[l CAIDAS WiNLP

ALGORITHMS IN Al & DATA SCIENCE 1 (AKIDS 1)

Metaheuristic Search

Prof. Dr. Goran Glavas

15.1.2024

Content

e Constrained Discrete Optimization & Metaheuristics
* Single Point Search Algorithms

* Population-Based Algorithms
* Genetic algorithm

Recap: State Space Search

* We will denote the set of all states (state space) with S
* The state space is commonly so large that we can’t iteratively list all states
» All states in the space are not really ,,known” in advance
* When in state s, we typically only then compute the set of possible next states

State space search

A state space search problem is defined with a triple (s, succ, goal) where s, € S'is the
initial state, succ: S - £(S) is the successor function that for some state s returns a set

of states that we can transition to from s, and goal: S - {True, False} is a predicate
(function that returns a boolean value) that for a given state s determines if s is a goal
state or not (there can be multiple states that satisfy the goal predicate). A state space
K search (typically) ends as soon as any goal state is found. /

Recap: Heuristic Search

* There are generally two types of search

* Uninformed (blind) search

* No additional information about the problem, that could indicate whether
one state is perhaps closer to the goal state than another state

* Informed (directed, heuristic) search
* Additional information helps avoid some states and speed up the search
* Problem-specific estimate of state’s distance from the goal is available

Heuristics

* If we have a (vague) idea in which direction to look for the solution,
why not use this information to improve the search?

* Heuristics = problem-specific rules (,vague ideas”) about the nature
of the problem

* Purpose: direct the search towards the goal so it becomes more efficient

. Heuristic function gl

Heuristic function /1: S — R* assigns to each state s € S an estimate of the distance
between that state and the goal state

State Space Search vs. Constrained Optimization

* In State Space Search, we’re looking to reach the goal state with the
minimal cost (maximal gain)
* Heuristics (task-specific) help reduce the search space
* The solution is the path of transitions from s to goal state

* In Discrete Constrained Optimization (aka combinatorial
optimization), we search across a very large space of states, but each
state represents one possible solution

* There is a function that assigns a quality value to each state, indicating how
good of a solution it may be

* There is often also a set of constraints: if a state does not satisfy the
constraints it is not a valid solution

Discrete Constrained Optimization

Discrete Constrained Optimization Problems

In discrete constrained optimization, we search for an optimal state in large space of
possible states. Each state X can be seen as consisting of n variables X = x, x,, ..., x_, each
with a corresponding domain D, D, ..., D € 7 (whole numbers). The optimal state is
the one that maximizes/minimizes the objective function /: D, x --- x D_ — . Finally, the
constraints C,, ..., C_, withC. < D, D,, ..., D define the subsets of the state space that

\ encompass valid solutions to the problem /

e Optimal state (or the state with the best f that was found) is the solution
* No path between start and goal state — commonly there isn’t even a clear start state

* We're not making moves like in classic SSS problems, just searching for the best
possible solution over a very large space of candidate solutions

State Space Search vs. Constrained Optimization

 State Space Search
* Goal states represent a very small portion of the states in the search space
* Only paths that reach one of goal states are (candidate) solutions
e Explicit transitions between the states (succ function)
* Problem: how to get to a goal state with minimal cost/maximal gain

* Discrete Constrained Optimization
* Every state represents one candidate solution to the problem

e Each state (candidate solution) has a measure of “quality” — the objective
function / — assigned to it

* No explicit ,start state” nor ,state transitions” — instead neighbourhood (or
distance) between states (but not in the sense of transition cost)

* Problem: how to find the state with minimal/maximal value of the objective f

Heuristics vs. Metaheuristics

* Heuristics in State Space Search
* Trim the number of paths to be explored
* Estimate the distance of the current state from the goal state

* Discrete Constrained Optimization
* No goal state, every state is a possible solution
Often no explicit ,,start state” nor explicit ,,state transitions”

Q: Where to start? Where to look next after evaluating some state?
 When in a state, no idea how ,far” that state/solution is from the optimal state/solution

Concept of distance / neighbourhood in DCO problems:

* Measures how similar two states = candidate solutions are (not a cost of transitioning
between states, there are no transitions!)

Metaheuristic frameworks: search strategies for selecting the next
state(s)/solution(s) to be evaluated, typically in a problem-agnostic manner
(applicable to any DCO problem)

Discrete Constrained Optimization: Example

e Traveling Salesman Problem

The travelling salesman needs to visit n cities and wants to make the minimal possible
path. Given a list of cities and distances between each pair of cities, find the shortest
possible route that visits each city exactly once and returns to the original city.

_ J

* NP-Hard combinatorial problem (no known polynomial time algorithm for solving
it) — factorial complexity — Hamiltonian cycle of a (fully connnected) graph

* Real-world applications: vehicle routing, chip manufacturing, ...

* TSP as combinatorial optimization:

o Xi Xy, Xy, een Xy Xiiq

- D,=D,=..=D,=D,,;={1, 2, ..., n}
© f(X): d(xq, X5) + d(x,, X3) + ... + d(x
* Constraints:

* X, =X,,, (some concrete city from {1, ..., n})

X EX, 2N E L2 X, 2 X, (no repetition of cities along the path)

n-1/ Xn) + d(xn' Xn+1)

Metaheuristic search strategies

Metaheuristics strategies guide the search process

* Direct the search (selection of next states to evaluate) so that the chances of finding a good
(or near-optimal) state increase

They are approximate — no guarantee of finding an optimal solution

Most commonly, they are also non-deterministic (and most often stochastic) —
there is randomness involved

Metaheuristics are problem-agnostic, but may use problem-specific heuristics as
part of the strategy (but as ,black boxes”, without caring what they are)

Classitfying metaheuristics

* Single point search (one candidate solution examined at a time) vs.
Population-based search (a set of candidates examined at each step)

* Nature-inspired (e.g., evolutionary algorithms or ant colony
optimization) vs. Others (not nature inspired)

e Static (f does not change during search) vs. Dynamic objective
function (changes during the search)

* Using memory vs. Mlemory-less
 Memory as in experience from previous searches on similar/same problem

Content

* Constrained Discrete Optimization & Metaheuristics
* Single Point Search Algorithms

* Population-Based Algorithms
* Genetic algorithm

Single-Point Search

* Single point search algorithms, also known as trajectory methods,
examine one state (candidate solution) at a time

* They then choose the next candidate solution to be examined, typically from a
local neighbourhood of the current solution

* The neighbourhood of a state /V(s) needs to be defined for a concrete problem
* In principle, similar purpose as succ in state space search
e But succin SSS typically clearly defined by the problem, N(s) in DCO not obvious

* Local search
* Choose (usually randomly) an initial solution (s,)
* Given N(s), determine the neighbourhood of current solution s
* Explore the neighbourhood and select one neighbor
* Proceed with the selected neighbor as the next state/solution

Simple Descent/Ascent

* We will assume we’re minimizing the objective |
* Thus, the algorithms will be called , descent simple descent (s, N)

* If the objective is to be maximized, we would be while True
,ascending” better = False
for s’ in N(s)

* Simple Descent if f(s') < f(s)

s = s’
* When in a state s, selects any neighbour s’ for which better = True
f(s’) < f(s) (in case of maximization, f(s’) > f(s)) _ break
if not better
* The order of exploration of neighbours in N(s) is break
return s

underspecified, but typically random

Deepest Descent

* We will assume we’re minimizing the objective |
* Thus, the algorithms will be called ,descent”

 If the objective is to be maximized, we would be
,ascending”

* Deepest Descent

* Greedy strategy: in each step we select the neighbour
with the smallest f(s')

* The order of exploration of neighbours in N(s) is
underspecified, but doesn’t matter because we have to
check all neighbours anyways

e Guaranteed to lead to the closest local optimum
(minimum) from the initial state

deepest descent (s, V)

while True
best = s
for s’ in N(s)
if f(s’) < f(best)

best = g’
if best == s
break
else
s = best

return best

Local and Global Optima

Image from: https://www.allaboutlean.com/polca-
pros-and-cons/local-global-optimum/

* With greedy search (deepest descent)

* We are guaranteed to find the closest
local optimum from the initial state

Global
Optimum

/

Local Optima

* Q:is that good or bad?

* Depends where we start
* We typically choose the starting state

randomly
multistart deepest descent(iters)
best = null # f(null) = +inf
* Solution: run the ,deepest descent” for © in | to iters -
. . s, = randomly select 1nitial state s,
mUItlple times s = deepest descent (s))

e Each time from a different initial state
if f(s) < f(best)

(
best = s
return best

https://www.allaboutlean.com/polca-pros-and-cons/local-global-optimum/

Simulated Annealing

* Simulated annealing is a metaheuristic strategy that borrows the idea from from
material physics about reaching the minimal energy state

* For example, for glass or metal

* Annealing: heating the material and then slowly cooling it

I |
HEATING | RECRYSTALLIZATION| GRAIN RESTRUCTURE

00000701007
Nl *
=000 0o
'.".3‘1
)

SO (1
=[x 1|

G
o AL NPIAAY L
TEMPERATURE/TIME

Image from: https://www.mechstudies.com/annealing-process-definition-meaning-types-applications/

https://www.mechstudies.com/annealing-process-definition-meaning-types-applications/

Simulated Annealing

* Annealing: heating the material and then slowly cooling it
 Compared to strict ,descents”, SA allows to select the next state with larger value
of f (,hotter solution” or ,,worse solution”)
* With decreasing probability as the search procedes

* Allows for more of ,random search” in the early stages and more focused
(minimizing) search later on

e Selects (randomly) a state from the neighbourhood and accepts it according to
the following probability p(s’)

1 if f(S') < f(S) # always accept a better solution

o(T, s, s) = -

o~)=F(N/T otherwise

Simulated Annealing

1 if f(S') < f(S) # always accept a better solution
T s, s)=-
oL, < s) e~ U(S)=7E/T otherwise
. simulated annealin , N, T, end
 The temperature T plays the crucial P gs -
role while not end(T, iter)
e If T = O, p(T, S’, S) =0 iter = iter + 1
s’ = randomly select from N(s)
* |t is gradually reduced o
* Linear annealing: T -> o™ T, where a is a else
constant (typically between 0.8 and p = exp(-(f(s’) < £(s))/T)
099) p” = random (0, 1)
. if p' <p
* When does it end? s = s’
return s

* Fixed number of iterations
* Or when T becomes close enough to 0

Content

* Constrained Discrete Optimization & Metaheuristics
* Single Point Search Algorithms

* Population-Based Algorithms
* Genetic algorithm

Population-Based Search

* At each step, more than a single solution is evaluated — we keep the
population of solutions
* Between the iterations, the population is partially or completely replaced

* Nature-inspired population-based search algorithms
* Draw inspiration from processed in nature / biology

* Genetic algorithm (more generally, evolutionary algorithms)
* Ant Colony Optimization

* Swarm Optimization

 Artificial Imunological Systems

Genetic Algorithm

* Evolution as inspiration — each solution is a “chromosome”

* The solutions (chromosomes) with better value of the objective
function have higher chances of “survival” and for “reproduction”

* New solutions are created from existing ones via recombination
* The exact recombination operation depends on how chromosomes look like

* Finally, the mutation (random change of some value) in the
chromosome is possible with some probability

* Allows for bigger jumps in the solution space and escaping local optima

Genetic Algorithm

* Objective function value of the

solution f(s) is called fitness in GA genetic_algorithm (S, cnd)
p = create init population(S)
iter = 0
* Let S be the size of the population evaluate (p) |
while not end(p, iter)
* end function determines when the tter = dter + 1
. L. p’ = recombine (p)
algorithm finishes, based on mutate (p’)

evaluate (p’)

(1) fitness of the best found solution or p = select(p U p’)

(2) average fitness of the population or
(3) number of iterations

return p

Genetic Algorithm: Chromosome

* Q: How do we represent one candidate solution as a chromosome
* Depends on the problem

* Travelling salesman problem

* Achromosome is a vector of n-1 values: X: x, ..., x,
* Because x, and x, ., are fixed (the start/end city is given)

* Fitness of the chromosome? f(X): d(xy, X;) + d(Xy, X3) + ... + (X, 3, X)) + A(Xp, Xq41)

e Population initialization

 Randomly generate a sample of S different vectors, each with all n-1 numbers (but in
different order), without repeating the numbers?

* Q: How many such vectors are there?
* Q: Write an algorithm for create init population (S)!

Genetic Algorithm: Recombination

* TSP, toy example: 10 cities, start and end in city 1

* Two example chromosomes
e Chromosome #1: [7, 2, 8,9, 4, 10, 3, 5, 6]

+ Chromosome #2: [EGHEINONGININNG]

 Recombination (also called crossover) needs to create ,children”
chromosomes (one or more) from the , parent” chromosomes
* The children must also be valid solutions for the problem
* For TSP that means no repetition of cities!

Genetic Algorithm: Recombination

* Parents
[7I 2) 8) 9) 4) 10) 3) 5/ 6]

* Common crossover operators

* Single-point crossover: select (typically randomly) the location at which to cut
the chromosomes and ,,exchange them” - two ,,child” chromosomes

17, 2, 8,

Doesn’t work for TSP: repetition of cities!
B, 4, 10, 3, 5, 6]

Genetic Algorithm: Recombination

* Parents
[7I 2) 8) 9) 4) 10) 3) 5) 6]

* Common crossover operators

* 2 (or more)-point crossover: select two or more locations at which to cut the
chromosomes and ,,exchange them” = two ,,child” chromosomes

17, 2, 8, iGN 5, 6

Doesn’t work for TSP: repetition of cities!
EEENo, 2, 10, 3, 28 "

Genetic Algorithm: Recombination

* Parents
[7I 2) 8) 9) 4) 10) 3) 5/ 6]

* Common crossover operators

* Uniform crossover: each bit is selected randomly (50% chance, typically, or
proportionally based on parents’ fitness)

[7; 2/ - 4’ - 5' I]

Doesn’t work for TSP: repetition of cities!
BEls, 0,8 10, 3 @6l g

Genetic Algorithm: Recombination

[728|9410]|35 6]
 Parents

[7; 2; 8; 9; 4) 10; 3; 5/ 6] Mappings: 9 <-> ., 4 <-> I, 10 <->I
bx x x | FORGRZ| x x x]

[x x x]9 4 10 | x x X]

 Partially mapped crossover:

Copy everything that doesn’t cause repetition
crossover that works for TSP ©

(1) Choose 2 random cuts [x 2 8 |[ONENZ| 3 5 x]

(2) Create mappings from the middle 36519410]x2 8]
portion Use mappings to resolve repetitions

(3) Copy the rest if it doesn’t cause 7 = already in, mapping 10 <->‘, but 10
repetition and also already in, mapping 9 <-> @0, 9 not in!
(4) Use mappings to resolve 9 2 8 |[HOUEHA| 3 5 4]

repetitions 36594107 2 8]

Genetic Algorithm: Mutation

* Selecting parents for recombination based on fitness = over time,
the populations will consists of more and more similar chromosomes

* This means the GA is heading towards some local optimum
 Random mutations moves (some) chromosomes from that local region
* Allow the GA to escape the local optima

e Common types of mutation
* Element change =2 randomly change the value of one chromosome element

[7,2,8,9,4,10,3,5,6] 2 [7,2,8,9,4,10, 8, 5, 6]

e Doesn’t work for TSP!

Genetic Algorithm: Mutation

* Selecting parents for recombination based on fitness = over time,
the populations will consists of more and more similar chromosomes

* This means the GA is heading towards some local optimum
 Random mutations moves (some) chromosomes from that local region
* Allow the GA to escape the local optima

e Common types of mutation
* Element swap =2 randomly choose two elements and exchange their values
[7,2,8,9,4,10,3,5,6] > [7,2,3,9,4,10,8,5, 6]

e Works for TSP!

Genetic Algorithm: Selection

* How do we choose the parents which to recombine

* Conflicting objectives
* We want to give better chances to better chromosomes

* But if we always recombine the same few chromosomes, we will very quickly
obtain a very uniform population

* We typically try to balance between the two

* If the population becomes too uniform — diversify
 Need a measure for diversity of the population
* By increasing the chance of mutation or
* Relaxing the selection pressure (based on fitness)

Genetic Algorithm: Selection

« Common types of selection:
 Roulette wheel
* Tournament

* Roulette wheel (or proportional) selection: probability of being selected for
reproduction proportional to the fitness of the chromosome

P(X) = f(X) / TS AX)

* Let us have a population of 5 chromosomes and let
© f(X,)) =10, f(X,) = 20, f(X;) = 25, f(X,) = 25, f(X;) =20 -> convert into probabilities

P(X,) P(X,) P(X5) P(X,) P(X;)

0 0.1 0.3 0.55 0.8 1

Genetic Algorithm: Selection

« Common types of selection:
* Roulette wheel
* Tournament

 Tournament selection
e Select randomly N chromosomes and find the best among them (with best)
e To get two parents, we can:
 Run two tournaments, select winner from each
 Run one tournament, select two best chromosomes

* Selection pressure: defined by N: if N is big, more pressure
* Q:whatif N =57

* Elitism: placing (keeping) one or more best chromosomes from the previous
population into the next population

* Keeping the best solution found throughout the search

Takeaways

 Discrete optimization algorithms (aka combinatorial optimization) search
over a large space of states
* Each state if one possible solution
* Q: differences w.r.t. state space search problems?

* Metaheuristic strategies define how to search through this large space, in
order to find the good/near-optimal solution

* Single-point search
e Single solution examined in each iteration
* (O: How does simulated annealing avoid local optima?

* Population-based search
* A population of possible solutions, changed between iterations
* Q: How does genetic algorithm avoid local optima?

Questions?

Pitanja?

é¢Preguntas?
Fragor?

BHHE1M|]

Porandukuéra?

Questlons?

Vragen? Epwtl’]GElg,

eali

c

! HET pwusimusi?
o =
Z Sorusu olan? g BREX? é
3 Fragen'-’

Pytan a?
¢opuU Blu0(]

Y

	Default Section
	Slide 1: Metaheuristic Search Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Recap: State Space Search
	Slide 4: Recap: Heuristic Search
	Slide 5: Heuristics
	Slide 6: State Space Search vs. Constrained Optimization
	Slide 7: Discrete Constrained Optimization
	Slide 8: State Space Search vs. Constrained Optimization
	Slide 9: Heuristics vs. Metaheuristics
	Slide 10: Discrete Constrained Optimization: Example
	Slide 11: Metaheuristic search strategies
	Slide 12: Classifying metaheuristics
	Slide 13: Content
	Slide 14: Single-Point Search
	Slide 15: Simple Descent/Ascent
	Slide 16: Deepest Descent
	Slide 17: Local and Global Optima
	Slide 18: Simulated Annealing
	Slide 19: Simulated Annealing
	Slide 20: Simulated Annealing
	Slide 21: Content
	Slide 22: Population-Based Search
	Slide 23: Genetic Algorithm
	Slide 24: Genetic Algorithm
	Slide 25: Genetic Algorithm: Chromosome
	Slide 26: Genetic Algorithm: Recombination
	Slide 27: Genetic Algorithm: Recombination
	Slide 28: Genetic Algorithm: Recombination
	Slide 29: Genetic Algorithm: Recombination
	Slide 30: Genetic Algorithm: Recombination
	Slide 31: Genetic Algorithm: Mutation
	Slide 32: Genetic Algorithm: Mutation
	Slide 33: Genetic Algorithm: Selection
	Slide 34: Genetic Algorithm: Selection
	Slide 35: Genetic Algorithm: Selection
	Slide 36: Takeaways
	Slide 37: Questions?

