
Algorithmen, KI & Data Science 1

Winter semester 2023/24

Prof. Dr. Goran Glavaš,
M.Sc. Fabian David Schmidt
M.Sc. Benedikt Ebing
Lecture Chair XII for Natural Language Processing, Universität Würzburg

8. Exercise for “Algorithmen, KI & Data Science 1”

1 Adversarial State Space Search

1. Define the tic-tac-toe game as adversarial state space search problem giving the (a)
initial state, (b) successor function, (c) terminal function, and (d) payoff function.

(a) Initial state s0: matrix A3×3, where each element is 0

(b) Successor function succ(s): if s is a max node: change any element of A
that is equal to 0 to 1, else (s is a min node) change any element of A that is
equal to 0 to −1

(c) Terminal function terminal(s): if sum over rows, columns or diagonals
equals to 3 or −3 OR no more 0 elements in A return true, else false

(d) Utility function: utility(s): if sum over rows, columns or diagonals equals
to 3 return 1, elif sum over rows, columns or diagonals equals to −3 return
−1, else return 0

2. How might the actual utility of player MAX change compared to its expected
utility ((a) increase, (b) decrease, or (c) stay the same), if MAX follows the optimal
strategy (MINMAX-method), but MIN does not (e.g., MIN chooses randomly).
Give an example game tree or argue why an option is not possible.

Optimal strategy: Maximizing the worst-case utility

(a) Increase: Possible because MIN might make a move that is not optimal. In
the example in lecture 16, slide 10, MIN might randomly choose the left
most transition resulting in utility 3 for MAX.

1



(b) Decrease: Not possible because MAX is already maximizing the worst-case
utility.

(c) Stay the same: Possible because MIN might randomly make the optimal
moves (e.g., lecture 16, slide 10)

3. Does the number of pruned nodes in alpha-beta pruning depend on the ordering of
explored successor states? Explain.

Yes, it does. Let’s assume we prune below a MIN node and the root is a MAX
node. We traverse the children of a node from left to right and only the rightmost
node is smaller than alpha. In that case, we would need to traverse all nodes. If
the depth of the tree is 2 nothing is pruned. In contrast, if the leftmost node is
smaller than alpha, we can immediately prune the whole subtree (see lecture 16,
slide 20).

4. How could you improve the ordering/selection of successor nodes such that alpha-
beta pruning becomes more efficient (i.e., prunes more nodes)?

a) Keep track of already explored states and their best successor (is infeasible
for large state spaces)

b) First explore successful moves in other branches of same depth (e.g., in the
first branch you detected that marking the center of tic-tac-toe is successful.
Therefore, you try it first in other branches of the tree)

c) Use domain knowledge to order the moves (e.g., experts tell you to always
mark the center in tic-tac-toe, if possible)

5. Implement the ticTacToe class in the given .ipynb. The class represents a tic-
tac-toe game. Given a state s it should return the best possible next move. The
state s is represented as a 3 × 3 matrix, where an empty field is represented by
0, an "X" is represented by 1, and "O" is represented by −1. The two players
are "MAX" (using "Xs" or 1s) and "MIN" (using "O" or −1s). Implement the
following methods:

a) Player function player(s): Given a state s return whose turn is next (either
"MAX" or "MIN"). Assume that from the initial state MAX always makes
the first move.

b) Successor function succ(s): Given a state s return the set of possible succes-

2



sor states.

c) Winner function winner(s): Given a state s return False if no one has won
yet or the name of the player (either "MAX" or "MIN") otherwise.

d) Terminal function terminal(s): Given a state s return True if the state is
terminal and False otherwise.

e) Utility function utility(s): Given a state s return 1 if "MAX" wins, -1 if
"MIN" wins or 0 otherwise

f) Max value function max_val(s): Given a state s return the maximum of all
minimum values (pseudocode in lecture 16, slide 12)

g) Max value function min_val(s): Given a state s return the minimum of all
maximum values (pseudocode in lecture 16, slide 12)

h) Minmax function minmax(s): Given a state s return False if the game
ended without winner, return the winner if there is one or return the best
possible next state.

3


	Adversarial State Space Search

