applicable only for differentiable functions
* Q: What to do for non-differentiable or non-smooth functions (noisy gradients)?
* : What to do for numeric optimization with constraints?

* Depending on the nature of the function and constraints, there may be dedicated
optimization algorithms

* Search-based methods for numerical optimization
» Useful if we don’t have a good initial guess for good parameter values

e Good if function f to be optimized is not differentiable or not smooth or if the
function domain is discontinuous

* Easier to incorporate constraints than in gradient-based methods

* For optimization of unconstrained differentiable functions — slower and find worse
solutions than gradient-based optimization

Metaheuristics for Numerical Optimization

e Search-based methods for numerical optimization, some examples:
e Optimized Step Size Random Search (OSSRS)
* Symmetric Perturbation Stochastic Approximation (SPSA)
* Nelder-Mead Algorithm
* Nature inspired metaheuristics: Genetic Algorithm

* Genetic algorithms, which we’ve seen in discrete optimization can
also be leveraged for numerical (i.e., continuous) optimization
* O: How to represent the chromosome?
* Q: what selection, crossover, and mutation strategies/operators to use?

Genetic Algorithm for Numerical Optimization

* Simplest case: one-parameter function, e.g., f(x) = 7% + 3x? -15x + 21
* Chromosome must be some kind of encoding of the value of x
* If we have multiple parameters, chromosome = concatenation of encodings

 Binary encoding (binary chromosome)
* Vector of length N with binary values
e Eg.,N=10,[0,1,0,1,0,0,0,1, 1, 0]

* Q: If we know that the domain of valid values for x is [a, b] what is the smallest
increment (change in value) of x that we can encode?

* If our vectors are of length N, then we can have at most 2" different vectors

» 2N different values for the variable x, on its domain range [a, b]
* So, the smallest ,,increment” in value change of x is (b —a) / 2"

Genetic Algorithm for Numerical Optimization

 Binary encoding (binary chromosome): example
* Single parameter (single value that we’re encoding)
e« E.g., N =10,
e Range of values (domain) for x: [-10, 10] (a =-10, b = 10)
* So, the smallest ,increment” in value change of xis (b —a) / 2"
* Increment (precision): (10 —(-10)) / 2'°=20 /1024 = 0.0195

0,0,0,0,0,0,0,0,0,0] > 10
0,0,0,0,0,0,0,0,0,1] > -10 + 0.0195 = -9.9805
0,0,0,0,0,0,0,0,1,0] > -9.9805 + 0.0195 = -9.961

[0,0,0,0,0,0,0,0,1,0] > 10

Genetic Algorithm for Numerical Optimization

* The genetic :.;\Igo.rithm itseI}c is_ exgctly genetic algorithm (<, =nd)
the same as in discrete optimization b = create init population (S)
iter = 0
. . evaluate (p)
* Fitness of the chromosome is the while not cnd(p, iter)
actual value f(x) for the value x that iter = iter + 1
p’ = recombine (p)
the chromosome encodes mutate (00)

evaluate (p’)

* Selection p = select(p U p’)

 tournament or rhoulette wheel

* Mutation
* Bit flipping (0 to 1 and vice versa)

return p

Genetic Algorithm: Selection

* Roulette wheel (or proportional) selection: probability of being selected for
reproduction proportional to the fitness of the chromosome

P(X) = f(X) / X3 f(X)

* Let us have a population of 5 chromosomes and let
o fit(X,) = 10, fit(X,) = 20, fit(X;) = 25, fit(X,) = 25, fit(X;) = 20 -> convert into probabilities

P(X,) P(X,) P(X,) P(X,) P(X;)

0 0.1 0.3 0.55 0.8 1

e But if we're doing numerical minimization then smaller values of / are better
* The fitness of the chromosome can then be fit(x) = f,, . — f(x)

* fuay is the maximal value of the function we’re minimizing (on the domain of x)
* If we don’t know the actual max, it can be the smallest large value, such that f,,,, — f(x) is not negative for any x

Genetic Algorithm: Recombination

* Common crossover operators

* Single-point crossover: select (typically randomly) the location at which to cut
the chromosomes and ,,exchange them” - two ,,child” chromosomes

* Unless we’re doing constrained optimization, resulting chromosomes are valid

[O) 1/ O) 1/ O) O) OI 1) 1) 1] » [OI 1/ O/ _
[1,0,1,1,,0,1,0,0,1] B 0.0,0,1,1,1]

* Mutation: flip the bit (0 2 1 or 1 = 0) randomly (with some small
mutation probability)

Questions?

Pitanja?

é¢Preguntas?
Fragor?

BHHELU|]

Porandukuéra?

Questlons?

Vragen? EpwtnGELC,

eali

c

= HST M ?Kiisimusi? 2
(@] -
Z Sorusuolan? g BREIX? é
3 Fragen'-’

Pytan a?
(-'_apueluoq

Y

	Default Section
	Slide 1: Numerical Optimization Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Recap: Discrete Constrained Optimization
	Slide 4: Numerical Optimization
	Slide 5: Numerical Optimization
	Slide 6: Differentiable functions
	Slide 7: Optimum of a Differentiable Function
	Slide 8: Optimum of a Differentiable Function
	Slide 9: Differentiation & Optima: Example
	Slide 10: Content
	Slide 11: Newton’s Method
	Slide 12: Newton’s Method
	Slide 13: Newton’s Method: Example
	Slide 14: Newton’s Method
	Slide 15: Content
	Slide 16: Gradient Descent/Ascent
	Slide 17: Convex Functions
	Slide 18: Concave Functions
	Slide 19: Gradient Descent
	Slide 20: Gradient Descent – Properties
	Slide 21: Gradient Descent – Convergence
	Slide 22: Gradient Descent – Convergence
	Slide 23: Gradient Descent – Convergence
	Slide 24: Gradient Descent – Example
	Slide 25: Gradient Descent – Example
	Slide 26: Gradient Descent – Non-Convex Optimization
	Slide 27: Gradient Descent – Non-Convex Optimization
	Slide 28: Gradient Ascent
	Slide 29: Content
	Slide 30: Search-Based Optimization
	Slide 31: Metaheuristics for Numerical Optimization
	Slide 32: Genetic Algorithm for Numerical Optimization
	Slide 33: Genetic Algorithm for Numerical Optimization
	Slide 34: Genetic Algorithm for Numerical Optimization
	Slide 35: Genetic Algorithm: Selection
	Slide 36: Genetic Algorithm: Recombination
	Slide 37: Questions?

