[l CAIDAS WiNLP

ALGORITHMS IN Al & DATA SCIENCE 1 (AKIDS 1)

-
. %/ 4
=
A.
w.
4 h

h

V,' -.‘ : v

Adversarial Search
(aka Game Playing)

Prof. Dr. Goran Glavas

11.1.2024

Content

* Introduction

* Minimax

* Heuristic Minimax
* Alpha-Beta Pruning

Based on the materials from Prof. Dr. Jan Snajder:
https://www.fer.unizg.hr/ download/repository/Al-4-GamePlaying.pdf

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/www.fer.unizg.hr/_download/repository/AI-4-GamePlaying.pdf

Game Playing: Adversarial Search

 Games also represent a state space search problem, but with the
difference that there is an adversary

* In each game state one must make an optimal decision about which
move to make next, i.e., one must find an optimal strategy

Game Playing: Adversarial Search

* We will focus on games that are
* Two-player: that is, one adversary
* Deterministic: no stochasticity/randomness like dice rolling

* Complete information: both players have complete knowledge of the game
(e.g., know the rules, see the full board, etc.)

* Zero sum: one player winning (losing) means the other player losing (winning)

Adversarial Search (Game): Formalization

-

\-

Game (Adversarial Search Problem)

Game is a state space search problem quadruple (s, succ, terminal, utility) where s is
the initial game state, succ : S - ©(S) defines legal game moves (i.e., transitions
between states), terminal: S — {True, False} is a predicate that tests if a state is a game

end state and utility: S — R is a payoff function that assigns numeric values to terminal

(end) states of the game for the player(s).

J

* For example, in chess there are three possible outcomes

 Win, loss, draw
* utility(s) € {+1, O, -1}

* Initial state s, and successor function succ implicitly define the game tree

Game I[ree

[

X[0

X[{O|X

X|ojOo

X0

X[0X
0|0|X

X/ X0

X|0

X0X

X0 X

+1

-1

Content

* Introduction

* Minimax

* Heuristic Minimax
* Alpha-Beta Pruning

Minimax method

 Let’s call the players MIAX (,,us”, the computer) and MIN (the opponent)
e MAX tries to maximize its win, MIN tries to minimize MAX’s win
 Players take turn: nodes at even depths — MAX; odd depth — MIN

MAX

ity ems | AANADN AANAN A A A
with utility scores
3 2 1 1 0 2 -5 3 1

For MAX

Minimax method: Optimal Strategy

* O: What is the optimal game-playing strategy for MAX?
* Q: Is it to take a step in the direction of its own maximal utility?

A MAX
v v v MIN

Minimax method: Optimal Strategy

 MAX’s optimal strategy is the one that ensures the highest win for
MAX, but assuming that MIN uses the same strategy

* Each player chooses a strategy so as to minimize the maximum loss

/\ 1 MAX
* To determine the optimal
strategy of a player who's turn is
next, we compute the minimax \/ 1 \/ o Vs M

value of the root node

MAX

Minimax value

Minimax value

-

The minimax value of a state s is defined recursively:

=

utility(s) if terminal(s)
m(s) = MaXiequecis) M() if s is a MAX node
MiNcoyces) M(t) if s is a MIN node

_ - J

m(sy) = max(min(3, 2, 1),
min(1, O, 2),
min(-5, 3, 1)) MAX

Minimax value: algorithm

max val (s)
if terminal (s)

m r:etl:ui:'zfutili ty (s) utility(s) if terminal(s)

for © in succ(s) m(s) 5 M3Xiesuce(s) m(t) if s is a MAX node
oy M(t) if s is a MIN node

pu—

m = max(m, min val(t)) min
return m -

tesucc

min val (s)
if terminal (s)
return utility(s)

m = +inf M
for © in succ(s)
m = min(m, max val(t)) MIN
return m
MAX

Note that this is essentially a DFS implemented
via two mutually recursive functions

Minimax: remarks

* In practice, the opponent’s strategy is unknown
* Most probably different from that of MAX player

* The opponent’s moves therefore cannot be predicted perfectly (otherwise
the game would be boring anyways)

e Because of this —in order to make the optimal move, in each turn the
players need to re-compute their optimal strategy, starting from the
current position as the root of the game tree

* Minimax is a depth-first search
* O: Time and space complexity?

Content

* Introduction

* Minimax

* Heuristic Minimax
* Alpha-Beta Pruning

Imperfect decisions

* Minimax is a DFS — that makes its time complexity O(b™)
* b: the branching factor of the game
* m: total number of moves needed for the game to end (reach terminal state)

* For most games b and m are big enough that we don’t have the time
to search through the complete game tree all the way to terminals

* We need to cut the search off at a certain depth d (we can afford at
most runtime of O(bY))
e For states at depth d, we need to estimate the utility with a heuristic

* E.g., in chess, a simple heuristic can be the sum of ,worth” of remaining
pieces (vs. the value of remaining pieces of the opponent)

Heuristic minimax

max val (s, d, h)
if terminal (s)

return utility(s) Game heuristics typically
if d =0 combinations of different features
return h(s)
m = -inf h(s) = w *x,(s) + w,*x,(s) + ... + w_ *x(s)
for © in succ(s)
o = max(m, min val(t, d=1, 2)) o Example features for chess:
return m .. .
* %, =value of all my remaining pieces
* x,=value of all opponent’s remaining pieces
min val(s, d, h) * x,=do | have a queen left
if terminal(s) o
return utility (s)
ifr:t:nol . * Weights w,, w,, ..., w, indicate how
s important each feature is

for ¢t in succ(s)

m = max(m, max val(t, d-1, h))
return m

Example

* : What is the outcome of the game if both players can explore all nodes (until
game terminal nodels)?

* : What is the outcome if each player can search only two levels deep?

MAX

SE MIN
Non-terminal nodes
with heuristic scores 1 -2 3 2 0 5

Terminal nodes §7 \? i\/
with utility scores A A o

Example

* The two players are unlikely to use the same heuristic

* O: what is the end state (outcome) if each player searches two levels
deep but use different heuristics (MAX blue, MIN red)?

* Important: both heuristics are estimates of utility for MAX!

* Depends on whose
turn it is ©

Content

* Introduction

* Minimax

* Heuristic Minimax
* Alpha-Beta Pruning

Alpha-beta pruning

* Number of states increases exponentially with the number of turns
* We can effectively cut this number in half with alpha-beta pruning

* Q: Can we compute the minimax value of a node without traversing
the whole game (sub)tree?

* Yes!

m(s) = max(min(3, 2, 1),
min(1, X, X),
min(-5, X, X)) =1

MAX

Alpha-beta pruning

* We prune whenever we’re certain that unexplored moves cannot change the
result of the max/min operation

e Cannot lead to a move that is better than the best found so far
* If pruning below the MIN node (but when root is MAX node): alpha pruning
* If pruning below the MAX node (but when root is MIIN node): beta pruning

o MAX MIN
ms<saQ
o M mMIN MAX
m
MAX MIN

« — the largest MAX value found 3 — the smallest MIN value found

Minimax with alpha-beta pruning

beta pruning alpha pruning
max val (s,a, B)
if terminal (s)
return utility(s)

min val (s, a, B)
if terminal (s)
return uvutility(s)

m = {
for ¢t in succ(s) for ¢t in succ(s)
m = max(m, min val(t, m, B)) m = min(m, max val(t, o, m))
if m 2 B if m £ «
return (3 return o
return m return m

m = d

Initially: max val(s,,-inf, +inf)

Alpha-beta pruning example

MAX

MAX

MIN

Alpha-beta pruning example

MAX

MAX

Alpha-beta pruning example

MAX

MAX

MIN

Adversarial search: takeaways

 Game playing is a search problem in which opposing players take
turns (i.e., we have an adversary)

* Minimax algorithm finds an optimal strategy that minimizes the
maximum expected loss that an opponent can inflict

* In real games it is impossible to search through the complete game
tree, thus we cut the search off at a certain depth and use a heuristic
function to estimate the values of game states

e Different players use different heuristic functions
* The opponent’s heuristic is in principle unknown

* Alpha-beta pruning reduces the number of nodes to traverse

Questions?

Pitanja?

é¢Preguntas?
Fragor?

BHHE1M|]

Porandukuéra?

Questlons?

Vragen? Epwtl’]GElg,

eali

c

! HET pwusimusi?
o =
Z Sorusu olan? g BREX? é
3 Fragen'-’

Pytan a?
¢opuU Blu0(]

Y

	Default Section
	Slide 1: Adversarial Search (aka Game Playing) Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Game Playing: Adversarial Search
	Slide 4: Game Playing: Adversarial Search
	Slide 5: Adversarial Search (Game): Formalization
	Slide 6: Game Tree
	Slide 7: Content
	Slide 8: Minimax method
	Slide 9: Minimax method: Optimal Strategy
	Slide 10: Minimax method: Optimal Strategy
	Slide 11: Minimax value
	Slide 12: Minimax value: algorithm
	Slide 13: Minimax: remarks
	Slide 14: Content
	Slide 15: Imperfect decisions
	Slide 16: Heuristic minimax
	Slide 17: Example
	Slide 18: Example
	Slide 19: Content
	Slide 20: Alpha-beta pruning
	Slide 21: Alpha-beta pruning
	Slide 22: Minimax with alpha-beta pruning
	Slide 23: Alpha-beta pruning example
	Slide 24: Alpha-beta pruning example
	Slide 25: Alpha-beta pruning example
	Slide 26: Adversarial search: takeaways
	Slide 27: Questions?

