
Expert Systems
Prof. Dr. Goran Glavaš

22.1.2024

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Knowledge-Based AI

• Expert Systems

• Inference

Based on the materials from Prof. Dr. Jan Šnajder:
https://www.fer.unizg.hr/_download/repository/AI-2022-08-ExpertSystems.pdf

https://www.fer.unizg.hr/_download/repository/AI-2022-08-ExpertSystems.pdf

Motivation: An Intelligent Agent

Image from Russel & Norving. Artificial Intelligence: A Modern Approach.

AI, Knowledge, and Reasoning

• Humans know things and what we know guides how we do things

• Human intelligence in big part stems from the ability to reason over
the internal representations of knowledge
• Reasoning: inference of new knowledge from existing knowledge

Knowledge-based AI is the body of work in AI that revolves around knowledge-based
agents which are equipped with two main components: (1) the knowledge base – a set
of „facts”, represented in a particular format, and (2) the reasoning engine/mechanism

– an algorithm or set of algorithms that allow for reasoning, i.e., induction of new
knowledge from existing knowledge

Knowledge-Based AI

Knowledge-Based AI

• Knowledge base: set of „facts” (sometimes called ”sentences”, but
not in a language sense)
• Axioms: facts taken as given and not derived from other facts

• Facts represented in a concrete knowledge representation language
• Knowledge-based AI is sometimes also called symbolic AI

• The KR language has a vocabulary – set of atomic elements of knowledge,
typically some kind of entities and relations between them

• Reasoning mechanism: a set of rules or operations that induce new
facts from the existing KB
• Or check if some proposed facts are consistent with KB, that is, can be

induced from the KB facts

Symbolism vs. Connectionism

• Traditional knowledge-based systems represent symbolic AI

• Symbolism is contrasted by connectionism

Knowledge about the external world can be represented with symbols. Inference
amounts to symbol manipulation. Intelligent behavior amounts to inference.

Symbolic AI / Symbolism

Mental states and behavior emerges from the interaction of a large number of
interconnected and simple processing units. An artificial neural network is a typical

example of the connectionist approach to AI.

Connectionist AI / Connectionism

Symbolism vs. Connectionism

• Symbolic AI is discrete and
inherently (human) interpretable
• Knowledge: given as a KB
• Inference: formal symbolic (rule-

based) reasoning over KB

• Connectionist (neural) AI is
continuous and (mostly) not human
interpretable
• Knowledge: learned from (large

amounts of) raw data
• Inference: computation in a

continuous representation space

Image from: Minsky, M. (1990). Logical vs. Analogical
or Symbolic vs. Connectionist or Neat vs. Scruffy.
Artificial Intelligence at MIT. Expanding Frontiers,
Patrick H. Winston (Ed.).

Some Knowledge Formalisms

• Propositional logic

• Predicate Logic

(aka First-Order Logic)

• Temporal Logic

• Description Logic

(basis of modern ontologies and

knowledge graphs)

• Fuzzy Logic

• Modal Logic

• Epistemic Logic

• ... Image from: https://sites.psu.edu/orenadamrcl/2012/09/30/rcl-4-logic-reduced/

https://sites.psu.edu/orenadamrcl/2012/09/30/rcl-4-logic-reduced/

Example: Propositional Logic

• Symbols of the propositional logic
• Propositional variables (vocabulary, atomic formulae): V = {A, B, C, ...}

• Each (A, B, ...) denotes one knowledge fact. For example, A = „penguins are birds”

• Logical operators (or connectives)
• Negation (¬), disjunction (OR, ∨), conjunction (AND, ∧)

• Implication (→), equivalence (↔)

• Logical (Boolean) constants True and False

• Parentheses („(” and „)”)

• Knowledge (KB) consists of formulae
• Each variable is a formula

• If F is a formula, then ¬F is also a formula

• If F and G are formulas, then F ∨ G, F ∧ G, F → G, F↔ G are also formulae

Example: Propositional Logic

• Reasoning: Based on the semantics of the logic operators
• Infer if a formula is True (T) or False (⊥) from the truth values of atoms

• Need semantics of the propositional logic

• New knowledge: logical consequence
• Formula G is a logical (semantic) consequence of formulae F1,...,Fn if and only

if every interpretation that satisfies F1 ∧ ··· ∧ Fn also satisfies G.

• In other words, if F1 ∧ ··· ∧ Fn → G is True for every intepretation

Example: Propositional Logic

Knowledge:

• Atoms: P = „Rain falls”; Q = „Cleaners hose the road”; R = „The road is wet”

• Formulas (KB):

• (P ∨ Q) → R („If rain falls or cleaners hose, the road becomes wet”)

• R („road is wet”)

• ¬P („the rain didn’t fall”)

• Logical inference:

• (((P ∨ Q) → R) ∧ R ∧ ¬P) → Q?

Content

• Knowledge-Based AI

• Expert Systems

• Inference

Expert Systems

• A symbolic AI paradigm for knowledge representation and reasoning

• Very popular in the 80s – originated from the idea that the majority of
human knowledge can be represented in the form of if-then rules

• „If patient’s temperature is above 38°C, medications that lower the body
temperature should be administered”

• „If the traffic light is red, then stop”

• First practically successul „AI technology”: machines giving an
impression of „analyzing and thinking”

General vs. Expert Knowledge

• Obviously, it is impossible to come up with exhaustive if-then rules for
all domains of human activity and knowledge

• Impossible to encode general knowledge with if-then rules

• Solution: narrow down the scope to a specific domain
• For example: medicine, finances, chess, ...

• Expert systems do not tackle general problem solving

Expert systems = Intellectual Cloning

• The overall intent behind expert systems is that
of intellectual cloning

• Find people that have a reasoning skill that is
important and rare
• Expert medical diagnostician
• Expert business analyst

• Analyze / extract their knowledge and reasoning
and try to embody them in a program
• In case of Expert Systems: as if-then rules

Knowledge base vs. Inference Engine

• Different expert systems have differing
representation technologies, but all have two
main architectural properties

1. Distinction between inference engine and
knowledge base

• IE retrieves rules from the KB

2. Use of declarative style representations
• Rules are data structures with their own

semantics, rather than part of the code
implementing the inference engine

Expert Systems shell

• Inference engine is decoupled from the knowledge base → the idea
is that IE can operate on any KB that is „plugged in”

• Expert system shell: a tool for building expert systems
• Inference engine

• Knowledge base editor

• User interface

• Explanation module

If-then rules

• Knowledge in ES is represented by the so-called production rules
• Essentially if-then rules

• If [condition/state/premise/antecedent]

then [action/conclusion/consequent]

• It’s quite reminiscent of implication in logic (A → B), but there are
two key differences
• In logic, implication is a formula and as such has a truth value

• The consequent in implication (B in A → B) is also a formula, whereas the
consequent in if-then rules of an ES are actions
• Asserting new facts but also

• Deleting facts, executing code, printing on screen, ...

Content

• Knowledge-Based AI

• Expert Systems

• Inference

Inference Components

• Working memory – part of the knowledge base that:
• Stores facts (i) added by the user before inference or (ii) new facts derived

during inference

• Does not store them permanently (akin to short-term memory in humans)

• Inference engine – a control mechanism carrying out the following:

• Matching – facts from the working memory need to be matched against the
left-hand side (LHS or condition) of the if-then rules

• Conflict resolution – if the working memory matches the LHS of more than
one rule, need to select one of the rules based on some criteria

• Rule application (aka „rule firing”) – executing the action specified by the
right-hand side of the rule whose LHS was matched

Inference cycle

Inference in Rule-Based Systems

• Establish a reasoning chain which is a sequence of conclusions that link the
starting condition to the solution of the problem
• The reasoning procedure is called chaining

• Forward chaining
• Starting with known data and advancing toward a conclusion
• To use: when there is a small amount of data and a large space of possible solutions

• Backward chaining
• Choosing a possible conclusion (hypothesis) and trying to prove that it is valid by

finding valid evidence
• To use: Not too many possible conclusions, the amount of known data is large

• Bidirectional inference
• Combines forward and backward chaining

Factorization –Variables and Values

• If-then rules in ES will operate on a set of variables, each with a domain
• Similar like in Discrete Optimization and Constraint Satisfaction

• The variables and their domains can be referred to as ontology of the
expert system
• O = X1, X2, ..., Xn ,

X1 ∈D1, X2 ∈ D2, ..., X2 ∈ Dn

• Rules format

• If Xi == xi and Xj == xj and ... and Xk == xk then Xm = xm

Example

• Knowledge base for determining type of fruit

• Ontology (variables and possible values):

• Shape: elongated | circular | rounded
• Surface: smooth | coarse
• Color: green | yellow | brown-yellow |

red | blue | orange
• No. seeds: 0 | 1 | >1
• Seed type: multiple | bony
• Diameter: <10cm | >10cm
• Fruit type: vine | tree
• Fruit: banana | watermelon | cantaloupe | apple | appricot |

cherry | peach | plum | orange

Example

• Knowledge base for determining type of fruit

• If-then rules

• R1: IF Shape = elongated & Color = green | yellow THEN Fruit = banana

• R2: IF Shape = circular | rounded & Diameter = >10cm THEN Fruit Type = vine

• R3: IF Shape = circular & Diameter = <10cm THEN Fruit Type = tree

• R4: IF No. Seeds = 1 THEN Seed Type = bony

• R5: IF No. Seeds = >1 THEN Seed Type = multiple

• R6: IF Fruit type = vine & Color = green THEN Fruit = watermelon

• R7: IF Fruit type = vine & Color = yellow & Surface = smooth

THEN Fruit = melon

Example

• R8: IF Fruit type = vine & Color = brown-yellow & Surface = course
THEN Fruit = cantaloupe

• R9: IF Fruit type = tree & Color = orange & Seed Type = bony
THEN Fruit = apricot

• R10: IF Fruit type = tree & Color = orange & Seed Type = multiple
THEN Fruit = orange

• R11: IF Fruit type = tree & Color = red & Seed Type = bony
THEN Fruit = cherry

• R12: IF Fruit type = tree & Color = orange & Seed Type = bony
THEN Fruit = peach

• R13: IF Fruit type = tree & Color = yellow | green & Seed Type = multiple
THEN Fruit = apple

• R14: IF Fruit type = tree & Color = blue & Seed Type = bony
THEN Fruit = plum

Forward Chaining: Example

• Input (known) data:
• Diameter = 2cm (<10cm), Shape: circular, No. seeds: 1, Color: red

• Conflict resolution: take the rule with smaller number

Step Working memory Conflicting rules Rule that fires

0 Diameter = <10cm
Shape = circular
No. seeds = 1
Color = red

R3, R4 R3
(smaller number)

1 + Fruit Type = tree R3, R4 R4

2 + Seed Type = bony R3, R4, R11 R11

3 + Fruit = cherry R3, R4, R11 DONE

Backward Chaining

• Starts with a desired goal (hypothesis) and determines whether the
existing facts support proving the goal

• Start with an empty list of facts, the goal variable is given
• We start from all rules that assign a value to the goal variable, and check

what is on the LHS

• If on LHS we have a variable for which we don’t have the value yet either, we
try to infer it → look for all rules with that variable on LHS, etc.

• Last in first out principle of trying to figure out values for variables
• Q: Which data structure do we need then?

Backward Chaining: Steps

Step 1. Put the goal variable onto the (empty) stack

Step 2. Top of stack always the variable for which we need to find the
value. Find all rules with the variable from the stack top on RHS

• If no rule has the stack-top variable on the RHS, ask the user

Step 3. For each such rule:
3a. If LHS satisfied (all variables have correct values in WM),

- apply the rule (place the RHS variable and value into WM)
- remove the curent goal from the stack,
- continue from Step 2

Backward Chaining: Steps

Step 1. Put the goal variable onto the (empty) stack

Step 2. Top of stack always the variable for which we need to find the
value. Find all rules with the variable from the stack top on RHS

• If no rule has the stack-top variable on the RHS, ask the user

Step 3. For each such rule:
3b. If LHS not satisfied because of different value of some

variable compared to WM, do not apply the rule
3c. If LHS not satisfied because the value of some variable is not

in WM at all, then add that variable to the stack

Backward Chaining: Example

• Our fruit example → the goal variable is fruit

Step Stack Working memory Conflicting rules Action

0 Fruit R1, R6, R8, R9, R10,
R11, R12, R13, R14

Shape (LHS of R1) not in WM and not
on RHS of any rule, ask user

1 Fruit Shape = circular R6, R8, R9, R10, R11,
R12, R13, R14

Fruit Type (LHS of R6) not in WM but
exists on RHS of rules, add to stack

2 Fruit Type
Fruit

Shape = circular R2, R3
(Fruit Type on RHS)

Diameter (LHS of R2) not in WM and
not on RHS of any rule, ask user

3 Fruit Type
Fruit

Shape = circular
Diameter = <10cm

R3 LHS of R3 is satisfied (all variables
with correct values in WM), add RHS

to WM and pop the stack

Backward Chaining: Example

Step Stack Working memory Conflicting rules Action

4 Fruit Shape = circular
Diameter = <10cm
Fruit Type = tree

R6, R8, R9, R10, R11,
R12, R13, R14

The LHS of R6 is in conflict with WM,
proceed to next rule

5 Fruit Shape = circular
Diameter = <10cm
Fruit Type = tree

R8, R9, R10, R11,
R12, R13, R14

The LHS of R8 is in conflict with WM,
proceed to next rule

6 Fruit Shape = circular
Diameter = <10cm
Fruit Type = tree

R9, R10, R11, R12,
R13, R14

The LHS of R9 has Color which is not
in WM, and not in RHS of any rule,

ask user

7 Fruit Shape = circular
Diameter = <10cm
Fruit Type = tree
Color = red

R11 The LHS or R11 has Seed Type which
is not in WM but exists in RHS of

another rule, push Seed Type to stack

Backward Chaining: Example

Step Stack Working memory Conflicting rules Action

8 Seed Type
Fruit

Shape = circular
Diameter = <10cm
Fruit Type = tree
Color = red

R4, R5 R4 has No. Seeds on LHS, which we
don’t have in WM nor do we have any

rules with it on RHS, ask user

9 Seed Type
Fruit

Shape = circular
Diameter = <10cm
Fruit Type = tree
Color = red
No. Seeds = 1

R4, R5 LHS of R4 is satisfied, we add the RHS
to WM and pop the stack

10 Fruit Shape = circular
Diameter = <10cm
Fruit Type = tree
Color = red
No. Seeds = 1
Seed Type = bony

R11 LHS of R11 is satisfied, add the RHS
(Fruit = cherry) to WM and pop the

stack → stack will be empty → DONE

Backward Chaining: Algorithm

• Let’s write the pseudocode for backward chaining, using appropriate
data structures and in a modular fashion!

• Data structures:
• Q: How to represent the ontology (variables and allowed values for each)?
• Q: How to represent the working memory?
• Q: How would you represent a rule?

• Ontology and rules are static
• Working memory changes, but can only grow

• And we know its maximal size (number of variables) in advance

• A lot of „reading” into all three, not much writing
• No similarity or neighbourhood required (min, max, previous, next, ...)

Backward Chaining: Algorithm

• Ontology
• hash table of hash tables
• Keys: variables, Values: hash table with

allowed values for the variable
• When user provides a value, we need to

check if it’s allowed for the variable

• Rule: has LHS and RHS, assume RHS
always has only one variable
• LHS: hash table (Key: variable, Value: value)
• RHS: pair (tuple) – variable, value

• Working Memory: hash table

value_valid(ont, var, val)

vals = ont[var]

if val in vals # hashtable lookup

return True

else

return False

rule_status(rule, wm)

for var in rule.LHS

if var not in wm

return var # not in wm

elif rule.LHS[var] ≠ wm[var]

return False # in wm, wrong val

return True

apply_rule(rule, wm)

var = rule.RHS.var

val = rule.RHS.val

wm[var] = val

Backward Chaining: Algorithm

• Execution stack
• Function peek just reads the value from the

top, without removing it

• This basic variant of the algorithm is
quite inefficient
• Q: How would you speed it up?

• Q: how would you implement
backchaining without (an explicit) stack?

backward_chain(ont, rules, goal)

s = [] # empty stack

s.push(goal)

wm = {} # empty hash table

while not s.is_empty()

goal = s.peek()

matches = find_rules(rules, goal)

if len(matches) == 0 # no rule with stack-top variable on RHS

val = ask_user(goal)

if value_valid(ont, val, goal)

wm[goal] = val

else

return „error”

for m in matches

status = rule_status(m, wm)

if status == True # LHS satisfied

apply_rule(m, wm) # RHS added to wm

s.pop()

break

elif status == False # LHS in conflict with wm

continue

else # status is a variable not in wm

s.push(status)

break

return wm[goal]

find_rules(rules, goal)

matches = []

for rule in rules

if rule.RHS.var == goal

matches.append(rule)

return matches

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и
тан

н
я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w
ọ
n

ib
e

er
e

?

ค ำถำม?

	Default Section
	Slide 1: Expert Systems Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Motivation: An Intelligent Agent
	Slide 4: AI, Knowledge, and Reasoning
	Slide 5: Knowledge-Based AI
	Slide 6: Symbolism vs. Connectionism
	Slide 7: Symbolism vs. Connectionism
	Slide 8: Some Knowledge Formalisms
	Slide 9: Example: Propositional Logic
	Slide 10: Example: Propositional Logic
	Slide 11: Example: Propositional Logic
	Slide 12: Content
	Slide 13: Expert Systems
	Slide 14: General vs. Expert Knowledge
	Slide 15: Expert systems = Intellectual Cloning
	Slide 16: Knowledge base vs. Inference Engine
	Slide 17: Expert Systems shell
	Slide 18: If-then rules
	Slide 19: Content
	Slide 20: Inference Components
	Slide 21: Inference cycle
	Slide 22: Inference in Rule-Based Systems
	Slide 23: Factorization –Variables and Values
	Slide 24: Example
	Slide 25: Example
	Slide 26: Example
	Slide 27: Forward Chaining: Example
	Slide 28: Backward Chaining
	Slide 29: Backward Chaining: Steps
	Slide 30: Backward Chaining: Steps
	Slide 31: Backward Chaining: Example
	Slide 32: Backward Chaining: Example
	Slide 33: Backward Chaining: Example
	Slide 34: Backward Chaining: Algorithm
	Slide 35: Backward Chaining: Algorithm
	Slide 36: Backward Chaining: Algorithm
	Slide 37: Questions?

