
Constraint Satisfaction
Prof. Dr. Goran Glavaš

18.1.2024

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Constraint Satisfaction Problems

• Backtracking Algorithm

• Example Problems

Recap: State Space Search

• We will denote the set of all states (state space) with S
• The state space is commonly so large that we can’t iteratively list all states

• All states in the space are not really „known” in advance

• When in state s, we typically only then compute the set of possible next states

A state space search problem is defined with a triple (s0, succ, goal) where s0 ∈ S is the
initial state, succ: S →℘(S) is the successor function that for some state s returns a set

of states that we can transition to from s, and goal: S → {True, False} is a predicate
(function that returns a boolean value) that for a given state s determines if s is a goal
state or not (there can be multiple states that satisfy the goal predicate). A state space

search (typically) ends as soon as any goal state is found.

State space search

Discrete (Constrained) Optimization

• Optimal state (or the state with the best f that was found) is the solution

• No path between start and goal state – often there isn’t a clear start state

• We’re not making moves like in classic SSS problems, just searching for the best
possible solution over a very large space of candidate solutions

In discrete constrained optimization, we search for an optimal state in large space of
possible states. Each state X can be seen as consisting of n variables X = x1, x2, ..., xn, each

with a corresponding domain D1, D2, ..., Dn ⊆ ℤ (whole numbers). The optimal state is
the one that maximizes/minimizes the objective function f: D1 × ··· × Dn → ℝ. Finally, the

constraints C1, ..., Cm, with Ci⊆ D1, D2, ..., Dn define the subsets of the state space that
encompass valid solutions to the problem

Discrete Constrained Optimization Problems

Recap: State Space Search & Discrete Optimization

• State Space Search
• Goal states represent a very small portion of the states in the search space
• Only paths that reach one of goal states are (candidate) solutions
• Explicit transitions between the states (succ function)
• Problem: how to get to a goal state with minimal cost/maximal gain

• Discrete Constrained Optimization
• Every state represents one candidate solution to the problem
• Each state (candidate solution) has a measure of ”quality” – the objective

function f – assigned to it
• No explicit „start state” nor „state transitions” – instead neighbourhood (or

distance) between states (but no in the sense of transition cost)
• Problem: how to find the state with minimal/maximal value of the objective f

Recap: Heuristics

• If we have a (vague) idea in which direction to look for the solution,
why not use this information to improve the search?

• Heuristics = problem-specific rules („vague ideas”) about the nature
of the problem
• Purpose: direct the search towards the goal so it becomes more efficient

Heuristic function h: S → ℝ+ assigns to each state s ∈ S an estimate of the distance
between that state and the goal state

Heuristic function

Recap: Metaheuristics

• Metaheuristics strategies guide the search process
• Direct the search (selection of next states to evaluate) so that the chances of finding a good

(or near-optimal) state increase

• They are approximate – no guarantee of finding an optimal solution

• Most commonly, they are also non-deterministic (and most often stochastic) –
there is randomness involved

• Metaheuristics are problem-agnostic, but may use problem-specific heuristics as
part of the strategy (but as „black boxes”, without caring what they are)

Constraint Satisfaction Problem: Example

• We can represent the map as a
graph – one region, one node

• If regions are neighbours –
establish an edge between the
corresponding graph nodes

We’re given a map consisting of N regions, we need to color each region with one of M
colors but so that neighbouring regions always have different colors

Map Coloring Problem

Image from: https://www.researchgate.net/figure/An-example-of-graph-coloring-
problem_fig2_325808704

https://www.researchgate.net/figure/An-example-of-graph-coloring-problem_fig2_325808704

Constraint Satisfaction Problem: Example

• One state (potential solution):
one (any) coloring of the graph

• Many (most) of all possible
colorings will violate the
constraint(s)
• Key: No point in further searching

from those partial states that
violate constraints

We’re given a map consisting of N regions, we need to color each region with one of M
colors but so that neighbouring regions always have different colors

Map Coloring Problem

Image from: https://www.researchgate.net/figure/An-example-of-graph-coloring-
problem_fig2_325808704

https://www.researchgate.net/figure/An-example-of-graph-coloring-problem_fig2_325808704

Constraint Satisfaction Problem

Constraint satisfaction problems (CSP) are search problems where we search for a state
X that can be factored into n variables X = x1, x2, ..., xn, each with a corresponding

domain D1, D2, ..., Dn ⊆ ℤ (whole numbers), which satisifes the (set of) constraints C.
Unlike in discrete constrained optimization, in CSP we search through the states that

represent partial solutions to the problem, that is, where only a subset of the variables
x1, x2, ..., xn has been assigned a value. The key property of the CSPs is that a partial
solution that violates the constraints cannot be part of the goal state/solution. This

allows to simply discard large portions of the state space during the search.

Constraint Satisfaction Problems

• In a sense, we’re incrementally constructing a solution and backtrack
everytime the partial solution we built violates the constraints.

Constraint Satisfaction Problem: Example

• Initial state s0 = no colored nodes

• States that we „transition” to – one node
colored (value fixed for one variable xi)
• WA colored red / blue / green (3 different states)
• NT colored red / blue / green (3 different states)
• SA colored red / blue / green (3 different states)
• ...

• We can just pick any to start with
• A particular value for a single variable xi cannot

break the constraints, only in relation to values of
other variables xj

Constraint Satisfaction Problem: Example

• Generally, a state s is a partial assignment of
values to some subset of variables from X
• We’ve assigned color to some subset of

regions/nodes

• The next possible states: set of partial
assignments with one more assigned variable
• If we have k remaining unassigned variables, and

d possible values that can, in principle, be
assigned to each of them

• Then we have a search with a branching factor
b = k * d!!!

• This would, in general, be intractable

Constraint Satisfaction Problem: Example

• Current state s: colored NT, NSW, and T

• Next states:
• + WA → violates the constraint!

• + WA

• + WA

• + SA or + SA (violation!) or + SA (violation)

• + Q or + Q (violation!) or + Q (violation)

• + V or + V or + V (violation!)

NT

NSW

T

• If we find a state (partial solution) that violates constraints, no need to
continue from that state
• Subsequent assignments to remaining unassigned variables cannot

fix the violation and thus cannot lead to a goal state

Constraint Satisfaction Problem: Commutativity

• Note that the order of assignments of
colors (values) to nodes (variables) does
not matter!
• 1. NT, 2. NSW, 3. T

• 1. NT, 2. T, 3. NSW

• 1. NSW, 2. NT, 3. T

• 1. NSW, 2. T, 3. NT

• 1. T, 2. NT, 3. NSW

• 1. T, 2. NSW, 3. NT

NT

NSW

T

• We care about whether the state we’re in (partial solution) violates the
constraints or not, not how we got to that state

• Path doesn’t matter→ different from state space search

Constraint Satisfaction Problem: Commutativity

NT

NSW

T

A (search) problem is commutative if the order of
application of any given set of actions (operations) has

no effect on the outcome.

Commutative (Search) Problems

• Note that the order of assignments of
colors (values) to nodes (variables) does
not matter!

• CSPs are commutative!

Constraint Satisfaction Problem: Commutativity

• CSPs are commutative!

• This means that we actually have dn possible assignments
to all variables
• n – the number of variables (x1 to xn) (nodes)
• d – as the number of values that can be assigned to each of

them (colors)

• We typically need to find only one (any) that doesn’t
violate the constraints

A (search) problem is commutative if the order of application of any given set of actions
(operations) has no effect on the outcome.

Commutative (Search) Problems

Different Search Problems: SSS vs. DCO vs. CSP

• State space search (example: jigsaw puzzle):
• Optimal path problems: many possible paths from initial to goal state, need to find the

one with minimal cost / maximal gain

• Complex, non-factorable states

• Explicit state transitions defined by the nature of the problem

• Discrete (Constrained) Optimization (example: travelling salesman)
• Optimal state problems: very many solutions satisfy the constraints, find the optimal

• Factorable states = problem is a set of value assignments to variables

• No explicit state transitions, need to define neighborhoods

• Constraint Satisfaction (example: graph coloring or sudoku)
• Few (if any) solutions that satisfy the constraints, find any (all equally good)

• Factorable states = problem is a set of value assignments to variables

• Transitions: from a state with k assigned variables, to those with k+1 assigned variables

Content

• Constraint Satisfaction Problems

• Backtracking Algorithm

• Example Problems

Backtracking

• Backtracking is a „brute force” algorithm for finding solutions to
CSPs, exploiting two key properties of CSPs:
• Commutativity

• Unsatisfying partial solutions (those that violate constraints) cannot lead to a
satisfying solution

• Essentially, a depth-first search (DFS) that chooses values for one
variable xi at a time and then backtracks when a variable cannot be
assigned any value due to constraint violation

Backtracking: Example

• Assumption: there’s an order of values for each
variable in which we try to assign them
• For example: first green, then blue, then red

• Since the CSPs problems are commutative, we can start
assigning from any variable

• Also, in any subsequent step, we can pick any of the
remaining variables that haven’t been assigned

• Better strategies for „selection of next variable to
assign” and „order of values to try to assign to” can
lead to more efficient search
• These are called – surprise – heuristics☺

Backtracking: Example

{NT}
{NT, WA} X (violation)

• (Naive) backtracking
• Randomly selecting the next variable to be assigned
• Trying to assign values in random (or same) order

• In example: first green, then blue, then red

{NT, WA}

{NT, WA, V}
{NT, WA, V, NSW} X

{NT, WA, V, NSW}
{NT, WA, V, NSW, SA} X

{NT, WA, V, NSW, SA} X
{NT, WA, V, NSW, SA}

• Q: Does this problem have a solution at all?
• Add one edge so that it doesn’t have a solution! {NT, WA, V, NSW, SA, ...}

{NT, WA, V}

Backtracking

• CSP is „described” in the data
structure csp
• csp.vars contains the states of

the variables (assigned/unassigned
and the value if assigned)

• csp.violates is a predicate
that indicates if the current partial
assignment violates the constraints
of the CSP

backtracking_search(csp)

return backtrack({}, csp)

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order-values(v, s, csp)

if not csp.violates(s ∪ (v, val))

csp.vars[v] = val

res = backtrack(s ∪ (v, val), csp)

if res ≠ null

return res

csp.vars[v] = null

return null

Inference (or Constraint Propagation)

• The previous variant of backtracking is somewhat naive
• It (1) assigns a value to a variable and only then

(2) checks whether with this new assignment, we violate constraints

• Q: Can we know in advance that certain values for certain variables lead to
constraint violation, before those variables are assigned
• So that we don’t even try to assign such values to those variables?
• This would improve efficiency!

• Inference (or constraint propagation): upon assignment of a value to a
variable, try to „reduce” the domains – sets of still allowed values – for all
remaining unassigned variables using the constraints

Inference (or Constraint Propagation)

• Inference or constraint propagation: upon assignment of a value to a variable, try
to „reduce” the domains (sets of allowed values) for all remaining unassigned
variables using the constraints

• Graph coloring: initially, each of the three colors (values)
may be assigned to each of the nodes (variables)

• WA→ {green, blue, red}
• NT→ {green, blue, red}
• SA→ {green, blue, red}
• Q→ {green, blue, red}
• NSW→ {green, blue, red}
• V→ {green, blue, red}
• T→ {green, blue, red}

Inference (or Constraint Propagation)

• Inference or constraint propagation: upon assignment of a value to a variable, try
to „reduce” the domains (sets of allowed values) for all remaining unassigned
variables using the constraints

• Graph coloring: But when we choose the color for some node, this
reduces the number of colors assignable to neighbors without violation
• When we set NT to green, WA, SA, and Q cannot be green
• No need to try those variants only to detect violation

WA→ {blue, red}
NT→ {green}, assigned
SA→ {blue, red}
Q→ {blue, red}
NSW→ {green, blue, red}
V→ {green, blue, red}
T→ {green, blue, red}

{NT}

Inference (or Constraint Propagation)

• Inference or constraint propagation: upon assignment of a value to a variable, try
to „reduce” the domains (sets of allowed values) for all remaining unassigned
variables using the constraints

• Graph coloring: But when we choose the color for some node, this
reduces the number of colors assignable to neighbors
• When in the next step, we set WA to blue,

that color needs to be removed for SA
• No need to try those variants to determine violation

• Q: What variable does it make most sense to
choose next for the assignment?

WA→ {blue}, assigned
NT→ {green}, assigned
SA→ {red}
Q→ {blue}
NSW→ {green}
V→ {blue}
T→ {green, blue, red}

{NT}

{NT, WA}

Backtracking with Inference

• After each variable assignment, we perform
inference

• To limit the remaining possibilities for
unassigned variables based on constraints
• To speed up the search

• Function csp.inference adjusts/reduces
the domains of unassigned vars
• Can (implicitly) detect violation – if a variable

remains with empty domain

• Function csp.remove removes inferences,
that is, returns removed values to their
domains

• But when we backtrack, we have to also
remove all inferences made based on the
backtracked assignment

backtracking_search(csp)

return backtrack({}, csp)

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order_values(v, s, csp)

if not csp.violates(s ∪ (v, val))

csp.vars[v] = val

infs = csp.inference(v, val)

if infs = null # violation

continue

res = backtrack(s ∪ (v, val), csp)

if res ≠ null

return res

csp.remove(infs)

csp.vars[v] = null

return null

Backtracking with Inference

• Efficiency of backtracking depends
on implementation of
• select_unassigned_var

• order_values

• Q: problem-specific or problem-
agnostic selection strategies?
• Heuristics or metaheuristics? ☺

• CSPs can be solved efficiently
without problem-specific knowledge

backtracking_search(csp)

return backtrack({}, csp)

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order_values(v, s, csp)

if not csp.violates(s ∪ (v, val))

csp.vars[v] = val

infs = csp.inference(v, val)

if infs = null # violation

continue

res = backtrack(s ∪ (v, val), csp)

if res ≠ null

return res

csp.remove(infs)

csp.vars[v] = null

return null

Efficient Search Strategies for CSP

• select_unassigned_var

• Mininum-remaining-values (MRV)
• (Meta)Heuristic also known as „most

constrained variable” or „fail first”

• Select next the unassigned variable with
least remaining allowed values

• Degree heuristic
• Select the variable setting the value of

which will constrain the domains of the
largest number of unassigned variables

• Graph coloring: node with the largest
number of (outgoing) edges

backtracking_search(csp)

return backtrack({}, csp)

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order_values(v, s, csp)

if not csp.violates(s ∪ (v, val))

csp.vars[v] = val

infs = csp.inference(v, val)

if infs = null # violation

continue

res = backtrack(s ∪ (v, val), csp)

if res ≠ null

return res

csp.remove(infs)

csp.vars[v] = null

return null

Degree Heuristic: Example

• The node with the largest degree is SA: set SA (or any
color, really)

• Next, any between NT, Q, and NSW: let’s say we set
NSW to blue

• With the degree heuristic and inference, we even
managed to find a solution without backtracking!

WA→ {blue, red}
NT→ {blue, red}
SA→ {green}, assigned
Q→ {blue, red}
NSW→ {blue, red}
V→ {blue, red}
T→ {green, blue, red}

WA→ {red}
NT→ {blue}
SA→ {green}, assigned
Q→ {red}
NSW→ {blue}, assigned
V→ {red}
T→ {green, blue, red}

Efficient Search Strategies for CSP

order_values

• Defines order in which we try the value
assignment for the selected variable

• Least-constraining-value (LCV)
• Select the value for which the remaining

unassigned variables will be least
constrained

• Value that rules out the fewest choices for
the unassigned variables

• Leaves the most possibilities for the
unassigned variables

• Thus has the best chance to eventually not
lead to a violation

backtracking_search(csp)

return backtrack({}, csp)

backtrack(s, csp)

if complete(s) return s

v = select_unassigned_var(csp.vars)

for val in order_values(v, s, csp)

if not csp.violates(s ∪ (v, val))

csp.vars[v] = val

infs = csp.inference(v, val)

if infs = null # failure

continue

res = backtrack(s ∪ (v, val), csp)

if res ≠ null

return res

csp.remove(infs)

csp.vars[v] = null

return null

Least-Constraining-Value: Example

• Assume we made a partial assignment: NT and WA and
that our next node to be assigned is Q

• We have two possible values for Q: blue and red
• Both reduce the number of remaining values for NSW by 1

• But, red Q also reduces the number of possibilities for SA (and
actually leads to violation immediately), whereas blue Q doesn’t

WA→ {blue}, assigned
NT→ {green}, assigned
SA→ {red},
Q→ {blue, red}
NSW→ {green, blue, red}
V→ {green, blue, red}
T→ {green, blue, red}

WA→ {red}
NT→ {blue}
SA→ {green}, assigned
Q→ {red}
NSW→ {blue}, assigned
V→ {red}
T→ {green, blue, red}

Content

• Constraint Satisfaction Problems

• Backtracking Algorithm

• Example Problems

CSP Examples: 8-Queen Problem

Place 8 (N) queens on an 8 by 8 (N by N) chess board such that
none of the queens attacks any of the others.

8-Queen Problem

Images from https://stackoverflow.com/questions/63536411/how-to-rotate-a-
solution-to-the-8-queens-puzzle-by-90-degrees

https://stackoverflow.com/questions/63536411/how-to-rotate-a-solution-to-the-8-queens-puzzle-by-90-degrees

CSP Examples: 8-Queen Problem

Place 8 (N) queens on an 8 by 8 (N by N)
chess board such that none of the queens

attacks any of the others.

8-Queen Problem• All we have to do is formulate
problem as CSP
• Backtracking, inference, and heuristics

will take care of the rest ☺

• Constraint: no two queens in the
same row, column or diagonal

• We know already that one queen has
to be in each row/column
• X = x1, x2, ..., x8

xi = column or the queen in row i

x1, x2, ..., x8 ∈ {a, b, c, d, e, f , g, h}

CSP Examples: Sudoku

• X = x1, ..., xn , n = number of empty cells

• xi⊆ {1, 2, ..., 9}

• Q: Easier with more or fewer numbers
filled in at the beginning? Why?

A (standard) sudoku is a grid with 81 cells, some of
which have been prefilled with numbers (1 to 9).
The task is to fill the empty cells (also only with

numbers 1 to 9) so that no number repeats in any
row, any column, or any of the 9-cell (3x3) sub-grids.

Put differently, we must have all numbers 1-9 in
every row, column and 3x3 sub-grid.

Sudoku

Image from
https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

https://en.wikipedia.org/wiki/Sudoku_solving_algorithms

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и

тан
н

я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w

ọ
n

ib
e

er
e

?

ค ำถำม?

	Default Section
	Slide 1: Constraint Satisfaction Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Recap: State Space Search
	Slide 4: Discrete (Constrained) Optimization
	Slide 5: Recap: State Space Search & Discrete Optimization
	Slide 6: Recap: Heuristics
	Slide 7: Recap: Metaheuristics
	Slide 8: Constraint Satisfaction Problem: Example
	Slide 9: Constraint Satisfaction Problem: Example
	Slide 10: Constraint Satisfaction Problem
	Slide 11: Constraint Satisfaction Problem: Example
	Slide 12: Constraint Satisfaction Problem: Example
	Slide 13: Constraint Satisfaction Problem: Example
	Slide 14: Constraint Satisfaction Problem: Commutativity
	Slide 15: Constraint Satisfaction Problem: Commutativity
	Slide 16: Constraint Satisfaction Problem: Commutativity
	Slide 17: Different Search Problems: SSS vs. DCO vs. CSP
	Slide 18: Content
	Slide 19: Backtracking
	Slide 20: Backtracking: Example
	Slide 21: Backtracking: Example
	Slide 22: Backtracking
	Slide 23: Inference (or Constraint Propagation)
	Slide 24: Inference (or Constraint Propagation)
	Slide 25: Inference (or Constraint Propagation)
	Slide 26: Inference (or Constraint Propagation)
	Slide 27: Backtracking with Inference
	Slide 28: Backtracking with Inference
	Slide 29: Efficient Search Strategies for CSP
	Slide 30: Degree Heuristic: Example
	Slide 31: Efficient Search Strategies for CSP
	Slide 32: Least-Constraining-Value: Example
	Slide 33: Content
	Slide 34: CSP Examples: 8-Queen Problem
	Slide 35: CSP Examples: 8-Queen Problem
	Slide 36: CSP Examples: Sudoku
	Slide 37: Questions?

