ALGORITHMS IN AI \& DATA SCIENCE 1 (AKIDS 1)

Numerical Optimization

Prof. Dr. Goran Glavaš

Content

- Calculus Basics
- Gradient-Based Optimization
- Newton Method
- Gradient Descent
- Search-Based Optimization
- Genetic Algorithm

Recap: Discrete Constrained Optimization

In discrete constrained optimization, we search for an optimal state in large space of possible states. Each state X can be seen as consisting of n variables $X=x_{1}, x_{2}, \ldots, x_{n}$, each with a corresponding domain $D_{1}, D_{2}, \ldots, D_{n} \subseteq \mathbb{Z}$ (whole numbers). The optimal state is the one that maximizes/minimizes the objective function $f: D_{1} \times \cdots \times D_{n} \rightarrow \mathbb{R}$. Finally, the constraints C_{1}, \ldots, C_{m}, with $C_{i} \subseteq D_{1}, D_{2}, \ldots, D_{n}$ define the subsets of the state space that encompass valid solutions to the problem

- Optimal state (or the state with the best f that was found) is the solution
- No path between start and goal state - often there isn't a clear start state
- We're not making moves like in classic SSS problems, just searching for the best possible solution over a very large space of candidate solutions

Numerical Optimization

- In numerical optimization, instead of a space of discrete states, we're optimizing (minimizing or maximizing) some real-valued function

Numerical optimization refers to optimizing real-valued functions $f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}, x=x_{1}$, $x_{2}, \ldots, x_{n} \in \mathbb{R}$. This means finding values $x_{1}, x_{2}, \ldots, x_{n}$ for which f obtains the minimal or maximal value. The input variables $x_{1}, x_{2}, \ldots, x_{n}$ may be subject to constraints (e.g., linear inequality constraints such as $x_{i} \geq m$ or non-linear constraints such as $x_{i}{ }^{2}-x_{j}{ }^{2}<m$) in which case we are dealing with constrained numerical optimization.

Numerical Optimization

- Some assumptions

- We will talk about unconstrained optimization
- No constraints on the input variables x_{1}, \ldots, x_{n}
- For gradient-based methods
- The function $f(x)$ is differentiable on the whole input domain $D \subseteq \mathbb{R}^{n}$
- Q: What does it mean for a function to be differentiable?
- In some cases (e.g., for the Newton method) the function $f(x)$ will have to be doubly differentiable (two times differentiable)

Differentiable functions

A function $f(x)$ or (of one variable x) is differentiable if its derivative $f^{\prime}(x)$ exists in every point of the domain $D \subseteq \mathbb{R}$ of the input variable (or parameter) $x . A$ function of multiple parameters $f\left(x=x_{1}, x_{2}, \ldots, x_{n}\right)$ is differentiable if its gradient $\nabla_{x} f-$ a vector of partial derivatives $\nabla_{x} f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]$ - exists for every point on the input domain $D \subseteq \mathbb{R}^{n}$. If function is differentiable, then it also continuous. Most continuous functions used in Al are differentiable.

- Recap: how to compute a derivative of a function ()

$$
f^{\prime}(x)=\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Optimum of a Differentiable Function

- For an infinitesimal change in $x, d x$, the corresponding infinitesimal change in $f(x), d y$, is such that the slope of the tangential in any point \mathbf{x} corresponds to $d y / d x=f^{\prime}(x)$
- In the turning point of the function, the function has a (possibly local) optimum, and the tangential is horizontal (slope is 0)
- So, solving $f^{\prime}(x)=0$ gives us the turning point(s) of f and its optimum

Image from:
https://math.fel.cvut.cz/mt/txtc/1/txe3ca1b.htm

- Q: How do we tell if its a minimum or maximum?

Optimum of a Differentiable Function

- So, solving $f^{\prime}(x)=0$ gives us the turning point(s) of f and its optimum
- Algebraic conditions for min/max:
- MIN: derivative sign changes from negative to positive
- MAX: derivative sign changes from positive to negative
- Change of derivative \rightarrow second derivative $f^{\prime \prime}(\mathrm{x})$
- So, the function $f(x)$ has a minimum in a if $f^{\prime \prime}(\mathrm{a})>$ 0 and a maximum if $f^{\prime \prime}(a)<0$

Differentiation \& Optima: Example

- $f(x)=2 x^{3}-9 x^{2}+12 x-3$
- $f^{\prime}(x)=6 x^{2}-18 x+12$
- $f^{\prime \prime}(x)=12 x-18$
$f^{\prime}(x)=0, x^{2}-3 x+2=0$,

$$
\begin{aligned}
& (x-1) *(x-2)=0 \\
& x^{(1)}=1, x^{(2)}=2
\end{aligned}
$$

$f^{\prime \prime}\left(x^{(1)}\right)=12-18=-6<0$, so in $x^{(1)}$, maximum
$f^{\prime \prime}\left(x^{(2)}\right)=24-18=+6>0$, so in $x^{(2)}$, minimum

Plot generated via https://www.geogebra.org/graphing

Content

- Calculus Basics
- Gradient-Based Optimization
- Newton Method
- Gradient Descent
- Search-Based Optimization
- Genetic Algorithm

Newton's Method

- Newton's method is an iterative method for finding the root of a function $f(x)$, that is, where $f(x)=0$
- Note: this is different then finding the optimum, where we solve $f^{\prime}(x)=0$
- We start from some initial value $x^{(0)}$ for which the function value, $f\left(x^{(0)}\right)$, is ,"not too far" from 0
- Then we iteratively update \times as follows:

$$
x^{(k+1)}=x^{(k)}-f\left(x^{(k)}\right) / f^{\prime}\left(x^{(k)}\right)
$$

- Q: why does this work? Why do we converge to x for which $f(x)=0$?

Newton's Method

- We iteratively update \times as follows:

$$
x^{(k+1)}=x^{(k)}-f\left(x^{(k)}\right) / f^{\prime}\left(x^{(k)}\right)
$$

- Q: why does this work? Why do we converge to x for which $f(x)=0$?
- We have four possibilities:

1. $f(x)>0$ and $f^{\prime}(x)>0 \rightarrow x$ gets smaller
2. $f(x)<0$ and $f^{\prime}(x)>0 \rightarrow x$ gets larger
3. $f(x)>0$ and $f^{\prime}(x)<0 \rightarrow x$ gets larger
4. $f(x)<0$ and $f^{\prime}(x)<0 \rightarrow x$ gets smaller

Newton's Method: Example

$$
x^{(k+1)}=x^{(k)}-f\left(x^{(k)}\right) / f^{\prime}\left(x^{(k)}\right)
$$

- $f(x)=2 x^{3}-9 x^{2}+12 x-3$
- $f^{\prime}(x)=6 x^{2}-18 x+12$
- For example, $x^{(0)}=-1$
- $f\left(x^{(0)}\right)=-2-9-12-3=-24$
- $f^{\prime}\left(x^{(0)}\right)=6+18+12=+36$
- $x^{(1)}=-1-(-24 /+36)=-1+2 / 3=-1 / 3$

- The closer we are to $f(x)=0$, the smaller the update to x - because $f(x)$ is in the nominator of update rule and it's getting smaller (in absolute)
- The update is 0 (convergence) when $f(x)=0$ ()

Newton's Method

- Newton's method finds x for which $f(x)=0$
- But we're looking for an optimum of f, not its root - we're looking for x such that $f^{\prime}(x)=0$
- So we need to apply Newton's method to $f^{\prime}(x)(\operatorname{not} f)$ in order to find the optimum of f

$$
x^{(k+1)}=x^{(k)}-f^{\prime}\left(x^{(k)}\right) / f^{\prime \prime}\left(x^{(k)}\right)
$$

- But for this (1) f has to be doubly differentiable and (2) we must know it's first derivative f^{\prime} (w.r.t. all parameters) in a closed form

Content

- Calculus Basics
- Gradient-Based Optimization
- Newton Method
- Gradient Descent
- Search-Based Optimization
- Genetic Algorithm

Gradient Descent/Ascent

- Gradient descent is a method that moves the parameter values in the direction opposite of the function's gradient in the current point
- This is guaranteed to lead to a minimum only for convex functions*
- Gradient ascent moves the parameter values in the direction of the function's gradient in the current point
- Used to find a maximum of a function
- Guaranteed to find it only for concave functions

Convex Functions

Convex function

Convex function is a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ whose domain is a convex set and for all x_{1}, x_{2} in its domain, and all $\lambda \in[0,1]$, the following inequality holds true:

$$
f\left(\lambda^{*} x_{1}+(1-\lambda)^{*} x_{2}\right) \leq \lambda^{*} f\left(x_{1}\right)+(1-\lambda)^{*} f\left(x_{2}\right)
$$

- Convex set, simplified, means a ,,contiguous" function domain
- A convex function has a unique minimum

Concave Functions

Convex function

Concave function is a function $f: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}$ whose domain is a convex set and for all x_{1}, x_{2} in its domain, and all $\lambda \in[0,1]$, the following inequality holds true:

$$
f\left(\lambda^{*} x_{1}+(1-\lambda)^{*} x_{2}\right) \geq \lambda^{*} f\left(x_{1}\right)+(1-\lambda)^{*} f\left(x_{2}\right)
$$

- Convex set basically means a „contiguous" function domain
- A concave function has a unique maximum

Gradient Descent

Gradient descent (sometimes also called steepest descent) is an iterative algorithm for (continuous) optimization that finds a minimum of a convex (single) differentiable function.

- In each iteration GD moves the values of variables (vector $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$) opposite to the gradient in the current point

$$
x^{(\mathrm{k}+1)}=\mathrm{x}^{(\mathrm{k})}-\eta^{*} \nabla_{\mathrm{x}} f\left(\mathbf{x}^{(\mathrm{k})}\right)
$$

- $x^{(k)}$ - values of the input variables (arguments, parameters) in step k
- $\nabla_{x} f(\mathbf{x})$ - value of the gradient (if more than one parameter, then also vector) of the function f in the point x
- η - step size (in ML called learning rate), defines how much to move the parameters in the direction opposite of the gradient

Gradient Descent - Properties

- Gradient descent: $x^{(k+1)}=x^{(k)}-\eta^{*} \nabla_{x} f\left(x^{(k)}\right)$
- Q_{1} : where to start? Which point to set as initial $\mathbf{x}^{(0)}$?
- Q_{2} : when does this iterative computation stop (does it at stop at all)?
- Q_{3} : assuming it stops, will we have found the minimum of f ?
- What does it depend on?

Gradient Descent - Convergence

- In principle, unless we know something more about the function f, we would randomly choose an initial point $\mathbf{x}^{(0)}$
- Convergence
- Natural ending of the GD, when the next point, $\mathbf{x}^{(k+1)}$, is the same as the previous, $\mathbf{x}^{(k)}$
- Given the update formula, this is only possible if the gradient is zero: $\nabla f\left(\mathbf{x}^{(k)}\right)=0$

- This means we have found a minimum - if f is convex, gradient is 0 only in the minimum

Gradient Descent - Convergence

- Gradient Descent: $x^{(k+1)}=x^{(k)}-\eta^{*} \nabla_{x} f\left(\mathbf{x}^{(k)}\right)$
- Convergence
- Whether GD converges depends also on the value of the step size η
- Q: What values for η could lead to divergence (never converging)?

Gradient Descent - Convergence

- Gradient Descent: $x^{(k+1)}=x^{(k)}-\eta^{*} \nabla_{x} f\left(\mathbf{x}^{(k)}\right)$
- Convergence
- Whether GD converges depends also on the value of the step size η
- If η is too large, gradient descent will diverge
- If η is too small, gradient descent may not converge in reasonable time (moving too slowly to the minimum)
- A good step size is usually determined
 empirically

Gradient Descent - Example

- Let's find the minimum of a singleparameter square function:

$$
f(x)=0.2(x-4)^{2}+2
$$

- Of course, in this case, we can easily find the solution analytically

$$
f^{\prime}(x)=0.4 *(x-4)=0 \rightarrow x=4, f(4)=2
$$

- We'd find the same value if we applied
 GD iteratively, with a suitable step size

Gradient Descent - Example

- Let's find the minimum of a single-parameter square function:

$$
\begin{aligned}
& f(x)=0.2(x-4)^{2}+2 \\
& f^{\prime}(x)=0.4 *(x-4)
\end{aligned}
$$

- GD: let's start with $\mathbf{x}^{(0)}=-1$ and $\eta=0.5$
- $x^{(1)}=-1-0.5 * 0.4 *(-1-4)=0$
- $x^{(2)}=0-0.5 * 0.4 *(0-4)=0.8$
- $x^{(3)}=0.8-0.5 * 0.4^{*}(0.8-4)=1.44$
- ...
- Try with $\eta=3$. What happens?
- Try with $\eta=6$. What happens?
- Try to start in another point, say $x^{(0)}=9$

Gradient Descent - Non-Convex Optimization

- If the function is non-convex, gradient descent will not necessarily find a global minimum
- There are other, local minimums that it can end up in
- Gradient („steepest") descent is guaranteed to end up in the closest local minimum
- Closest to the starting point

- Assuming a small enough step size
- Where we end up depends on the start

Gradient Descent - Non-Convex Optimization

- Most complex functions that we optimize in practice are non-convex
- GD may not find the global minimum, but maybe the local minimum it finds is good enough
- Improvement strategies

1. Multiple GD runs (from different initial points)

- Take the smallest of the local optima
- Computationally expensive (multiple optimizations)

2. Dynamic (adaptable) step size

- Not the same step size throughout the optimization
- Not necessarily the same step size for all parameters
- Several different adaptable GD variants
- AdaGrad, RMSProp, Adam

Gradient Ascent

Gradient ascent (sometimes also called steepest ascent) is an iterative algorithm for (continuous) optimization that finds a maximum of a (single) differentiable concave function.

- In each iteration GD moves the values of input variables (vector $x=$ $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$) in the direction of the gradient in the current point

$$
x^{(k+1)}=x^{(k)}+\eta^{*} \nabla_{x} f\left(\mathbf{x}^{(k)}\right)
$$

- In practice, gradient ascent is rarely used (especially in Al)
- In machine learning we commonly compute error/loss functions (distance between predictions and correct labels) which we minimize (so GD, not GA)
- Maximizing a function f is equivalent to minimizing - f

Content

- Calculus Basics
- Gradient-Based Optimization
- Newton Method
- Gradient Descent
- Search-Based Optimization
- Genetic Algorithm for Numeric Optimization

Search-Based Optimization

- Gradient-based optimization applicable only for differentiable functions
- Q: What to do for non-differentiable or non-smooth functions (noisy gradients)?
- Q: What to do for numeric optimization with constraints?
- Depending on the nature of the function and constraints, there may be dedicated optimization algorithms
- Search-based methods for numerical optimization
- Useful if we don't have a good initial guess for good parameter values
- Good if function f to be optimized is not differentiable or not smooth or if the function domain is discontinuous
- Easier to incorporate constraints than in gradient-based methods
- For optimization of unconstrained differentiable functions - slower and find worse solutions than gradient-based optimization

Metaheuristics for Numerical Optimization

- Search-based methods for numerical optimization, some examples:
- Optimized Step Size Random Search (OSSRS)
- Symmetric Perturbation Stochastic Approximation (SPSA)
- Nelder-Mead Algorithm
- Nature inspired metaheuristics: Genetic Algorithm
- Genetic algorithms, which we've seen in discrete optimization can also be leveraged for numerical (i.e., continuous) optimization
- Q: How to represent the chromosome?
- Q: what selection, crossover, and mutation strategies/operators to use?

Genetic Algorithm for Numerical Optimization

- Simplest case: one-parameter function, e.g., $f(x)=7 x^{3}+3 x^{2}-15 x+21$
- Chromosome must be some kind of encoding of the value of x
- If we have multiple parameters, chromosome = concatenation of encodings
- Binary encoding (binary chromosome)
- Vector of length N with binary values
- E.g., $N=10,[\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{1}, \mathbf{0}]$
- Q : If we know that the domain of valid values for x is $[a, b]$ what is the smallest increment (change in value) of x that we can encode?
- If our vectors are of length N, then we can have at most 2^{N} different vectors
- 2^{N} different values for the variable x, on its domain range [a, b]
- So, the smallest ,increment" in value change of x is $(b-a) / 2^{N}$

Genetic Algorithm for Numerical Optimization

- Binary encoding (binary chromosome): example
- Single parameter (single value that we're encoding)
- E.g., N = 10,
- Range of values (domain) for $x:[-10,10]$ ($a=-10, b=10$)
- So, the smallest ,increment" in value change of x is $(b-a) / 2^{N}$
- Increment (precision): $(10-(-10)) / 2^{10}=20 / 1024=0.0195$

$$
\begin{aligned}
& {[\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}] \rightarrow-10} \\
& {[\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{1}] \rightarrow-10+0.0195=-9.9805} \\
& {[\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{1}, \mathbf{0}] \rightarrow-9.9805+0.0195=-9.961}
\end{aligned}
$$

...
$[0,0,0,0,0,0,0,0,1,0] \rightarrow 10$

Genetic Algorithm for Numerical Optimization

- The genetic algorithm itself is exactly the same as in discrete optimization
- Fitness of the chromosome is the actual value $f(x)$ for the value x that the chromosome encodes
- Selection
- tournament or rhoullette wheel

```
genetic_algorithm(S, end)
    p = create_init_population(S)
    iter = 0
    evaluate (p)
    while not end(p, iter)
        iter = iter + 1
        p' = recombine(p)
        mutate (p')
        evaluate(p')
        p = \boldsymbol{select}(pU \mp@subsup{p}{}{\prime})
```

 return \(p\)
 - Mutation
- Bit flipping (0 to 1 and vice versa)

Genetic Algorithm: Selection

- Roulette wheel (or proportional) selection: probability of being selected for reproduction proportional to the fitness of the chromosome

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}\right)=f\left(\mathrm{X}_{\mathrm{i}}\right) / \sum_{j}^{S} f\left(\mathrm{X}_{\mathrm{j}}\right)
$$

- Let us have a population of 5 chromosomes and let
- $\operatorname{fit}\left(X_{1}\right)=10, f i t\left(X_{2}\right)=20$, fit $\left(X_{3}\right)=25$, fit $\left(X_{4}\right)=25$, fit $\left(X_{5}\right)=20 \rightarrow$ convert into probabilities

- But if we're doing numerical minimization then smaller values of f are better
- The fitness of the chromosome can then be fit $(x)=f_{\text {MAX }}-f(x)$
- $f_{\text {MAX }}$ is the maximal value of the function we're minimizing (on the domain of x)
- If we don't know the actual max, it can be the smallest large value, such that $f_{\text {MAX }}-f(x)$ is not negative for any x

Genetic Algorithm: Recombination

- Common crossover operators
- Single-point crossover: select (typically randomly) the location at which to cut the chromosomes and „exchange them" \rightarrow two „child" chromosomes
- Unless we're doing constrained optimization, resulting chromosomes are valid
$\left[\begin{array}{l}{[0,1,0,1,0,0,0,1,1,1]} \\ {[1,0,1,1,1,0,1,0,0,1]}\end{array} \quad \square\left[\begin{array}{l}{[0,1,0,1,1,0,1,0,0,1]} \\ {[1,0,1,1,0,0,0,1,1,1]}\end{array}\right.\right.$
- Mutation: flip the bit ($0 \rightarrow 1$ or $1 \rightarrow 0$) randomly (with some small mutation probability)

Questions?

