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Recap: Discrete Constrained Optimization

• Optimal state (or the state with the best f that was found) is the solution

• No path between start and goal state – often there isn’t a clear start state

• We’re not making moves like in classic SSS problems, just searching for the best 
possible solution over a very large space of candidate solutions

In discrete constrained optimization, we search for an optimal state in large space of 
possible states. Each state X can be seen as consisting of n variables X = x1, x2, ..., xn, each 

with a corresponding domain D1, D2, ..., Dn ⊆ ℤ (whole numbers). The optimal state is 
the one that maximizes/minimizes the objective function f: D1 × ··· × Dn → ℝ. Finally, the 

constraints C1, ..., Cm, with Ci⊆ D1, D2, ..., Dn define the subsets of the state space that 
encompass valid solutions to the problem

Discrete Constrained Optimization Problems



Numerical Optimization

• In numerical optimization, instead of a space of discrete states, we’re 
optimizing (minimizing or maximizing) some real-valued function

Numerical optimization refers to optimizing real-valued functions f(x): ℝn
→ ℝ, x = x1, 

x2, ..., xn ∈ℝ. This means finding values x1, x2, ..., xn for which f obtains the minimal or
maximal value.  The input variables x1, x2, ..., xn may be subject to constraints (e.g., linear 
inequality constraints such as xi ≥ m or non-linear constraints such as xi

2 - xj
2 < m) in which 

case we are dealing with constrained numerical optimization.

Numerical Optimization



Numerical Optimization

• Some assumptions

• We will talk about unconstrained optimization
• No constraints on the input variables x1, ..., xn

• For gradient-based methods
• The function f(x) is differentiable on the whole input domain D ⊆ℝn

• Q: What does it mean for a function to be differentiable?

• In some cases (e.g., for the Newton method) the function f(x) will have to 
be doubly differentiable (two times differentiable)



Differentiable functions

• Recap: how to compute a derivative of a function ☺

f’(x) = 
𝑑𝑓

𝑑𝑥
= limh→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

A function f(x) or (of one variable x) is differentiable if its derivative f’(x) exists in 
every point of the domain D ⊆ ℝ of the input variable (or parameter) x. A 
function of multiple parameters f(x = x1, x2, ..., xn) is differentiable if its gradient

∇x f – a vector of partial derivatives ∇x f = [ ∂𝑓
∂x1

, ∂𝑓
∂x2

, ..., ∂𝑓
∂xn

] – exists for every point 

on the input domain D ⊆ℝn. If function is differentiable, then it also continuous. 
Most continuous functions used in AI are differentiable. ∂

Differentiable functions



Optimum of a Differentiable Function

• For an infinitesimal change in x, dx, the 
corresponding infinitesimal change in f(x), dy, is 
such that the slope of the tangential in any 
point x corresponds to dy/dx = f’(x)

• In the turning point of the function, the function 
has a (possibly local) optimum, and the 
tangential is horizontal (slope is 0)

• So, solving f’(x) = 0 gives us the turning point(s) 
of f and its optimum
• Q: How do we tell if its a minimum or maximum?

Image from: 
https://math.fel.cvut.cz/mt/txtc/1/txe3ca1b.htm

https://math.fel.cvut.cz/mt/txtc/1/txe3ca1b.htm


Optimum of a Differentiable Function

• So, solving f’(x) = 0 gives us the turning point(s) of 
f and its optimum

• Algebraic conditions for min/max:
• MIN: derivative sign changes from negative to positive

• MAX: derivative sign changes from positive to negative

• Change of derivative → second derivative f’’(x)

• So, the function f(x) has a minimum in a if f’’(a) > 
0 and a maximum if f’’(a) < 0

Image from: 
https://www.themathpage.com/aCalc/max.htm

https://www.themathpage.com/aCalc/max.htm


Differentiation & Optima: Example

• f(x) = 2x3 – 9x2 + 12x – 3

• f’(x) = 6x2 – 18x + 12

• f’’(x) = 12x – 18

f’(x) = 0,  x2 – 3x + 2 = 0, 

(x – 1) * (x – 2) = 0

x(1) = 1, x(2) = 2

f’’(x(1)) = 12 – 18 = – 6 < 0, so in x(1), maximum

f’’(x(2)) = 24 – 18 = + 6 > 0, so in x(2), minimum Plot generated via https://www.geogebra.org/graphing

https://www.geogebra.org/graphing
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Newton’s Method

• Newton’s method is an iterative method for finding the root of a 
function f(x), that is, where f(x) = 0
• Note: this is different then finding the optimum, where we solve f’(x) = 0

• We start from some initial value x(0) for which the function value, 
f(x(0)), is „not too far” from 0

• Then we iteratively update x as follows:

x(k+1) = x(k) – f(x(k)) / f’(x(k))

• Q: why does this work? Why do we converge to x for which f(x) = 0?



Newton’s Method

• We iteratively update x as follows:

x(k+1) = x(k) – f(x(k)) / f’(x(k))

• Q: why does this work? Why do we 
converge to x for which f(x) = 0?

• We have four possibilities: 
1. f(x) > 0 and f’(x) > 0 → x gets smaller
2. f(x) < 0 and f’(x) > 0 → x gets larger
3. f(x) > 0 and f’(x) < 0 → x gets larger
4. f(x) < 0 and f’(x) < 0 → x gets smaller



Newton’s Method: Example

x(k+1) = x(k) – f(x(k)) / f’(x(k))

• f(x) = 2x3 – 9x2 + 12x – 3

• f’(x) = 6x2 – 18x + 12

• For example, x(0) = -1
• f(x(0)) = -2 -9 -12 -3 =  -24

• f’(x(0)) = 6 +18 +12 =  +36

• x(1) = -1 – (-24 / +36) = -1+2/3 = -1/3

• ...

• The closer we are to f(x) = 0, the smaller the update to x – because f(x) 
is in the nominator of update rule and it’s getting smaller (in absolute)
• The update is 0 (convergence) when f(x) = 0☺



Newton’s Method

• Newton’s method finds x for which f(x) = 0

• But we’re looking for an optimum of f, not its root – we’re looking for 
x such that f’(x) = 0

• So we need to apply Newton’s method to f’(x) (not f) in order to find 
the optimum of f 

• But for this (1) f has to be doubly differentiable and (2) we must know 
it’s first derivative f’ (w.r.t. all parameters) in a closed form

x(k+1) = x(k) – f’(x(k)) / f’’(x(k))
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Gradient Descent/Ascent

• Gradient descent is a method that moves the parameter values in the 
direction opposite of the function’s gradient in the current point

• This is guaranteed to lead to a 
minimum only for convex functions*

• Gradient ascent moves the parameter 
values in the direction of the function’s 
gradient in the current point
• Used to find a maximum of a function

• Guaranteed to find it only for concave
functions 



Convex Functions

Convex function is a function f : ℝn → ℝ whose domain is a convex set and for all 
x1, x2 in its domain, and all λ ∈ [0,1], the following inequality holds true: 

f(λ*x1 + (1−λ)*x2) ≤ λ*f(x1) + (1 − λ)*f(x2)

Convex function

• Convex set, simplified, means a 
„contiguous” function domain

• A convex function has a unique 
minimum

λ

λ λ

λ

λ λ



Concave Functions

Concave function is a function f : ℝn → ℝ whose domain is a convex set and for 
all x1, x2 in its domain, and all λ ∈ [0,1], the following inequality holds true: 

f(λ*x1 + (1−λ)*x2) ≥ λ*f(x1) + (1 − λ)*f(x2)

Convex function

• Convex set basically means a 
„contiguous” function domain

• A concave function has a unique 
maximum



Gradient Descent

• In each iteration GD moves the values of variables (vector x = [x1, x2, ..., xn]) 
opposite to the gradient in the current point 

x(k+1) = x(k) – η* ∇x f(x
(k))

• x(k) – values of the input variables (arguments, parameters) in step k

• ∇x f(x) – value of the gradient (if more than one parameter, then also vector) of 
the function f in the point x

• η – step size (in ML called learning rate), defines how much to move the 
parameters in the direction opposite of the gradient

Gradient descent (sometimes also called steepest descent) is an iterative 
algorithm for (continuous) optimization that finds a minimum of a convex (single) 
differentiable function. 

Gradient descent



Gradient Descent – Properties

• Gradient descent: 

• Q1: where to start? Which point to set as initial x(0)?

• Q2: when does this iterative computation stop (does it at stop at all)?

• Q3: assuming it stops, will we have found the minimum of f?
• What does it depend on?

x(k+1) = x(k) – η* ∇x f(x
(k))



Gradient Descent – Convergence 

• In principle, unless we know something more about the function f, we 
would randomly choose an initial point x(0)

• Convergence
• Natural ending of the GD, when the next 

point, x(k+1), is the same as the previous, x(k)

• Given the update formula, this is only 
possible if the gradient is zero: ∇f(x(k)) = 0

• This means we have found a minimum – if f
is convex, gradient is 0 only in the minimum



Gradient Descent – Convergence 

• Gradient Descent: 

• Convergence
• Whether GD converges depends 

also on the value of the step size η

• Q: What values for η could lead to 
divergence (never converging)?

x(k+1) = x(k) – η* ∇x f(x
(k))



Gradient Descent – Convergence 

• Gradient Descent: 
• Convergence

• Whether GD converges depends also on 
the value of the step size η

• If η is too large, gradient descent will 
diverge

• If η is too small, gradient descent may not 
converge in reasonable time (moving too 
slowly to the minimum)

• A good step size is usually determined 
empirically

x(k+1) = x(k) – η* ∇x f(x
(k))



Gradient Descent – Example

• Let’s find the minimum of a single-
parameter  square function: 

f(x) = 0.2(x-4)2 + 2 

• Of course, in this case, we can easily find 
the solution analytically

f’(x) = 0.4 * (x – 4) = 0 → x = 4, f(4) = 2

• We’d find the same value if we applied 
GD iteratively, with a suitable step size



Gradient Descent – Example

• Let’s find the minimum of a single-parameter  square function: 

f(x) = 0.2(x-4)2 + 2

f’(x) = 0.4 * (x – 4) 

• GD: let’s start with x(0) = -1 and η = 0.5
• x(1) = -1 – 0.5 * 0.4 * (-1 – 4) = 0
• x(2) =  0 – 0.5 * 0.4 * (0 – 4) = 0.8
• x(3) =  0.8 – 0.5 * 0.4 * (0.8 – 4) = 1.44
• ... 

• Try with η = 3. What happens?
• Try with η = 6. What happens?
• Try to start in another point, say x(0) = 9



Gradient Descent – Non-Convex Optimization

• If the function is non-convex, gradient 
descent will not necessarily find a global 
minimum

• There are other, local minimums that it can 
end up in  

• Gradient („steepest”) descent is guaranteed
to end up in the closest local minimum
• Closest to the starting point

• Assuming a small enough step size

• Where we end up depends on the start



Gradient Descent – Non-Convex Optimization

• Most complex functions that we optimize in practice
are non-convex

• GD may not find the global minimum, but maybe 
the local minimum it finds is good enough

• Improvement strategies
1. Multiple GD runs (from different initial points)

• Take the smallest of the local optima

• Computationally expensive (multiple optimizations)

2. Dynamic (adaptable) step size
• Not the same step size throughout the optimization

• Not necessarily the same step size for all parameters

• Several different adaptable GD variants
• AdaGrad, RMSProp, Adam



Gradient Ascent

• In each iteration GD moves the values of input variables (vector x =
[x1, x2, ..., xn]) in the direction of the gradient in the current point 

x(k+1) = x(k) + η* ∇x f(x
(k))

• In practice, gradient ascent is rarely used (especially in AI)
• In machine learning we commonly compute error/loss functions (distance 

between predictions and correct labels) which we minimize (so GD, not GA)

• Maximizing a function f is equivalent to minimizing -f

Gradient ascent (sometimes also called steepest ascent) is an iterative algorithm 
for (continuous) optimization that finds a maximum of a (single) differentiable 
concave function.  

Gradient descent
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Search-Based Optimization

• Gradient-based optimization applicable only for differentiable functions
• Q: What to do for non-differentiable or non-smooth functions (noisy gradients)?

• Q: What to do for numeric optimization with constraints? 

• Depending on the nature of the function and constraints, there may be dedicated 
optimization algorithms

• Search-based methods for numerical optimization
• Useful if we don’t have a good initial guess for good parameter values

• Good if function f to be optimized is not differentiable or not smooth or if the 
function domain is discontinuous

• Easier to incorporate constraints than in gradient-based methods

• For optimization of unconstrained differentiable functions – slower and find worse 
solutions than gradient-based optimization



Metaheuristics for Numerical Optimization

• Search-based methods for numerical optimization, some examples: 
• Optimized Step Size Random Search (OSSRS)

• Symmetric Perturbation Stochastic Approximation (SPSA)

• Nelder-Mead Algorithm

• Nature inspired metaheuristics: Genetic Algorithm

• Genetic algorithms, which we’ve seen in discrete optimization can 
also be leveraged for numerical (i.e., continuous) optimization
• Q: How to represent the chromosome?

• Q: what selection, crossover, and mutation strategies/operators to use?



Genetic Algorithm for Numerical Optimization

• Simplest case: one-parameter function, e.g., f(x) = 7x3 + 3x2 -15x + 21
• Chromosome must be some kind of encoding of the value of x
• If we have multiple parameters, chromosome = concatenation of encodings

• Binary encoding (binary chromosome)
• Vector of length N with binary values
• E.g., N = 10, [0, 1, 0, 1, 0, 0, 0, 1, 1, 0]
• Q: If we know that the domain of valid values for x is [a, b] what is the smallest 

increment (change in value) of x that we can encode?

• If our vectors are of length N, then we can have at most 2N different vectors 
• 2N different values for the variable x, on its domain range [a, b]

• So, the smallest „increment” in value change of x is (b – a) / 2N



Genetic Algorithm for Numerical Optimization

• Binary encoding (binary chromosome): example
• Single parameter (single value that we’re encoding)

• E.g., N = 10, 

• Range of values (domain) for x: [-10, 10] (a = -10, b = 10)

• So, the smallest „increment” in value change of x is (b – a) / 2N

• Increment (precision): (10 – (-10)) / 210 = 20 / 1024 = 0.0195

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]→ -10

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]→ -10 + 0.0195 = -9.9805

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0]→ -9.9805 + 0.0195 = -9.961

...

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0]→ 10



Genetic Algorithm for Numerical Optimization

• The genetic algorithm itself is exactly 
the same as in discrete optimization

• Fitness of the chromosome is the 
actual value f(x) for the value x that 
the chromosome encodes 

• Selection
• tournament or rhoulette wheel

• Mutation
• Bit flipping (0 to 1 and vice versa)

genetic_algorithm(S,end)

p = create_init_population(S)

iter = 0

evaluate(p)

while not end(p, iter)

iter = iter + 1

p’ = recombine(p)

mutate(p’) 

evaluate(p’)

p = select(p ∪ p’)

return p



Genetic Algorithm: Selection

• Roulette wheel (or proportional) selection: probability of being selected for 
reproduction proportional to the fitness of the chromosome

P(Xi) = f(Xi) / σ𝑗
𝑆 f(Xj)

• Let us have a population of 5 chromosomes and let 
• fit(X1) = 10, fit(X2) = 20, fit(X3) = 25, fit(X4) = 25, fit(X5) = 20 → convert into probabilities

• But if we’re doing numerical minimization then smaller values of f are better
• The fitness of the chromosome can then be fit(x) = fMAX – f(x)

• fMAX is the maximal value of the function we’re minimizing (on the domain of x)
• If we don’t know the actual max, it can be the smallest large value, such that fMAX – f(x) is not negative for any x

P(X1) P(X2) P(X3) P(X4) P(X5)

0 0.1 0.3 0.55 0.8 1



Genetic Algorithm: Recombination

• Common crossover operators
• Single-point crossover: select (typically randomly) the location at which to cut 

the chromosomes and „exchange them” → two „child” chromosomes

• Unless we’re doing constrained optimization, resulting chromosomes are valid

[0, 1, 0, 1, 0, 0, 0, 1, 1, 1] [0, 1, 0, 1, 1, 0, 1, 0, 0, 1]

[1, 0, 1, 1, 1, 0, 1, 0, 0, 1] [1, 0, 1, 1, 0, 0, 0, 1, 1, 1]

• Mutation: flip the bit (0 → 1 or 1 → 0) randomly (with some small 
mutation probability)
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