
Numerical Optimization
Prof. Dr. Goran Glavaš

25.1.2024

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Calculus Basics

• Gradient-Based Optimization
• Newton Method

• Gradient Descent

• Search-Based Optimization
• Genetic Algorithm

Recap: Discrete Constrained Optimization

• Optimal state (or the state with the best f that was found) is the solution

• No path between start and goal state – often there isn’t a clear start state

• We’re not making moves like in classic SSS problems, just searching for the best
possible solution over a very large space of candidate solutions

In discrete constrained optimization, we search for an optimal state in large space of
possible states. Each state X can be seen as consisting of n variables X = x1, x2, ..., xn, each

with a corresponding domain D1, D2, ..., Dn ⊆ ℤ (whole numbers). The optimal state is
the one that maximizes/minimizes the objective function f: D1 × ··· × Dn → ℝ. Finally, the

constraints C1, ..., Cm, with Ci⊆ D1, D2, ..., Dn define the subsets of the state space that
encompass valid solutions to the problem

Discrete Constrained Optimization Problems

Numerical Optimization

• In numerical optimization, instead of a space of discrete states, we’re
optimizing (minimizing or maximizing) some real-valued function

Numerical optimization refers to optimizing real-valued functions f(x): ℝn
→ ℝ, x = x1,

x2, ..., xn ∈ℝ. This means finding values x1, x2, ..., xn for which f obtains the minimal or
maximal value. The input variables x1, x2, ..., xn may be subject to constraints (e.g., linear
inequality constraints such as xi ≥ m or non-linear constraints such as xi

2 - xj
2 < m) in which

case we are dealing with constrained numerical optimization.

Numerical Optimization

Numerical Optimization

• Some assumptions

• We will talk about unconstrained optimization
• No constraints on the input variables x1, ..., xn

• For gradient-based methods
• The function f(x) is differentiable on the whole input domain D ⊆ℝn

• Q: What does it mean for a function to be differentiable?

• In some cases (e.g., for the Newton method) the function f(x) will have to
be doubly differentiable (two times differentiable)

Differentiable functions

• Recap: how to compute a derivative of a function ☺

f’(x) =
𝑑𝑓

𝑑𝑥
= limh→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

A function f(x) or (of one variable x) is differentiable if its derivative f’(x) exists in
every point of the domain D ⊆ ℝ of the input variable (or parameter) x. A
function of multiple parameters f(x = x1, x2, ..., xn) is differentiable if its gradient

∇x f – a vector of partial derivatives ∇x f = [∂𝑓
∂x1

, ∂𝑓
∂x2

, ..., ∂𝑓
∂xn

] – exists for every point

on the input domain D ⊆ℝn. If function is differentiable, then it also continuous.
Most continuous functions used in AI are differentiable. ∂

Differentiable functions

Optimum of a Differentiable Function

• For an infinitesimal change in x, dx, the
corresponding infinitesimal change in f(x), dy, is
such that the slope of the tangential in any
point x corresponds to dy/dx = f’(x)

• In the turning point of the function, the function
has a (possibly local) optimum, and the
tangential is horizontal (slope is 0)

• So, solving f’(x) = 0 gives us the turning point(s)
of f and its optimum
• Q: How do we tell if its a minimum or maximum?

Image from:
https://math.fel.cvut.cz/mt/txtc/1/txe3ca1b.htm

https://math.fel.cvut.cz/mt/txtc/1/txe3ca1b.htm

Optimum of a Differentiable Function

• So, solving f’(x) = 0 gives us the turning point(s) of
f and its optimum

• Algebraic conditions for min/max:
• MIN: derivative sign changes from negative to positive

• MAX: derivative sign changes from positive to negative

• Change of derivative → second derivative f’’(x)

• So, the function f(x) has a minimum in a if f’’(a) >
0 and a maximum if f’’(a) < 0

Image from:
https://www.themathpage.com/aCalc/max.htm

https://www.themathpage.com/aCalc/max.htm

Differentiation & Optima: Example

• f(x) = 2x3 – 9x2 + 12x – 3

• f’(x) = 6x2 – 18x + 12

• f’’(x) = 12x – 18

f’(x) = 0, x2 – 3x + 2 = 0,

(x – 1) * (x – 2) = 0

x(1) = 1, x(2) = 2

f’’(x(1)) = 12 – 18 = – 6 < 0, so in x(1), maximum

f’’(x(2)) = 24 – 18 = + 6 > 0, so in x(2), minimum Plot generated via https://www.geogebra.org/graphing

https://www.geogebra.org/graphing

Content

• Calculus Basics

• Gradient-Based Optimization
• Newton Method

• Gradient Descent

• Search-Based Optimization
• Genetic Algorithm

Newton’s Method

• Newton’s method is an iterative method for finding the root of a
function f(x), that is, where f(x) = 0
• Note: this is different then finding the optimum, where we solve f’(x) = 0

• We start from some initial value x(0) for which the function value,
f(x(0)), is „not too far” from 0

• Then we iteratively update x as follows:

x(k+1) = x(k) – f(x(k)) / f’(x(k))

• Q: why does this work? Why do we converge to x for which f(x) = 0?

Newton’s Method

• We iteratively update x as follows:

x(k+1) = x(k) – f(x(k)) / f’(x(k))

• Q: why does this work? Why do we
converge to x for which f(x) = 0?

• We have four possibilities:
1. f(x) > 0 and f’(x) > 0 → x gets smaller
2. f(x) < 0 and f’(x) > 0 → x gets larger
3. f(x) > 0 and f’(x) < 0 → x gets larger
4. f(x) < 0 and f’(x) < 0 → x gets smaller

Newton’s Method: Example

x(k+1) = x(k) – f(x(k)) / f’(x(k))

• f(x) = 2x3 – 9x2 + 12x – 3

• f’(x) = 6x2 – 18x + 12

• For example, x(0) = -1
• f(x(0)) = -2 -9 -12 -3 = -24

• f’(x(0)) = 6 +18 +12 = +36

• x(1) = -1 – (-24 / +36) = -1+2/3 = -1/3

• ...

• The closer we are to f(x) = 0, the smaller the update to x – because f(x)
is in the nominator of update rule and it’s getting smaller (in absolute)
• The update is 0 (convergence) when f(x) = 0☺

Newton’s Method

• Newton’s method finds x for which f(x) = 0

• But we’re looking for an optimum of f, not its root – we’re looking for
x such that f’(x) = 0

• So we need to apply Newton’s method to f’(x) (not f) in order to find
the optimum of f

• But for this (1) f has to be doubly differentiable and (2) we must know
it’s first derivative f’ (w.r.t. all parameters) in a closed form

x(k+1) = x(k) – f’(x(k)) / f’’(x(k))

Content

• Calculus Basics

• Gradient-Based Optimization
• Newton Method

• Gradient Descent

• Search-Based Optimization
• Genetic Algorithm

Gradient Descent/Ascent

• Gradient descent is a method that moves the parameter values in the
direction opposite of the function’s gradient in the current point

• This is guaranteed to lead to a
minimum only for convex functions*

• Gradient ascent moves the parameter
values in the direction of the function’s
gradient in the current point
• Used to find a maximum of a function

• Guaranteed to find it only for concave
functions

Convex Functions

Convex function is a function f : ℝn → ℝ whose domain is a convex set and for all
x1, x2 in its domain, and all λ ∈ [0,1], the following inequality holds true:

f(λ*x1 + (1−λ)*x2) ≤ λ*f(x1) + (1 − λ)*f(x2)

Convex function

• Convex set, simplified, means a
„contiguous” function domain

• A convex function has a unique
minimum

λ

λ λ

λ

λ λ

Concave Functions

Concave function is a function f : ℝn → ℝ whose domain is a convex set and for
all x1, x2 in its domain, and all λ ∈ [0,1], the following inequality holds true:

f(λ*x1 + (1−λ)*x2) ≥ λ*f(x1) + (1 − λ)*f(x2)

Convex function

• Convex set basically means a
„contiguous” function domain

• A concave function has a unique
maximum

Gradient Descent

• In each iteration GD moves the values of variables (vector x = [x1, x2, ..., xn])
opposite to the gradient in the current point

x(k+1) = x(k) – η* ∇x f(x
(k))

• x(k) – values of the input variables (arguments, parameters) in step k

• ∇x f(x) – value of the gradient (if more than one parameter, then also vector) of
the function f in the point x

• η – step size (in ML called learning rate), defines how much to move the
parameters in the direction opposite of the gradient

Gradient descent (sometimes also called steepest descent) is an iterative
algorithm for (continuous) optimization that finds a minimum of a convex (single)
differentiable function.

Gradient descent

Gradient Descent – Properties

• Gradient descent:

• Q1: where to start? Which point to set as initial x(0)?

• Q2: when does this iterative computation stop (does it at stop at all)?

• Q3: assuming it stops, will we have found the minimum of f?
• What does it depend on?

x(k+1) = x(k) – η* ∇x f(x
(k))

Gradient Descent – Convergence

• In principle, unless we know something more about the function f, we
would randomly choose an initial point x(0)

• Convergence
• Natural ending of the GD, when the next

point, x(k+1), is the same as the previous, x(k)

• Given the update formula, this is only
possible if the gradient is zero: ∇f(x(k)) = 0

• This means we have found a minimum – if f
is convex, gradient is 0 only in the minimum

Gradient Descent – Convergence

• Gradient Descent:

• Convergence
• Whether GD converges depends

also on the value of the step size η

• Q: What values for η could lead to
divergence (never converging)?

x(k+1) = x(k) – η* ∇x f(x
(k))

Gradient Descent – Convergence

• Gradient Descent:
• Convergence

• Whether GD converges depends also on
the value of the step size η

• If η is too large, gradient descent will
diverge

• If η is too small, gradient descent may not
converge in reasonable time (moving too
slowly to the minimum)

• A good step size is usually determined
empirically

x(k+1) = x(k) – η* ∇x f(x
(k))

Gradient Descent – Example

• Let’s find the minimum of a single-
parameter square function:

f(x) = 0.2(x-4)2 + 2

• Of course, in this case, we can easily find
the solution analytically

f’(x) = 0.4 * (x – 4) = 0 → x = 4, f(4) = 2

• We’d find the same value if we applied
GD iteratively, with a suitable step size

Gradient Descent – Example

• Let’s find the minimum of a single-parameter square function:

f(x) = 0.2(x-4)2 + 2

f’(x) = 0.4 * (x – 4)

• GD: let’s start with x(0) = -1 and η = 0.5
• x(1) = -1 – 0.5 * 0.4 * (-1 – 4) = 0
• x(2) = 0 – 0.5 * 0.4 * (0 – 4) = 0.8
• x(3) = 0.8 – 0.5 * 0.4 * (0.8 – 4) = 1.44
• ...

• Try with η = 3. What happens?
• Try with η = 6. What happens?
• Try to start in another point, say x(0) = 9

Gradient Descent – Non-Convex Optimization

• If the function is non-convex, gradient
descent will not necessarily find a global
minimum

• There are other, local minimums that it can
end up in

• Gradient („steepest”) descent is guaranteed
to end up in the closest local minimum
• Closest to the starting point

• Assuming a small enough step size

• Where we end up depends on the start

Gradient Descent – Non-Convex Optimization

• Most complex functions that we optimize in practice
are non-convex

• GD may not find the global minimum, but maybe
the local minimum it finds is good enough

• Improvement strategies
1. Multiple GD runs (from different initial points)

• Take the smallest of the local optima

• Computationally expensive (multiple optimizations)

2. Dynamic (adaptable) step size
• Not the same step size throughout the optimization

• Not necessarily the same step size for all parameters

• Several different adaptable GD variants
• AdaGrad, RMSProp, Adam

Gradient Ascent

• In each iteration GD moves the values of input variables (vector x =
[x1, x2, ..., xn]) in the direction of the gradient in the current point

x(k+1) = x(k) + η* ∇x f(x
(k))

• In practice, gradient ascent is rarely used (especially in AI)
• In machine learning we commonly compute error/loss functions (distance

between predictions and correct labels) which we minimize (so GD, not GA)

• Maximizing a function f is equivalent to minimizing -f

Gradient ascent (sometimes also called steepest ascent) is an iterative algorithm
for (continuous) optimization that finds a maximum of a (single) differentiable
concave function.

Gradient descent

Content

• Calculus Basics

• Gradient-Based Optimization
• Newton Method

• Gradient Descent

• Search-Based Optimization
• Genetic Algorithm for Numeric Optimization

Search-Based Optimization

• Gradient-based optimization applicable only for differentiable functions
• Q: What to do for non-differentiable or non-smooth functions (noisy gradients)?

• Q: What to do for numeric optimization with constraints?

• Depending on the nature of the function and constraints, there may be dedicated
optimization algorithms

• Search-based methods for numerical optimization
• Useful if we don’t have a good initial guess for good parameter values

• Good if function f to be optimized is not differentiable or not smooth or if the
function domain is discontinuous

• Easier to incorporate constraints than in gradient-based methods

• For optimization of unconstrained differentiable functions – slower and find worse
solutions than gradient-based optimization

Metaheuristics for Numerical Optimization

• Search-based methods for numerical optimization, some examples:
• Optimized Step Size Random Search (OSSRS)

• Symmetric Perturbation Stochastic Approximation (SPSA)

• Nelder-Mead Algorithm

• Nature inspired metaheuristics: Genetic Algorithm

• Genetic algorithms, which we’ve seen in discrete optimization can
also be leveraged for numerical (i.e., continuous) optimization
• Q: How to represent the chromosome?

• Q: what selection, crossover, and mutation strategies/operators to use?

Genetic Algorithm for Numerical Optimization

• Simplest case: one-parameter function, e.g., f(x) = 7x3 + 3x2 -15x + 21
• Chromosome must be some kind of encoding of the value of x
• If we have multiple parameters, chromosome = concatenation of encodings

• Binary encoding (binary chromosome)
• Vector of length N with binary values
• E.g., N = 10, [0, 1, 0, 1, 0, 0, 0, 1, 1, 0]
• Q: If we know that the domain of valid values for x is [a, b] what is the smallest

increment (change in value) of x that we can encode?

• If our vectors are of length N, then we can have at most 2N different vectors
• 2N different values for the variable x, on its domain range [a, b]

• So, the smallest „increment” in value change of x is (b – a) / 2N

Genetic Algorithm for Numerical Optimization

• Binary encoding (binary chromosome): example
• Single parameter (single value that we’re encoding)

• E.g., N = 10,

• Range of values (domain) for x: [-10, 10] (a = -10, b = 10)

• So, the smallest „increment” in value change of x is (b – a) / 2N

• Increment (precision): (10 – (-10)) / 210 = 20 / 1024 = 0.0195

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]→ -10

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]→ -10 + 0.0195 = -9.9805

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0]→ -9.9805 + 0.0195 = -9.961

...

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0]→ 10

Genetic Algorithm for Numerical Optimization

• The genetic algorithm itself is exactly
the same as in discrete optimization

• Fitness of the chromosome is the
actual value f(x) for the value x that
the chromosome encodes

• Selection
• tournament or rhoulette wheel

• Mutation
• Bit flipping (0 to 1 and vice versa)

genetic_algorithm(S,end)

p = create_init_population(S)

iter = 0

evaluate(p)

while not end(p, iter)

iter = iter + 1

p’ = recombine(p)

mutate(p’)

evaluate(p’)

p = select(p ∪ p’)

return p

Genetic Algorithm: Selection

• Roulette wheel (or proportional) selection: probability of being selected for
reproduction proportional to the fitness of the chromosome

P(Xi) = f(Xi) / σ𝑗
𝑆 f(Xj)

• Let us have a population of 5 chromosomes and let
• fit(X1) = 10, fit(X2) = 20, fit(X3) = 25, fit(X4) = 25, fit(X5) = 20 → convert into probabilities

• But if we’re doing numerical minimization then smaller values of f are better
• The fitness of the chromosome can then be fit(x) = fMAX – f(x)

• fMAX is the maximal value of the function we’re minimizing (on the domain of x)
• If we don’t know the actual max, it can be the smallest large value, such that fMAX – f(x) is not negative for any x

P(X1) P(X2) P(X3) P(X4) P(X5)

0 0.1 0.3 0.55 0.8 1

Genetic Algorithm: Recombination

• Common crossover operators
• Single-point crossover: select (typically randomly) the location at which to cut

the chromosomes and „exchange them” → two „child” chromosomes

• Unless we’re doing constrained optimization, resulting chromosomes are valid

[0, 1, 0, 1, 0, 0, 0, 1, 1, 1] [0, 1, 0, 1, 1, 0, 1, 0, 0, 1]

[1, 0, 1, 1, 1, 0, 1, 0, 0, 1] [1, 0, 1, 1, 0, 0, 0, 1, 1, 1]

• Mutation: flip the bit (0 → 1 or 1 → 0) randomly (with some small
mutation probability)

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и
тан

н
я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w
ọ
n

ib
e

er
e

?

ค ำถำม?

	Default Section
	Slide 1: Numerical Optimization Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Recap: Discrete Constrained Optimization
	Slide 4: Numerical Optimization
	Slide 5: Numerical Optimization
	Slide 6: Differentiable functions
	Slide 7: Optimum of a Differentiable Function
	Slide 8: Optimum of a Differentiable Function
	Slide 9: Differentiation & Optima: Example
	Slide 10: Content
	Slide 11: Newton’s Method
	Slide 12: Newton’s Method
	Slide 13: Newton’s Method: Example
	Slide 14: Newton’s Method
	Slide 15: Content
	Slide 16: Gradient Descent/Ascent
	Slide 17: Convex Functions
	Slide 18: Concave Functions
	Slide 19: Gradient Descent
	Slide 20: Gradient Descent – Properties
	Slide 21: Gradient Descent – Convergence
	Slide 22: Gradient Descent – Convergence
	Slide 23: Gradient Descent – Convergence
	Slide 24: Gradient Descent – Example
	Slide 25: Gradient Descent – Example
	Slide 26: Gradient Descent – Non-Convex Optimization
	Slide 27: Gradient Descent – Non-Convex Optimization
	Slide 28: Gradient Ascent
	Slide 29: Content
	Slide 30: Search-Based Optimization
	Slide 31: Metaheuristics for Numerical Optimization
	Slide 32: Genetic Algorithm for Numerical Optimization
	Slide 33: Genetic Algorithm for Numerical Optimization
	Slide 34: Genetic Algorithm for Numerical Optimization
	Slide 35: Genetic Algorithm: Selection
	Slide 36: Genetic Algorithm: Recombination
	Slide 37: Questions?

