Seven Years Later..

Generic Associated Types in Rust

Tim Hegemann
17. Januar 2024

Lightning Talks

Gener1ics

trait Iterator<T> {
fn next(&mut self) -> Option<T>;

}

trait Iterator<T> {
fn next(&mut self) -> Option<T>;

}

struct Iter<'c, T> {
data: &'c [T],
}

trait Iterator<T> {
fn next(&mut self) -> Option<T>;

}

struct Iter<'c, T> {
data: &'c [T],
}

impl<'c, T> Iterator<&'c T> for Iter<'c, T> {
fn next(smut self) -> Option<&'c T> {
if let Some((prefix_elem, suffix)) = self.data.split_first() {
self.data = suffix;
Some(prefix_elem)
} else {
None
}
}
} 2

fn count<T>(mut iter: impl Iterator<T>) -> usize {
let mut cnt = 0;
while let Some(_) = iter.next() {
cnt += 1;
}

cnt

fn count<T>(mut iter: impl Iterator<T>) -> usize {
let mut cnt = 0;
while let Some(_) = iter.next() {
cnt += 1;
}
cnt

}

fn main() {
let xs = vec![1, 2, 3, 4, 5];
println!("number of items: {}", count(Iter { data: &xs }));

}

fn count<T>(mut iter: impl Iterator<T>) -> usize {
let mut cnt = 0;
while let Some(_) = iter.next() {
cnt += 1;
}
cnt

}

fn main() {

let xs = vec![1, 2, 3, 4, 5];

println!("number of items: {}", count(Iter { data: &xs }));
}

> number of items: 5

Associlated Types

Iterator 2.0

trait Iterator {

type Item;

fn next(smut self) -> Option<Self::Item>;
}

Iterator 2.0

trait Iterator {

type Item;

fn next(smut self) -> Option<Self::Item>;
}

struct Iter<'c, T> {
data: &'c [T],
}

impl<'c, T> Iterator for Iter<'c, T> {
type Item = &'c T;
fn next(smut self) -> Option<Self::Item> {
//
}
}

Count 2.0

fn count(mut iter: impl Iterator) -> usize {
let mut cnt = 0;
while let Some(_) = iter.next() {
cnt += 1;
}

cnt

Interlude

let xs = vec![1, 2, 3, 4, 5];

for win in xs.windows(3) {
println!("{:?}", win);

}

let xs = vec![1, 2, 3, 4, 5];

for win in xs.windows(3) {
println!("{:?}", win);

}

A\

[1, 2, 3]
[2, 3, 4]
[3, 4, 5]

vV Vv

let xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

for win in xs.windows(3) {
if let [a, b, c] = win {
println!("{}", (a + b + ¢c) / 3.0)
}
}

let xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

for win in xs.windows(3) {
if let [a, b, c] = win {
println!("{}", (a + b + ¢c) / 3.0)
}
}

> 4.366666666666666
> 4.2
> 4.6000000000000005

Write Back

for win in xs.windows(3) {
if let [a, b, c] = win {
*a = (a+b+c)/ 3.0;
}
}

Write Back

for win in xs.windows(3) {
if let [a, b, c] = win {
*a = (a+b+c)/ 3.0

}

error[E0594]: cannot assign to “%a , which is behind a “& reference
--> src/main.rs:6:13
|
6 | *a = (a+b+c)/ 3.0

| ANNNNANAANANNNNNANAANANNNNNANAAN ~a~ . \8\

1s a reference, so the data

it refers to cannot be written

Write Back

for win in xs.windows mut(3) {
if let [a, b, c] = win {
*a = (a+b+c)/ 3.0;
}
}

Write Back

for win in xs.windows mut(3) {
if let [a, b, c] = win {
*a = (a+b+c)/ 3.0;
}
}

error[E0599]: no method named “windows_mut”~ found for struct
7 “Vec<{float}>" 1in the current scope
--> src/main.rs:4:19

4 for win in xs.windows_mut(3) {

|
| NARNAANANAR help: there 1s a method with a similar
7 name: “windows"

How Hard Can It Be?

10

How Hard Can It Be?

struct WindowsMut<'t, T> {
slice: &'t mut [T],
start: usize,
window_size: usize,

}

10

How Hard Can It Be?

struct WindowsMut<'t, T> {
slice: &'t mut [T],
start: usize,
window_size: usize,

}

impl<'t, T> Iterator for WindowsMut<'t, T> {
type Item = &'t mut [T];

fn next(smut self) -> Option<Self::Item> {
let res =
self.slice[self.start..].get_mut(..self.window_size)?;
self.start += 1;
Some(res)
}
}

10

How Hard Can It Be?

let mut xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

let mut xs_windows_mut = WindowsMut {
slice: &mut xs,
start: 0,
window_size: 3,

Jof
for win in xs_windows _mut {

if let [a, b, c] = win {
*a = (*xa + *b + *c) / 3.0;

11

Does It Compile?

12

Does It Compile?

error: lifetime may not live long enough
--> src/main.rs:14:9
I
8 | impl<'t, T> Iterator for WindowsMut<'t, T> {
| -- lifetime *'t° defined here
11 | fn next(&mut self) -> Option<Self::Item> {
| - let's call the lifetime of this reference "'1°

14 | Some(retval)

| ANNNNAANAANANANNANNANAN

— S

method was supposed to return data with lifetime
but it 1s returning data with lifetime ~'1°

12

Does It Compile?

Lifetime 't

call next
Lifetime '1

call next again
Lifetime '2

13

Generic Associlated Types

Lending Iterator

trait LendingIterator {
type Item<'a> where Self: 'a;
fn next<'a>(&'a mut self) -> Option<Self::Item<'a>>;

}

14

Lending Iterator

trait LendingIterator {
type Item<'a> where Self: 'a;
fn next<'a>(&'a mut self) -> Option<Self::Item<'a>>;

}

impl<'t, T> LendingIterator for WindowsMut<'t, T> {
type Item<'a> = &'a mut [T] where Self: 'a;

fn next<'a>(&'a mut self) -> Option<Self::Item<'a>> {
let res =
self.slice[self.start..].get_mut(..self.window_size)?;
self.start += 1;
Some(res)
}
}

14

Lending Iterator

let mut xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

let mut xs_windows_mut = WindowsMut {
slice: &mut xs,
start: 0,
window_size: 3,

¥

while let Some([a, b, c]) =
*a = (xa + *b + *c) / 3.0;

}

xs_windows_mut.next() {

15

Lending Iterator

let mut xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

let mut xs_windows_mut = WindowsMut {
slice: &mut xs,
start: 0,
window_size: 3,

¥

while let Some([a, b, c]) = xs_windows_mut.next() {
*a = (xa + *b + *c) / 3.0;

}
println!("{:?}", xs);

> [4.366666666666666, 4.2, 4.6000000000000005, 2.6, 5.3]

15

