
Seven Years Later…
Generic Associated Types in Rust

Tim Hegemann
17. Januar 2024
Lightning Talks

1

Generics

1

Iterator

trait Iterator<T> {
fn next(&mut self) -> Option<T>;

}

struct Iter<'c, T> {
data: &'c [T],

}
impl<'c, T> Iterator<&'c T> for Iter<'c, T> {

fn next(&mut self) -> Option<&'c T> {
if let Some((prefix_elem, suffix)) = self.data.split_first() {

self.data = suffix;
Some(prefix_elem)

} else {
None

}
}

}

2

Iterator

trait Iterator<T> {
fn next(&mut self) -> Option<T>;

}
struct Iter<'c, T> {

data: &'c [T],
}

impl<'c, T> Iterator<&'c T> for Iter<'c, T> {
fn next(&mut self) -> Option<&'c T> {

if let Some((prefix_elem, suffix)) = self.data.split_first() {
self.data = suffix;
Some(prefix_elem)

} else {
None

}
}

}

2

Iterator

trait Iterator<T> {
fn next(&mut self) -> Option<T>;

}
struct Iter<'c, T> {

data: &'c [T],
}
impl<'c, T> Iterator<&'c T> for Iter<'c, T> {

fn next(&mut self) -> Option<&'c T> {
if let Some((prefix_elem, suffix)) = self.data.split_first() {

self.data = suffix;
Some(prefix_elem)

} else {
None

}
}

} 2

Count

fn count<T>(mut iter: impl Iterator<T>) -> usize {
let mut cnt = 0;
while let Some(_) = iter.next() {

cnt += 1;
}
cnt

}

fn main() {
let xs = vec![1, 2, 3, 4, 5];
println!("number of items: {}", count(Iter { data: &xs }));

}

> number of items: 5

3

Count

fn count<T>(mut iter: impl Iterator<T>) -> usize {
let mut cnt = 0;
while let Some(_) = iter.next() {

cnt += 1;
}
cnt

}

fn main() {
let xs = vec![1, 2, 3, 4, 5];
println!("number of items: {}", count(Iter { data: &xs }));

}

> number of items: 5

3

Count

fn count<T>(mut iter: impl Iterator<T>) -> usize {
let mut cnt = 0;
while let Some(_) = iter.next() {

cnt += 1;
}
cnt

}

fn main() {
let xs = vec![1, 2, 3, 4, 5];
println!("number of items: {}", count(Iter { data: &xs }));

}

> number of items: 5

3

Associated Types

3

Iterator 2.0

trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;

}

struct Iter<'c, T> {
data: &'c [T],

}

impl<'c, T> Iterator for Iter<'c, T> {
type Item = &'c T;
fn next(&mut self) -> Option<Self::Item> {

// ...
}

}

4

Iterator 2.0

trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;

}

struct Iter<'c, T> {
data: &'c [T],

}

impl<'c, T> Iterator for Iter<'c, T> {
type Item = &'c T;
fn next(&mut self) -> Option<Self::Item> {

// ...
}

}

4

Count 2.0

fn count(mut iter: impl Iterator) -> usize {
let mut cnt = 0;
while let Some(_) = iter.next() {

cnt += 1;
}
cnt

}

5

Interlude

5

Windows

let xs = vec![1, 2, 3, 4, 5];

for win in xs.windows(3) {
println!("{:?}", win);

}

> [1, 2, 3]
> [2, 3, 4]
> [3, 4, 5]

6

Windows

let xs = vec![1, 2, 3, 4, 5];

for win in xs.windows(3) {
println!("{:?}", win);

}

> [1, 2, 3]
> [2, 3, 4]
> [3, 4, 5]

6

Windows

let xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

for win in xs.windows(3) {
if let [a, b, c] = win {

println!("{}", (a + b + c) / 3.0)
}

}

> 4.366666666666666
> 4.2
> 4.6000000000000005

7

Windows

let xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

for win in xs.windows(3) {
if let [a, b, c] = win {

println!("{}", (a + b + c) / 3.0)
}

}

> 4.366666666666666
> 4.2
> 4.6000000000000005

7

Write Back

for win in xs.windows(3) {
if let [a, b, c] = win {

*a = (a + b + c) / 3.0;
}

}

error[E0594]: cannot assign to `*a`, which is behind a `&` reference
--> src/main.rs:6:13
|

6 | *a = (a + b + c) / 3.0;
| ^^^^^^^^^^^^^^^^^^^^^^ `a` is a `&` reference, so the data

it refers to cannot be written↪→

8

Write Back

for win in xs.windows(3) {
if let [a, b, c] = win {

*a = (a + b + c) / 3.0;
}

}

error[E0594]: cannot assign to `*a`, which is behind a `&` reference
--> src/main.rs:6:13
|

6 | *a = (a + b + c) / 3.0;
| ^^^^^^^^^^^^^^^^^^^^^^ `a` is a `&` reference, so the data

it refers to cannot be written↪→

8

Write Back

for win in xs.windows_mut(3) {
if let [a, b, c] = win {

*a = (a + b + c) / 3.0;
}

}

error[E0599]: no method named `windows_mut` found for struct
`Vec<{float}>` in the current scope↪→

--> src/main.rs:4:19
|

4 | for win in xs.windows_mut(3) {
| ^^^^^^^^^^^ help: there is a method with a similar

name: `windows`↪→

9

Write Back

for win in xs.windows_mut(3) {
if let [a, b, c] = win {

*a = (a + b + c) / 3.0;
}

}

error[E0599]: no method named `windows_mut` found for struct
`Vec<{float}>` in the current scope↪→

--> src/main.rs:4:19
|

4 | for win in xs.windows_mut(3) {
| ^^^^^^^^^^^ help: there is a method with a similar

name: `windows`↪→

9

How Hard Can It Be?

struct WindowsMut<'t, T> {
slice: &'t mut [T],
start: usize,
window_size: usize,

}
impl<'t, T> Iterator for WindowsMut<'t, T> {

type Item = &'t mut [T];

fn next(&mut self) -> Option<Self::Item> {
let res =

self.slice[self.start..].get_mut(..self.window_size)?;
self.start += 1;
Some(res)

}
}

10

How Hard Can It Be?

struct WindowsMut<'t, T> {
slice: &'t mut [T],
start: usize,
window_size: usize,

}

impl<'t, T> Iterator for WindowsMut<'t, T> {
type Item = &'t mut [T];

fn next(&mut self) -> Option<Self::Item> {
let res =

self.slice[self.start..].get_mut(..self.window_size)?;
self.start += 1;
Some(res)

}
}

10

How Hard Can It Be?

struct WindowsMut<'t, T> {
slice: &'t mut [T],
start: usize,
window_size: usize,

}
impl<'t, T> Iterator for WindowsMut<'t, T> {

type Item = &'t mut [T];

fn next(&mut self) -> Option<Self::Item> {
let res =

self.slice[self.start..].get_mut(..self.window_size)?;
self.start += 1;
Some(res)

}
}

10

How Hard Can It Be?

let mut xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

let mut xs_windows_mut = WindowsMut {
slice: &mut xs,
start: 0,
window_size: 3,

};

for win in xs_windows_mut {
if let [a, b, c] = win {

*a = (*a + *b + *c) / 3.0;
}

}

11

Does It Compile?

error: lifetime may not live long enough
--> src/main.rs:14:9
|

8 | impl<'t, T> Iterator for WindowsMut<'t, T> {
| -- lifetime `'t` defined here

...
11 | fn next(&mut self) -> Option<Self::Item> {

| - let's call the lifetime of this reference `'1`
...
14 | Some(retval)

| ^^^^^^^^^^^^ method was supposed to return data with lifetime
`'t` but it is returning data with lifetime `'1`↪→

12

Does It Compile?

error: lifetime may not live long enough
--> src/main.rs:14:9
|

8 | impl<'t, T> Iterator for WindowsMut<'t, T> {
| -- lifetime `'t` defined here

...
11 | fn next(&mut self) -> Option<Self::Item> {

| - let's call the lifetime of this reference `'1`
...
14 | Some(retval)

| ^^^^^^^^^^^^ method was supposed to return data with lifetime
`'t` but it is returning data with lifetime `'1`↪→

12

Does It Compile?

Lifetime 't
|--|

call next
Lifetime '1

|-------|

call next again
Lifetime '2

|-------------|

13

Generic Associated Types

13

Lending Iterator

trait LendingIterator {
type Item<'a> where Self: 'a;
fn next<'a>(&'a mut self) -> Option<Self::Item<'a>>;

}

impl<'t, T> LendingIterator for WindowsMut<'t, T> {
type Item<'a> = &'a mut [T] where Self: 'a;

fn next<'a>(&'a mut self) -> Option<Self::Item<'a>> {
let res =

self.slice[self.start..].get_mut(..self.window_size)?;
self.start += 1;
Some(res)

}
}

14

Lending Iterator

trait LendingIterator {
type Item<'a> where Self: 'a;
fn next<'a>(&'a mut self) -> Option<Self::Item<'a>>;

}

impl<'t, T> LendingIterator for WindowsMut<'t, T> {
type Item<'a> = &'a mut [T] where Self: 'a;

fn next<'a>(&'a mut self) -> Option<Self::Item<'a>> {
let res =

self.slice[self.start..].get_mut(..self.window_size)?;
self.start += 1;
Some(res)

}
}

14

Lending Iterator

let mut xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

let mut xs_windows_mut = WindowsMut {
slice: &mut xs,
start: 0,
window_size: 3,

};

while let Some([a, b, c]) = xs_windows_mut.next() {
*a = (*a + *b + *c) / 3.0;

}

println!("{:?}", xs);

> [4.366666666666666, 4.2, 4.6000000000000005, 2.6, 5.3]

15

Lending Iterator

let mut xs = vec![3.1, 4.1, 5.9, 2.6, 5.3];

let mut xs_windows_mut = WindowsMut {
slice: &mut xs,
start: 0,
window_size: 3,

};

while let Some([a, b, c]) = xs_windows_mut.next() {
*a = (*a + *b + *c) / 3.0;

}

println!("{:?}", xs);

> [4.366666666666666, 4.2, 4.6000000000000005, 2.6, 5.3]

15

