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Recap: State Space Search

• We will denote the set of all states (state space) with S
• The state space is commonly so large that we can’t iteratively list all states

• All states in the space are not really „known” in advance

• When in state s, we typically only then compute the set of possible next states

A state space search problem is defined with a triple (s0, succ, goal) where s0 ∈ S is the 
initial state, succ: S →℘(S) is the successor function that for some state s returns a set 

of states that we can transition to from s, and goal: S → {True, False} is a predicate
(function that returns a boolean value) that for a given state s determines if s is a goal 
state or not (there can be multiple states that satisfy the goal predicate). A state space 

search (typically) ends as soon as any goal state is found. 

State space search



Discrete (Constrained) Optimization

• Optimal state (or the state with the best f that was found) is the solution

• No path between start and goal state – often there isn’t a clear start state

• We’re not making moves like in classic SSS problems, just searching for the best 
possible solution over a very large space of candidate solutions

In discrete constrained optimization, we search for an optimal state in large space of 
possible states. Each state X can be seen as consisting of n variables X = x1, x2, ..., xn, each 

with a corresponding domain D1, D2, ..., Dn ⊆ ℤ (whole numbers). The optimal state is 
the one that maximizes/minimizes the objective function f: D1 × ··· × Dn → ℝ. Finally, the 

constraints C1, ..., Cm, with Ci⊆ D1, D2, ..., Dn define the subsets of the state space that 
encompass valid solutions to the problem

Discrete Constrained Optimization Problems



Recap: State Space Search & Discrete Optimization

• State Space Search
• Goal states represent a very small portion of the states in the search space
• Only paths that reach one of goal states are (candidate) solutions
• Explicit transitions between the states (succ function)
• Problem: how to get to a goal state with minimal cost/maximal gain

• Discrete Constrained Optimization
• Every state represents one candidate solution to the problem
• Each state (candidate solution) has a measure of ”quality” – the objective 

function f – assigned to it
• No explicit „start state” nor „state transitions” – instead neighbourhood (or 

distance) between states (but no in the sense of transition cost)
• Problem: how to find the state with minimal/maximal value of the objective f



Recap: Heuristics

• If we have a (vague) idea in which direction to look for the solution, 
why not use this information to improve the search?

• Heuristics = problem-specific rules („vague ideas”) about the nature 
of the problem
• Purpose: direct the search towards the goal so it becomes more efficient

Heuristic function h: S → ℝ+ assigns to each state s ∈ S an estimate of the distance 
between that state and the goal state

Heuristic function



Recap: Metaheuristics

• Metaheuristics strategies guide the search process
• Direct the search (selection of next states to evaluate) so that the chances of finding a good 

(or near-optimal) state increase 

• They are approximate – no guarantee of finding an optimal solution

• Most commonly, they are also non-deterministic (and most often stochastic) –
there is randomness involved

• Metaheuristics are problem-agnostic, but may use problem-specific heuristics as 
part of the strategy (but as „black boxes”, without caring what they are)



Constraint Satisfaction Problem: Example

• We can represent the map as a 
graph – one region, one node

• If regions are neighbours –
establish an edge between the 
corresponding graph nodes

We’re given a map consisting of N regions, we need to color each region with one of M
colors but so that neighbouring regions always have different colors

Map Coloring Problem

Image from: https://www.researchgate.net/figure/An-example-of-graph-coloring-
problem_fig2_325808704

https://www.researchgate.net/figure/An-example-of-graph-coloring-problem_fig2_325808704


Constraint Satisfaction Problem: Example

• One state (potential solution): 
one (any) coloring of the graph 

• Many (most) of all possible 
colorings will violate the 
constraint(s)
• Key: No point in further searching 

from those partial states that 
violate constraints

We’re given a map consisting of N regions, we need to color each region with one of M
colors but so that neighbouring regions always have different colors

Map Coloring Problem

Image from: https://www.researchgate.net/figure/An-example-of-graph-coloring-
problem_fig2_325808704

https://www.researchgate.net/figure/An-example-of-graph-coloring-problem_fig2_325808704


Constraint Satisfaction Problem

Constraint satisfaction problems (CSP) are search problems where we search for a state 
X that can be factored into n variables X = x1, x2, ..., xn, each with a corresponding 

domain D1, D2, ..., Dn ⊆ ℤ (whole numbers), which satisifes the (set of) constraints C. 
Unlike in discrete constrained optimization, in CSP we search through the states that 

represent partial solutions to the problem, that is, where only a subset of the variables 
x1, x2, ..., xn has been assigned a value. The key property of the CSPs is that a partial 
solution that violates the constraints cannot be part of the goal state/solution. This 

allows to simply discard large portions of the state space during the search. 

Constraint Satisfaction Problems

• In a sense, we’re incrementally constructing a solution and backtrack
everytime the partial solution we built violates the constraints.



Constraint Satisfaction Problem: Example

• Initial state s0 = no colored nodes

• States that we „transition” to – one node 
colored (value fixed for one variable xi)
• WA colored red / blue / green (3 different states)
• NT colored red / blue / green (3 different states)
• SA colored red / blue / green (3 different states)
• ...

• We can just pick any to start with
• A particular value for a single variable xi cannot 

break the constraints, only in relation to values of 
other variables xj



Constraint Satisfaction Problem: Example

• Generally, a state s is a partial assignment of 
values to some subset of variables from X
• We’ve assigned color to some subset of 

regions/nodes

• The next possible states: set of partial 
assignments with one more assigned variable
• If we have k remaining unassigned variables, and 

d possible values that can, in principle, be 
assigned to each of them

• Then we have a search with a branching factor      
b = k * d!!!

• This would, in general, be intractable



Constraint Satisfaction Problem: Example

• Current state s: colored NT, NSW, and T

• Next states:
• + WA → violates the constraint!

• + WA

• + WA

• + SA or + SA (violation!) or + SA (violation) 

• + Q or + Q (violation!) or + Q (violation)

• + V or + V or + V (violation!)

NT

NSW

T

• If we find a state (partial solution) that violates constraints, no need to 
continue from that state
• Subsequent assignments to remaining unassigned variables cannot 

fix the violation and thus cannot lead to a goal state



Constraint Satisfaction Problem: Commutativity

• Note that the order of assignments of 
colors (values) to nodes (variables) does 
not matter!
• 1. NT, 2. NSW, 3. T

• 1. NT, 2. T, 3. NSW

• 1. NSW, 2. NT, 3. T

• 1. NSW, 2. T, 3. NT

• 1. T, 2. NT, 3. NSW

• 1. T, 2. NSW, 3. NT

NT

NSW

T

• We care about whether the state we’re in (partial solution) violates the 
constraints or not, not how we got to that state

• Path doesn’t matter→ different from state space search



Constraint Satisfaction Problem: Commutativity

NT

NSW

T

A (search) problem is commutative if the order of 
application of any given set of actions (operations) has 

no effect on the outcome.

Commutative (Search) Problems

• Note that the order of assignments of 
colors (values) to nodes (variables) does 
not matter!

• CSPs are commutative!



Constraint Satisfaction Problem: Commutativity

• CSPs are commutative!

• This means that we actually have dn possible assignments 
to all variables
• n – the number of variables (x1 to xn) (nodes)
• d – as the number of values that can be assigned to each of 

them (colors)

• We typically need to find only one (any) that doesn’t 
violate the constraints

A (search) problem is commutative if the order of application of any given set of actions 
(operations) has no effect on the outcome.

Commutative (Search) Problems



Different Search Problems: SSS vs. DCO vs. CSP

• State space search (example: jigsaw puzzle):
• Optimal path problems: many possible paths from initial to goal state, need to find the 

one with minimal cost / maximal gain

• Complex, non-factorable states

• Explicit state transitions defined by the nature of the problem

• Discrete (Constrained) Optimization (example: travelling salesman)
• Optimal state problems: very many solutions satisfy the constraints, find the optimal

• Factorable states = problem is a set of value assignments to variables 

• No explicit state transitions, need to define neighborhoods

• Constraint Satisfaction (example: graph coloring or sudoku)
• Few (if any) solutions that satisfy the constraints, find any (all equally good)

• Factorable states = problem is a set of value assignments to variables

• Transitions: from a state with k assigned variables, to those with k+1 assigned variables
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Backtracking

• Backtracking is a „brute force” algorithm for finding solutions to 
CSPs, exploiting two key properties of CSPs: 
• Commutativity

• Unsatisfying partial solutions (those that violate constraints) cannot lead to a 
satisfying solution

• Essentially, a depth-first search (DFS) that chooses values for one 
variable xi at a time and then backtracks when a variable cannot be 
assigned any value due to constraint violation



Backtracking: Example

• Assumption: there’s an order of values for each 
variable in which we try to assign them
• For example: first green, then blue, then red

• Since the CSPs problems are commutative, we can start 
assigning from any variable

• Also, in any subsequent step, we can pick any of the 
remaining variables that haven’t been assigned

• Better strategies for „selection of next variable to 
assign” and „order of values to try to assign to” can
lead to more efficient search
• These are called – surprise – heuristics☺



Backtracking: Example

{NT}
{NT, WA} X (violation)

• (Naive) backtracking
• Randomly selecting the next variable to be assigned 
• Trying to assign values in random (or same) order

• In example: first green, then blue, then red

{NT, WA}

{NT, WA, V}
{NT, WA, V, NSW} X

{NT, WA, V, NSW}  
{NT, WA, V, NSW, SA} X

{NT, WA, V, NSW, SA} X
{NT, WA, V, NSW, SA} 

• Q: Does this problem have a solution at all?
• Add one edge so that it doesn’t have a solution! {NT, WA, V, NSW, SA, ...} 

{NT, WA, V}



Backtracking 

• CSP is „described” in the data 
structure csp
• csp.vars contains the states of 

the variables (assigned/unassigned 
and the value if assigned)

• csp.violates is a predicate 
that indicates if the current partial 
assignment violates the constraints 
of the CSP

backtracking_search(csp)

return backtrack({}, csp) 

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order-values(v, s, csp)

if not csp.violates(s ∪ (v, val))

csp.vars[v] = val

res = backtrack(s ∪ (v, val), csp)

if res ≠ null  

return res

csp.vars[v] = null

return null



Inference (or Constraint Propagation)

• The previous variant of backtracking is somewhat naive
• It (1) assigns a value to a variable and only then 

(2) checks whether with this new assignment, we violate constraints

• Q: Can we know in advance that certain values for certain variables lead to 
constraint violation, before those variables are assigned 
• So that we don’t even try to assign such values to those variables?
• This would improve efficiency!

• Inference (or constraint propagation): upon assignment of a value to a 
variable, try to „reduce” the domains – sets of still allowed values – for all 
remaining unassigned variables using the constraints 



Inference (or Constraint Propagation)

• Inference or constraint propagation: upon assignment of a value to a variable, try 
to „reduce” the domains (sets of allowed values) for all remaining unassigned 
variables using the constraints 

• Graph coloring: initially, each of the three colors (values) 
may be assigned to each of the nodes (variables)

• WA→ {green, blue, red}
• NT→ {green, blue, red}
• SA→ {green, blue, red}
• Q→ {green, blue, red}
• NSW→ {green, blue, red}
• V→ {green, blue, red}
• T→ {green, blue, red}



Inference (or Constraint Propagation)

• Inference or constraint propagation: upon assignment of a value to a variable, try 
to „reduce” the domains (sets of allowed values) for all remaining unassigned 
variables using the constraints 

• Graph coloring: But when we choose the color for some node, this 
reduces the number of colors assignable to neighbors without violation
• When we set NT to green, WA, SA, and Q cannot be green
• No need to try those variants only to detect violation

WA→ {blue, red}
NT→ {green}, assigned
SA→ {blue, red}
Q→ {blue, red}
NSW→ {green, blue, red}
V→ {green, blue, red}
T→ {green, blue, red}

{NT}



Inference (or Constraint Propagation)

• Inference or constraint propagation: upon assignment of a value to a variable, try 
to „reduce” the domains (sets of allowed values) for all remaining unassigned 
variables using the constraints 

• Graph coloring: But when we choose the color for some node, this 
reduces the number of colors assignable to neighbors
• When in the next step, we set WA to blue, 

that color needs to be removed for SA
• No need to try those variants to determine violation

• Q: What variable does it make most sense to 
choose next for the assignment?

WA→ {blue}, assigned
NT→ {green}, assigned
SA→ {red}
Q→ {blue}
NSW→ {green}
V→ {blue}
T→ {green, blue, red}

{NT}

{NT, WA}



Backtracking with Inference

• After each variable assignment, we perform 
inference 

• To limit the remaining possibilities for 
unassigned variables based on constraints
• To speed up the search    

• Function csp.inference adjusts/reduces 
the domains of unassigned vars
• Can (implicitly) detect violation – if a variable 

remains with empty domain

• Function csp.remove removes inferences, 
that is, returns removed values to their 
domains 

• But when we backtrack, we have to also 
remove all inferences made based on the 
backtracked assignment

backtracking_search(csp)

return backtrack({}, csp) 

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order_values(v, s, csp)

if not csp.violates(s ∪ (v, val))  

csp.vars[v] = val

infs = csp.inference(v, val)

if infs = null # violation

continue

res = backtrack(s ∪ (v, val), csp)

if res ≠ null  

return res

csp.remove(infs)

csp.vars[v] = null      

return null



Backtracking with Inference 

• Efficiency of backtracking depends 
on implementation of 
• select_unassigned_var

• order_values

• Q: problem-specific or problem-
agnostic selection strategies?
• Heuristics or metaheuristics? ☺

• CSPs can be solved efficiently 
without problem-specific knowledge

backtracking_search(csp)

return backtrack({}, csp) 

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order_values(v, s, csp)

if not csp.violates(s ∪ (v, val))  

csp.vars[v] = val

infs = csp.inference(v, val)

if infs = null # violation

continue

res = backtrack(s ∪ (v, val), csp)

if res ≠ null  

return res

csp.remove(infs)

csp.vars[v] = null      

return null



Efficient Search Strategies for CSP

• select_unassigned_var

• Mininum-remaining-values (MRV)
• (Meta)Heuristic also known as „most 

constrained variable” or „fail first”

• Select next the unassigned variable with 
least remaining allowed values

• Degree heuristic 
• Select the variable setting the value of 

which will constrain the domains of the 
largest number of unassigned variables

• Graph coloring: node with the largest 
number of (outgoing) edges

backtracking_search(csp)

return backtrack({}, csp) 

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order_values(v, s, csp)

if not csp.violates(s ∪ (v, val))  

csp.vars[v] = val

infs = csp.inference(v, val)

if infs = null # violation

continue

res = backtrack(s ∪ (v, val), csp)

if res ≠ null  

return res

csp.remove(infs)

csp.vars[v] = null      

return null



Degree Heuristic: Example

• The node with the largest degree is SA: set SA (or any 
color, really)

• Next, any between NT, Q, and NSW: let’s say we set 
NSW to blue

• With the degree heuristic and inference, we even 
managed to find a solution without backtracking! 

WA→ {blue, red}
NT→ {blue, red}
SA→ {green}, assigned
Q→ {blue, red}
NSW→ {blue, red}
V→ {blue, red}
T→ {green, blue, red}

WA→ {red}
NT→ {blue}
SA→ {green}, assigned
Q→ {red}
NSW→ {blue}, assigned
V→ {red}
T→ {green, blue, red}



Efficient Search Strategies for CSP

order_values

• Defines order in which we try the value 
assignment for the selected variable

• Least-constraining-value (LCV)
• Select the value for which the remaining 

unassigned variables will be least 
constrained

• Value that rules out the fewest choices for 
the unassigned variables 

• Leaves the most possibilities for the 
unassigned variables 

• Thus has the best chance to eventually not
lead to a violation

backtracking_search(csp)

return backtrack({}, csp) 

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order_values(v, s, csp)

if not csp.violates(s ∪ (v, val))  

csp.vars[v] = val

infs = csp.inference(v, val)

if infs = null # failure

continue

res = backtrack(s ∪ (v, val), csp)

if res ≠ null  

return res

csp.remove(infs)

csp.vars[v] = null      

return null



Least-Constraining-Value: Example

• Assume we made a partial assignment: NT and WA and 
that our next node to be assigned is Q

• We have two possible values for Q: blue and red
• Both reduce the number of remaining values for NSW by 1

• But, red Q also reduces the number of possibilities for SA (and 
actually leads to violation immediately), whereas blue Q doesn’t

WA→ {blue}, assigned
NT→ {green}, assigned
SA→ {red}, 
Q→ {blue, red}
NSW→ {green, blue, red}
V→ {green, blue, red}
T→ {green, blue, red}

WA→ {red}
NT→ {blue}
SA→ {green}, assigned
Q→ {red}
NSW→ {blue}, assigned
V→ {red}
T→ {green, blue, red}
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CSP Examples: 8-Queen Problem

Place 8 (N) queens on an 8 by 8 (N by N) chess board such that 
none of the queens attacks any of the others. 

8-Queen Problem

Images from https://stackoverflow.com/questions/63536411/how-to-rotate-a-
solution-to-the-8-queens-puzzle-by-90-degrees

https://stackoverflow.com/questions/63536411/how-to-rotate-a-solution-to-the-8-queens-puzzle-by-90-degrees


CSP Examples: 8-Queen Problem

Place 8 (N) queens on an 8 by 8 (N by N)
chess board such that none of the queens

attacks any of the others. 

8-Queen Problem• All we have to do is formulate 
problem as CSP
• Backtracking, inference, and heuristics 

will take care of the rest ☺

• Constraint: no two queens in the 
same row, column or diagonal

• We know already that one queen has 
to be in each row/column
• X = x1, x2, ..., x8

xi = column or the queen in row i

x1, x2, ..., x8  ∈ {a, b, c, d, e, f , g, h}



CSP Examples: Sudoku

• X = x1, ..., xn , n = number of empty cells

• xi⊆ {1, 2, ..., 9}

• Q: Easier with more or fewer numbers 
filled in at the beginning? Why?

A (standard) sudoku is a grid with 81 cells, some of 
which have been prefilled with numbers (1 to 9). 
The task is to fill the empty cells (also only with 

numbers 1 to 9) so that no number repeats in any 
row, any column, or any of the 9-cell (3x3) sub-grids. 

Put differently, we must have all numbers 1-9 in 
every row, column and 3x3 sub-grid. 

Sudoku

Image from 
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

https://en.wikipedia.org/wiki/Sudoku_solving_algorithms
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