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Recap: State Space Search

• We will denote the set of all states (state space) with S
• The state space is commonly so large that we can’t iteratively list all states

• All states in the space are not really „known” in advance

• When in state s, we typically only then compute the set of possible next states

A state space search problem is defined with a triple (s0, succ, goal) where s0 ∈ S is the 
initial state, succ: S → ℘(S) is the successor function that for some state s returns a set 

of states that we can transition to from s, and goal: S → {True, False} is a predicate
(function that returns a boolean value) that for a given state s determines if s is a goal 
state or not (there can be multiple states that satisfy the goal predicate). A state space 

search (typically) ends as soon as any goal state is found. 

State space search



Recap: Heuristic Search 

• There are generally two types of search

• Uninformed (blind) search
• No additional information about the problem, that could indicate whether 

one state is perhaps closer to the goal state than another state

• Informed (directed, heuristic) search
• Additional information helps avoid some states and speed up the search 

• Problem-specific estimate of state’s distance from the goal is available



Heuristics

• If we have a (vague) idea in which direction to look for the solution, 
why not use this information to improve the search?

• Heuristics = problem-specific rules („vague ideas”) about the nature 
of the problem
• Purpose: direct the search towards the goal so it becomes more efficient

Heuristic function h: S → ℝ+ assigns to each state s ∈ S an estimate of the distance 
between that state and the goal state

Heuristic function



State Space Search vs. Constrained Optimization

• In State Space Search, we’re looking to reach the goal state with the 
minimal cost (maximal gain)
• Heuristics (task-specific) help reduce the search space

• The solution is the path of transitions from s0 to goal state

• In Discrete Constrained Optimization (aka combinatorial 
optimization), we search across a very large space of states, but each 
state represents one possible solution
• There is a function that assigns a quality value to each state, indicating how 

good of a solution it may be

• There is often also a set of constraints: if a state does not satisfy the 
constraints it is not a valid solution



Discrete Constrained Optimization

• Optimal state (or the state with the best f that was found) is the solution

• No path between start and goal state – commonly there isn’t even a clear start state

• We’re not making moves like in classic SSS problems, just searching for the best 
possible solution over a very large space of candidate solutions

In discrete constrained optimization, we search for an optimal state in large space of 
possible states. Each state X can be seen as consisting of n variables X = x1, x2, ..., xn, each 

with a corresponding domain D1, D2, ..., Dn ⊆ ℤ (whole numbers). The optimal state is 
the one that maximizes/minimizes the objective function f: D1 × ··· × Dn → ℝ. Finally, the 

constraints C1, ..., Cm, with Ci⊆ D1, D2, ..., Dn define the subsets of the state space that 
encompass valid solutions to the problem

Discrete Constrained Optimization Problems



State Space Search vs. Constrained Optimization

• State Space Search
• Goal states represent a very small portion of the states in the search space
• Only paths that reach one of goal states are (candidate) solutions
• Explicit transitions between the states (succ function)
• Problem: how to get to a goal state with minimal cost/maximal gain

• Discrete Constrained Optimization
• Every state represents one candidate solution to the problem
• Each state (candidate solution) has a measure of “quality” – the objective 

function f – assigned to it
• No explicit „start state” nor „state transitions” – instead neighbourhood (or 

distance) between states (but not in the sense of transition cost)
• Problem: how to find the state with minimal/maximal value of the objective f



Heuristics vs. Metaheuristics

• Heuristics in State Space Search
• Trim the number of paths to be explored
• Estimate the distance of the current state from the goal state 

• Discrete Constrained Optimization
• No goal state, every state is a possible solution
• Often no explicit „start state” nor explicit „state transitions”
• Q: Where to start? Where to look next after evaluating some state?

• When in a state, no idea how „far” that state/solution is from the optimal state/solution

• Concept of distance / neighbourhood in DCO problems:
• Measures how similar two states = candidate solutions are (not a cost of transitioning 

between states, there are no transitions!)

• Metaheuristic frameworks: search strategies for selecting the next 
state(s)/solution(s) to be evaluated, typically in a problem-agnostic manner
(applicable to any DCO problem) 



Discrete Constrained Optimization: Example

• NP-Hard combinatorial problem (no known polynomial time algorithm for solving 
it) – factorial complexity – Hamiltonian cycle of a (fully connnected) graph

• Real-world applications: vehicle routing, chip manufacturing, ...  

• TSP as combinatorial optimization:
• X: x1, x2, ..., xn, xn+1

• D1 = D2 = ... = Dn = Dn+1 = {1, 2, ..., n}
• f(X): d(x1, x2) + d(x2, x3) + ... + d(xn-1, xn) + d(xn, xn+1)

• Constraints: 
• x1 = xn+1 (some concrete city from {1, ..., n})
• x1 ≠ x2 ≠ x3 ≠ ... ≠ xn-1 ≠ xn (no repetition of cities along the path)  

The travelling salesman needs to visit n cities and wants to make the minimal possible 
path. Given a list of cities and distances between each pair of cities, find the shortest 

possible route that visits each city exactly once and returns to the original city.   

Traveling Salesman Problem



Metaheuristic search strategies

• Metaheuristics strategies guide the search process
• Direct the search (selection of next states to evaluate) so that the chances of finding a good 

(or near-optimal) state increase 

• They are approximate – no guarantee of finding an optimal solution

• Most commonly, they are also non-deterministic (and most often stochastic) –
there is randomness involved

• Metaheuristics are problem-agnostic, but may use problem-specific heuristics as 
part of the strategy (but as „black boxes”, without caring what they are)



Classifying metaheuristics

• Single point search (one candidate solution examined at a time) vs. 
Population-based search (a set of candidates examined at each step)

• Nature-inspired (e.g., evolutionary algorithms or ant colony 
optimization) vs. Others (not nature inspired)

• Static (f does not change during search) vs. Dynamic objective 
function (changes during the search)

• Using memory vs. Memory-less
• Memory as in experience from previous searches on similar/same problem 



Content

• Constrained Discrete Optimization & Metaheuristics

• Single Point Search Algorithms

• Population-Based Algorithms
• Genetic algorithm



Single-Point Search

• Single point search algorithms, also known as trajectory methods, 
examine one state (candidate solution) at a time 
• They then choose the next candidate solution to be examined, typically from a 

local neighbourhood of the current solution 

• The neighbourhood of a state N(s) needs to be defined for a concrete problem
• In principle, similar purpose as succ in state space search

• But succ in SSS typically clearly defined by the problem, N(s) in DCO not obvious

• Local search
• Choose (usually randomly) an initial solution (s0)

• Given N(s), determine the neighbourhood of current solution s

• Explore the neighbourhood and select one neighbor

• Proceed with the selected neighbor as the next state/solution



Simple Descent/Ascent

• We will assume we’re minimizing the objective f
• Thus, the algorithms will be called „descent”

• If the objective is to be maximized, we would be 
„ascending”

• Simple Descent
• When in a state s, selects any neighbour s’ for which 

f(s’) < f(s) (in case of maximization, f(s’) > f(s)) 

• The order of exploration of neighbours in N(s) is 
underspecified, but typically random

simple_descent(s, N)
while True 

better = False

for s’ in N(s) 
if f(s’) < f(s)

s = s’

better = True

break

if not better

break

return s



Deepest Descent

• We will assume we’re minimizing the objective f
• Thus, the algorithms will be called „descent”

• If the objective is to be maximized, we would be 
„ascending”

• Deepest Descent
• Greedy strategy: in each step we select the neighbour 

with the smallest f(s’) 

• The order of exploration of neighbours in N(s) is 
underspecified, but doesn’t matter because we have to 
check all neighbours anyways

• Guaranteed to lead to the closest local optimum
(minimum) from the initial state

deepest_descent(s,N)
while True 

best = s

for s’ in N(s) 
if f(s’) < f(best)

best = s’

if best == s

break

else

s = best 

return best



Local and Global Optima

• With greedy search (deepest descent) 
• We are guaranteed to find the closest 

local optimum from the initial state

• Q: is that good or bad?
• Depends where we start

• We typically choose the starting state 
randomly

• Solution: run the „deepest descent” 
multiple times 
• Each time from a different initial state

multistart_deepest_descent(iters)

best = null # f(null) = +inf

for i in 1 to iters

s0 = randomly select initial state s0
s = deepest_descent(s0)

if f(s) < f(best)

best = s

return best          

Image from: https://www.allaboutlean.com/polca-
pros-and-cons/local-global-optimum/

https://www.allaboutlean.com/polca-pros-and-cons/local-global-optimum/


Simulated Annealing

• Simulated annealing is a metaheuristic strategy that borrows the idea from from 
material physics about reaching the minimal energy state 
• For example, for glass or metal

• Annealing: heating the material and then slowly cooling it

Image from: https://www.mechstudies.com/annealing-process-definition-meaning-types-applications/

https://www.mechstudies.com/annealing-process-definition-meaning-types-applications/


Simulated Annealing

• Annealing: heating the material and then slowly cooling it

• Compared to strict „descents”, SA allows to select the next state with larger value
of f („hotter solution” or „worse solution”)

• With decreasing probability as the search procedes

• Allows for more of „random search” in the early stages and more focused 
(minimizing) search later on 

• Selects (randomly) a state from the neighbourhood and accepts it according to 
the following probability p(s’)

1 if f(s’) < f(s) # always accept a better solution  

p(T, s’, s) = 
𝑒−(𝑓 s′ −𝑓(s))/T otherwise



Simulated Annealing

• The temperature T plays the crucial 
role
• If T = 0, p(T, s’, s) = 0

• It is gradually reduced
• Linear annealing: T -> a*T, where a is a 

constant (typically between 0.8 and 
0.99) 

• When does it end?
• Fixed number of iterations
• Or when T becomes close enough to 0

1 if f(s’) < f(s) # always accept a better solution  

𝑒−(𝑓 s′ −𝑓(s))/T otherwise
p(T, s’, s) = 

simulated_ annealing(s0, N , T,end)
iter = 0

while not end(T, iter)

iter = iter + 1

s’ = randomly select from N(s)
if f(s’) < f(s)

s = s’

else

p = exp(- (f(s’) < f(s))/T)

p’ = random(0, 1)

if p’ < p

s = s’

return s
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Population-Based Search

• At each step, more than a single solution is evaluated – we keep the 
population of solutions
• Between the iterations, the population is partially or completely replaced

• Nature-inspired population-based search algorithms
• Draw inspiration from processed in nature / biology

• Genetic algorithm (more generally, evolutionary algorithms)

• Ant Colony Optimization

• Swarm Optimization

• Artificial Imunological Systems

• ...



Genetic Algorithm

• Evolution as inspiration – each solution is a “chromosome”

• The solutions (chromosomes) with better value of the objective 
function have higher chances of “survival” and for “reproduction”

• New solutions are created from existing ones via recombination
• The exact recombination operation depends on how chromosomes look like

• Finally, the mutation (random change of some value) in the 
chromosome is possible with some probability
• Allows for bigger jumps in the solution space and escaping local optima



Genetic Algorithm

• Objective function value of the 
solution f(s) is called fitness in GA

• Let S be the size of the population

• end function determines when the 
algorithm finishes, based on

(1) fitness of the best found solution or

(2) average fitness of the population or

(3) number of iterations

genetic_algorithm(S,end)

p = create_init_population(S)

iter = 0

evaluate(p)

while not end(p, iter)

iter = iter + 1

p’ = recombine(p)

mutate(p’) 

evaluate(p’)

p = select(p ∪ p’)

return p



Genetic Algorithm: Chromosome

• Q: How do we represent one candidate solution as a chromosome 
• Depends on the problem

• Travelling salesman problem
• A chromosome is a vector of n-1 values: X: x2, ..., xn

• Because x1 and xn+1 are fixed (the start/end city is given)

• Fitness of the chromosome? f(X): d(x1, x2) + d(x2, x3) + ... + d(xn-1, xn) + d(xn, xn+1)

• Population initialization
• Randomly generate a sample of S different vectors, each with all n-1 numbers (but in 

different order), without repeating the numbers?

• Q: How many such vectors are there?

• Q: Write an algorithm for create_init_population(S)!



Genetic Algorithm: Recombination

• TSP, toy example: 10 cities, start and end in city 1

• Two example chromosomes
• Chromosome #1:  [7, 2, 8, 9, 4, 10, 3, 5, 6]

• Chromosome #2:  [3, 6, 5, 10, 6, 7, 4, 2, 8]

• Recombination (also called crossover) needs to create „children”
chromosomes (one or more) from the „parent” chromosomes 
• The children must also be valid solutions for the problem 

• For TSP that means no repetition of cities!



Genetic Algorithm: Recombination

• Parents
[7, 2, 8, 9, 4, 10, 3, 5, 6]

[3, 6, 5, 10, 6, 7, 4, 2, 8]

• Common crossover operators
• Single-point crossover: select (typically randomly) the location at which to cut 

the chromosomes and „exchange them” → two „child” chromosomes

[7, 2, 8, 10, 6, 7, 4, 2, 8]

[3, 6, 5, 9, 4, 10, 3, 5, 6]
Doesn’t work for TSP: repetition of cities!



Genetic Algorithm: Recombination

• Parents
[7, 2, 8, 9, 4, 10, 3, 5, 6]

[3, 6, 5, 10, 6, 7, 4, 2, 8]

• Common crossover operators
• 2 (or more)-point crossover: select two or more locations at which to cut the 

chromosomes and „exchange them” → two „child” chromosomes

[7, 2, 8, 10, 6, 7, 4, 5, 6]

[3, 6, 5, 9, 4, 10, 3, 2, 8]
Doesn’t work for TSP: repetition of cities!



Genetic Algorithm: Recombination

• Parents
[7, 2, 8, 9, 4, 10, 3, 5, 6]

[3, 6, 5, 10, 6, 7, 4, 2, 8]

• Common crossover operators
• Uniform crossover: each bit is selected randomly (50% chance, typically, or 

proportionally based on parents’ fitness)

[7, 2, 5, 10, 4, 7,   4, 5, 8]

[3, 6, 8,   9, 6, 10, 3,  2, 6]
Doesn’t work for TSP: repetition of cities!



Genetic Algorithm: Recombination

• Parents
[7, 2, 8, 9, 4, 10, 3, 5, 6]
[3, 6, 5, 10, 6, 7, 4, 2, 8]

• Partially mapped crossover: 
crossover that works for TSP☺

(1) Choose 2 random cuts
(2) Create mappings from the middle 
portion
(3) Copy the rest if it doesn’t cause 
repetition and 
(4) Use mappings to resolve 
repetitions

[7  2  8 | 9  4  10 | 3  5  6]
[3  6  5 | 10  6  7 | 4  2  8]

Mappings: 9 <-> 10, 4 <-> 6, 10 <-> 7

[x  x  x | 10  6  7 | x  x  x]
[x  x  x | 9  4  10 | x  x  x]

Copy everything that doesn’t cause repetition

[x 2  8 | 10  6  7 | 3  5 x]
[3  6  5 | 9  4  10 | x 2  8]

Use mappings to resolve repetitions
7 → already in, mapping 10 <-> 7, but 10 
also already in, mapping 9 <-> 10, 9 not in! 

[9 2  8 | 10  6  7 | 3  5 4]
[3  6  5 | 9  4  10 | 7 2  8]



Genetic Algorithm: Mutation

• Selecting parents for recombination based on fitness → over time, 
the populations will consists of more and more similar chromosomes

• This means the GA is heading towards some local optimum
• Random mutations moves (some) chromosomes from that local region

• Allow the GA to escape the local optima

• Common types of mutation
• Element change→ randomly change the value of one chromosome element

• Doesn’t work for TSP!

[7, 2, 8, 9, 4, 10, 3, 5, 6] → [7, 2, 8, 9, 4, 10, 8, 5, 6]



Genetic Algorithm: Mutation

• Selecting parents for recombination based on fitness → over time, 
the populations will consists of more and more similar chromosomes

• This means the GA is heading towards some local optimum
• Random mutations moves (some) chromosomes from that local region

• Allow the GA to escape the local optima

• Common types of mutation
• Element swap→ randomly choose two elements and exchange their values

• Works for TSP!

[7, 2, 8, 9, 4, 10, 3, 5, 6] → [7, 2, 3, 9, 4, 10, 8, 5, 6]



Genetic Algorithm: Selection

• How do we choose the parents which to recombine

• Conflicting objectives
• We want to give better chances to better chromosomes
• But if we always recombine the same few chromosomes, we will very quickly 

obtain a very uniform population
• We typically try to balance between the two

• If the population becomes too uniform – diversify
• Need a measure for diversity of the population
• By increasing the chance of mutation or
• Relaxing the selection pressure (based on fitness)  



Genetic Algorithm: Selection

• Common types of selection: 

• Roulette wheel

• Tournament

• Roulette wheel (or proportional) selection: probability of being selected for 
reproduction proportional to the fitness of the chromosome

P(Xi) = f(Xi) / σ𝑗
𝑆 f(Xj)

• Let us have a population of 5 chromosomes and let 
• f(X1) = 10, f(X2) = 20, f(X3) = 25, f(X4) = 25, f(X5) = 20 → convert into probabilities

P(X1) P(X2) P(X3) P(X4) P(X5)

0 0.1 0.3 0.55 0.8 1



Genetic Algorithm: Selection

• Common types of selection: 
• Roulette wheel
• Tournament

• Tournament selection 
• Select randomly N chromosomes and find the best among them (with best f)
• To get two parents, we can: 

• Run two tournaments, select winner from each
• Run one tournament, select two best chromosomes

• Selection pressure: defined by N: if N is big, more pressure
• Q: what if N = S?

• Elitism: placing (keeping) one or more best chromosomes from the previous 
population into the next population
• Keeping the best solution found throughout the search 



Takeaways

• Discrete optimization algorithms (aka combinatorial optimization) search 
over a large space of states
• Each state if one possible solution
• Q: differences w.r.t. state space search problems?

• Metaheuristic strategies define how to search through this large space, in 
order to find the good/near-optimal solution  
• Single-point search

• Single solution examined in each iteration
• Q: How does simulated annealing avoid local optima?

• Population-based search
• A population of possible solutions, changed between iterations
• Q: How does genetic algorithm avoid local optima?
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