
Adversarial Search
(aka Game Playing)

Prof. Dr. Goran Glavaš

11.1.2024

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Introduction

• Minimax

• Heuristic Minimax

• Alpha-Beta Pruning

Based on the materials from Prof. Dr. Jan Šnajder:
https://www.fer.unizg.hr/_download/repository/AI-4-GamePlaying.pdf

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/www.fer.unizg.hr/_download/repository/AI-4-GamePlaying.pdf

Game Playing: Adversarial Search

• Games also represent a state space search problem, but with the
difference that there is an adversary

• In each game state one must make an optimal decision about which
move to make next, i.e., one must find an optimal strategy

Game Playing: Adversarial Search

• We will focus on games that are
• Two-player: that is, one adversary

• Deterministic: no stochasticity/randomness like dice rolling

• Complete information: both players have complete knowledge of the game
(e.g., know the rules, see the full board, etc.)

• Zero sum: one player winning (losing) means the other player losing (winning)

Adversarial Search (Game): Formalization

• For example, in chess there are three possible outcomes
• Win, loss, draw

• utility(s) ∈ {+1, 0, −1}

• Initial state s0 and successor function succ implicitly define the game tree

Game is a state space search problem quadruple (s0, succ, terminal, utility) where s0 is
the initial game state, succ : S → ℘(S) defines legal game moves (i.e., transitions

between states), terminal: S → {True, False} is a predicate that tests if a state is a game
end state and utility: S → ℝ is a payoff function that assigns numeric values to terminal

(end) states of the game for the player(s).

Game (Adversarial Search Problem)

Game Tree

Content

• Introduction

• Minimax

• Heuristic Minimax

• Alpha-Beta Pruning

Minimax method

• Let’s call the players MAX („us”, the computer) and MIN (the opponent)

• MAX tries to maximize its win, MIN tries to minimize MAX’s win

• Players take turn: nodes at even depths – MAX; odd depth – MIN

Terminal nodes
with utility scores

For MAX

Minimax method: Optimal Strategy

• Q: What is the optimal game-playing strategy for MAX?
• Q: Is it to take a step in the direction of its own maximal utility?

Minimax method: Optimal Strategy

• MAX’s optimal strategy is the one that ensures the highest win for
MAX, but assuming that MIN uses the same strategy

• Each player chooses a strategy so as to minimize the maximum loss

• To determine the optimal
strategy of a player who’s turn is
next, we compute the minimax
value of the root node

Minimax value

m(s0) = max(min(3, 2, 1),

min(1, 0, 2),

min(-5, 3, 1))

The minimax value of a state s is defined recursively:

Minimax value

utility(s) if terminal(s)
maxt∈succ(s) m(t) if s is a MAX node
mint∈succ(s) m(t) if s is a MIN node

m(s)

Minimax value: algorithm

utility(s) if terminal(s)
maxt∈succ(s) m(t) if s is a MAX node
mint∈succ(s) m(t) if s is a MIN node

m(s)

max_val(s)

if terminal(s)

return utility(s)

m = -inf

for t in succ(s)

m = max(m, min_val(t))

return m

min_val(s)

if terminal(s)

return utility(s)

m = +inf

for t in succ(s)

m = min(m, max_val(t))

return m

• Note that this is essentially a DFS implemented
via two mutually recursive functions

Minimax: remarks

• In practice, the opponent’s strategy is unknown
• Most probably different from that of MAX player

• The opponent’s moves therefore cannot be predicted perfectly (otherwise
the game would be boring anyways)

• Because of this – in order to make the optimal move, in each turn the
players need to re-compute their optimal strategy, starting from the
current position as the root of the game tree

• Minimax is a depth-first search
• Q: Time and space complexity?

Content

• Introduction

• Minimax

• Heuristic Minimax

• Alpha-Beta Pruning

Imperfect decisions

• Minimax is a DFS – that makes its time complexity O(bm)
• b: the branching factor of the game
• m: total number of moves needed for the game to end (reach terminal state)

• For most games b and m are big enough that we don’t have the time
to search through the complete game tree all the way to terminals

• We need to cut the search off at a certain depth d (we can afford at
most runtime of O(bd))
• For states at depth d, we need to estimate the utility with a heuristic
• E.g., in chess, a simple heuristic can be the sum of „worth” of remaining

pieces (vs. the value of remaining pieces of the opponent)

Heuristic minimax

max_val(s, d, h)

if terminal(s)

return utility(s)

if d = 0

return h(s)

m = -inf

for t in succ(s)

m = max(m, min_val(t, d-1, h))

return m

min_val(s, d, h)

if terminal(s)

return utility(s)

if d = 0

return h(s)

m = +inf

for t in succ(s)

m = max(m, max_val(t, d-1, h))

return m

• Game heuristics typically
combinations of different features
h(s) = w1*x1(s) + w2*x2(s) + ... + wn*xn(s)

• Example features for chess:
• x1 = value of all my remaining pieces
• x2 = value of all opponent’s remaining pieces
• x3 = do I have a queen left
• ...

• Weights w1, w2, ..., wn indicate how
important each feature is

Example

• Q: What is the outcome of the game if both players can explore all nodes (until
game terminal nodels)?

• Q: What is the outcome if each player can search only two levels deep?

Terminal nodes
with utility scores

Non-terminal nodes
with heuristic scores

MAX

MIN

Example

• The two players are unlikely to use the same heuristic

• Q: what is the end state (outcome) if each player searches two levels
deep but use different heuristics (MAX blue, MIN red)?
• Important: both heuristics are estimates of utility for MAX!

• Depends on whose

turn it is ☺

Content

• Introduction

• Minimax

• Heuristic Minimax

• Alpha-Beta Pruning

Alpha-beta pruning

• Number of states increases exponentially with the number of turns

• We can effectively cut this number in half with alpha-beta pruning

• Q: Can we compute the minimax value of a node without traversing
the whole game (sub)tree?

• Yes!

m(s) = max(min(3, 2, 1),

min(1, X, X),

min(-5, X, X)) = 1

Alpha-beta pruning

• We prune whenever we’re certain that unexplored moves cannot change the
result of the max/min operation
• Cannot lead to a move that is better than the best found so far

• If pruning below the MIN node (but when root is MAX node): alpha pruning

• If pruning below the MAX node (but when root is MIN node): beta pruning

Minimax with alpha-beta pruning

max_val(s,α,β)

if terminal(s)

return utility(s)

m = α

for t in succ(s)

m = max(m, min_val(t, m, β))

if m ≥ β

return β

return m

min_val(s,α,β)

if terminal(s)

return utility(s)

m = β

for t in succ(s)

m = min(m, max_val(t, α, m))

if m ≤ α

return α

return m

Initially: max_val(s0,-inf, +inf)

alpha pruningbeta pruning

Alpha-beta pruning example

Alpha-beta pruning example

Alpha-beta pruning example

Adversarial search: takeaways

• Game playing is a search problem in which opposing players take
turns (i.e., we have an adversary)

• Minimax algorithm finds an optimal strategy that minimizes the
maximum expected loss that an opponent can inflict

• In real games it is impossible to search through the complete game
tree, thus we cut the search off at a certain depth and use a heuristic
function to estimate the values of game states
• Different players use different heuristic functions

• The opponent’s heuristic is in principle unknown

• Alpha-beta pruning reduces the number of nodes to traverse

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и
тан

н
я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w
ọ
n

ib
e

er
e

?

ค ำถำม?

	Default Section
	Slide 1: Adversarial Search (aka Game Playing) Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Game Playing: Adversarial Search
	Slide 4: Game Playing: Adversarial Search
	Slide 5: Adversarial Search (Game): Formalization
	Slide 6: Game Tree
	Slide 7: Content
	Slide 8: Minimax method
	Slide 9: Minimax method: Optimal Strategy
	Slide 10: Minimax method: Optimal Strategy
	Slide 11: Minimax value
	Slide 12: Minimax value: algorithm
	Slide 13: Minimax: remarks
	Slide 14: Content
	Slide 15: Imperfect decisions
	Slide 16: Heuristic minimax
	Slide 17: Example
	Slide 18: Example
	Slide 19: Content
	Slide 20: Alpha-beta pruning
	Slide 21: Alpha-beta pruning
	Slide 22: Minimax with alpha-beta pruning
	Slide 23: Alpha-beta pruning example
	Slide 24: Alpha-beta pruning example
	Slide 25: Alpha-beta pruning example
	Slide 26: Adversarial search: takeaways
	Slide 27: Questions?

