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Recap: State Space Search

* We will denote the set of all states (state space) with S
* The state space is commonly so large that we can’t iteratively list all states
» All states in the space are not really ,,known” in advance
 When in state s, we typically only then compute the set of possible next states

State space search

A state space search problem is defined with a triple (s, succ, goal) where s, € S'is the
initial state, succ: S - £(S) is the successor function that for some state s returns a set

of states that we can transition to from s, and goal: S - {True, False} is a predicate
(function that returns a boolean value) that for a given state s determines if s is a goal
state or not (there can be multiple states that satisfy the goal predicate). A state space
K search (typically) ends as soon as any goal state is found. /




Recap: State Space Search

* There are generally two types of search

* Uninformed (blind) search

* No additional information about the problem, that could indicate whether
one state is perhaps closer to the goal state than another state

* Informed (directed, heuristic) search
* Additional information helps avoid some states and speed up the search
* Problem-specific estimate of state’s distance from the goal is available




Heuristic Search: Motivation

* Uninformed/blind search relies only on
exact information (initial state,
operators, goal predicate)

 Starting from an initial state, we try to
reach a goal state

* Always considering all possible transitions,
without knowing which is more promising

 Blind search doesn’t leverage additional
information about the nature of the
problem that might make the search
more efficient



Heuristics

* If we have an idea in which direction to look for the solution, why
not use this information to improve the search?

* Heuristics = problem-specific rules about the nature of the problem
* Purpose: direct the search towards the goal so it becomes more efficient

. Heuristic function gl

Heuristic function /1: S — R* assigns to each state s € S an estimate of the distance
between that state and the goal state




Typical state space search problems




Example: 8-Puzzle

think of some examples of heuristic functions
* Estimates of between the state and goal state

: number of displaced squares

: sum of city-block (Manhattan) distances between the
current and correct/final position of each square/number

e Note that <

* If the heuristic is ,good” then it can
the number of states that are before
finding the

initial state

sl

6|54
3|21
1|23
4|56
73 I




Heuristic Search

* Heuristic search algorithms decide on the order of ,,opening” nodes
in the search tree based on nodes’ values for a given heuristic /

* Greedy algorithms
* Greedy best-first search
* Hill-climbing

* Optimal* algorithm
e A-Star (A*)

* *Assuming the heuristic function satisfies certain properties
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Recap: General Search Algorithm

* We define a general search algorithm
* Think of it as abstract search algorithm

search (s,, succ, goal)

* Contains functions, whose concrete implementation coen = [Anit(e)]
0

depends on the choice of the actual search algorithm while len(open) > 0
n = take (open)
* (Dynamic) Set of open nodes — nodes in the search if goal (state(n))
tree that we reached: a ,frontier” of the search tree return n

for m in expand(n, succ)
insert (m, open)
e Generic (abstract) functions: return False

* take(l) — gets the next node from the set of open nodes /
* expand(n, succ) — expands node n using succ
* insert(n, |) —adds node n to the list of open nodes |



Greedy Best-First Search

* If we could somehow know which of the
(states of) open nodes is the closesttoa .4y pest-£s(-, ~voc, cont, o

goal state, we’d pick that state open = [init(s,) ]
while len (open) > 0
e Heuristics estimate how close nodes n = extract-min(open) # min of h
. if goal (state(n))
(their states) are to the goal state return o
for m in expand(n, succ)
* Greedy best-first: in each step takes the H}-heui - h(state(m)) |
node from open with minimal h score insertim, Opf?ccfrﬁfji e

* Like in UCS, open is a priority queue return False

* Only the priority is now given with /(s) and
not the cost of reaching s, cost(s)
* In pseudocode — s.heur is the h(s)



Greedy Best-First Search

greedy-best-fs (s,

yy succ, goal, h)

* Always chooses the node that appears the while len( i) > 0
CIOSESt tO the goal n = extract-min (open) # min of h

if goal (state(n))
return n
for m in expand(n, succ)

* The chosen (whole) path may not be optimal, m.heur = h(state(n))
. , insert(m, open) # heap insertion
but greedy best-first search doesn’t backtrack # according to m.heur

return False

* Q: even if the heuristic is perfect (h(s) = real

minimal distance from s to the goal state), greedy iy Ry
search may not be optimal. Why? 20 ’
2 5
* Greedy doesn’t consider the cost(s), only h(s) 3 )
* In reality, we don’t have an oracle/perfect heuristic e 'h(D):5
Init: A

Goal: B



Greedy Best-First Search

greedy-best-fs (s,

yy succ, goal, h)

* So, greedy best-first search is not optimal while len(open) > ©
. .. n = extract-min (open) # min of h
* [tis also not complete (unless we explicitly if goal(state(n))
keep track of visited states) for m in expand(n, succ)
. .. m.heur = h(state(m))
* There can be a cycle of states with locally minimal insert(m, open) f heap insertion

# according to m.heur

value of h

return False

h(B) =0

* Time complexity: O(b™)

e This is if we don’t consider the maintenance of
the priority queue, otherwise O(b™ log b™)

e Space complexity: O(b™)




Hill-Climbing Search

* Let’s ignore for a moment that greedy best-first search is not optimal

* Space complexity of greedy best-first search — O(b™) — would be
problematic, even if it was optimal

* Hill-Climbing is also ,,greedy” in principle, but does not keep track of
all open nodes at all

* Considers as next state only the ones reachable from current state
* And out of those, picks the one with minimal 5

* GFBS: selects state with ,,globally” (from all known states so far) minimal h
* HC: selects state with locally (only states reachable from current) minimal h



Hill-Climbing Search

* Hill-Climbing is also ,greedy” in principle, but

does not keep track of all open nodes at all hill-climbing(s,, succ, goal, h)
' = init
* Considers as next state only the ones reachable Ehilzn;rézof

from current state if goal (state(n))
. . . . return n
* And out of those, picks the one with minimal 5

M = expand(n, succ)
. if len (M) = 0
* HC: selects state with locally (only states return ialse

reachable from current) minimal h
m = min (M, h)
if h(state(m)) > h(state(n))
return lalse

n =m



Hill-Climbing Search

hill-climbing(s,, succ, goal, h)
n = init(s,)

* Hill-Climbing is easily trapped in the so-called  while Truc:

if goal (state(n))

local optima and therefore obviously return n
e Not Complete M = expand(n, succ)
. if len(M) = 0

* Not Optlmal return False
m = min (M, h)
if h(state(m)) > h(state(n))

* Random restart return False
e Start many times from Lo

different initial states

h(A) = 10 h(B) =0

* Time complexity: O(m =|5]|)

e Space complexity: O(1)
* No ,open” set!
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A* Algorithm

* In principle similar to the greedy best-first algorithm, but makes the
selection based on not just the heuristic but cost + heuristic

expand (n, succ)

* Asin UCS, we compute the cost iiéZZﬁei o (state(n))
of the node when we create it for (o o) in coiotes
nodes = nodes U (s, cost(n)

return nodes

 A* selects the node from ,,open”
as the node n with minimal:

f(n) = cost(n) + h(state(n))



A* Algorithm

A* selects the node from ,,open” as
the node n with minimal:
f(n) = cost(n) + h(state(n))

,open” is (again) a priority queue

It’s possible to revisit the same state

with smaller total cost (c+h)

 Keep track of the smallest discovered cost
for each state

* Hashtable of minimal known cost for
states (v1s1ted: key state, value is
minimal known cost for the state)

astar-search(s,, succ, goal, h)

visited = {}
open = [(s,, h(s,))]
visited[s,] = 0

while len(open) > 0
n = extract-min (open)
if goal (state(n))
return n

for m in expand(n, succ)

f = cost(m) + h(state(m))
if state(m) not in visited
visited[state[m]] = cost(m)

insert (m, open, f) # heap insertion
elif cost(m)< visited|[state[m] ]

visited[state[m]] = cost(m)
inop = False
for | in open
if state(l) == state(m)
decrease-prio (open, 1, f)
inopen = True
break

1f not inop
insert (m, open, f)



A* Algorithm: Example

Task: shortest path from A to Z
Heuristic: /(X) is the air distance from X to Z

h(A) =57 h()) =17
h(B) =31 h(K) =13
h(C) =26 h(L) =32
h(D) =17 h(M) = 40
h(E) =12 h(N) = 61
h(F) =35 h(0) =35
h(G) =30 h(P) =20
h(H) =21 h(R) =27
h(l) = 47 h(S) =25




A* Algorithm: Example

Task: shortest path from Ato Z
Heuristic: 1(X) is the air distance from X to Z

h(A) =57
h(B) = 31
h(C) =26
h(D) = 17
h(E) = 12
h(F) = 35

h(G) =30
h(H) = 21
hl) = 47

h()) = 17

h(K) = 13
h(L) = 32

h(M) = 40
h(N) = 61
h(0) =35
h(P) = 20
h(R) = 27
h(S) = 25

h(Z)=0

Initialization:
open = [(A, 0+57)]
visited = {(A: 0)}

1. Iteration (expand(A, 0+57))
open =[(I, 12+47), (O, 28+35), (N, 9+61)]
visited = {A: 0, 1: 12, N: 9, O: 28}

2. Iteration (expand(l, 12+47))
open = [(O, 28+35), (N, 9+61), (G, 41+30)]
visited ={A:0,1: 12, N: 9, O: 28, G: 41}

3. Iteration (expand(O, 28+35))
open =[(N, 9+61), (G, 41+30), (F, 43+35)]
visited ={A:0,1: 12, N: 9, O: 28, G: 41, F: 43}

4. Iteration (expand(N, 9+61))
open =[ (G, 41+30), (F, 43+35)]
visited ={A:0,1: 12, N: 9, 0: 28, G: 41, F: 43}



A* Algorithm: Example

Task: shortest path from Ato Z
Heuristic: 1(X) is the air distance from X to Z

=35
=20
=27

B S Y S T S
N
ul

o

4. Iteration (expand(N, 9+71))
open =[ (G, 41+30), (F, 43+35)]
visited ={A:0,1: 12, N: 9, O: 28, G: 41, F: 43}

5. Iteration (expand(G, 41+30))
open =[(R, 47+27), (F, 43+35), (S, 60+25), (M, 59+40)]
visited ={A:0,1: 12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59}

6. Iteration (expand(R, 47+27))
open = [(F, 43+35), (D, 66+17) (S, 60+25), (M, 59+40)]
visited ={A:0,1:12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59, D: 66}

7. Iteration (expand(F, 43+35))
open = [(D, 66+17), (S, 60+25), (M, 59+40), (K, 85+13)]
visited ={A:0,1: 12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59, D: 66, K: 85}




A* Algorithm: Example

Task: shortest path from Ato Z
Heuristic: 1(X) is the air distance from X to Z

=35
=20
=27

B S Y S T S
N
ul

o

7. Iteration (expand(F, 43+35))
open =[(D, 66+17), (S, 60+25), (M, 59+40), (K, 85+13)]
visited ={A:0,1: 12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59, D: 66, K: 85}

8. Iteration (expand(D, 66+17))
-2 (K, 66+7 =73) (h =13)
open = [(D, 66+17), (S, 60+25), (M, 59+40), (K, 85+13)]
visited ={A:0,1:12, N: 9, O: 28, G: 41, F: 43, R: 47,
S: 60, M: 59, D: 66, K: 85}

- open =[(D, 66+17), (S, 60+25), (K, 73+13), (M, 59+40)]
visited ={A:0,1: 12, N: 9, O: 28, G: 41, F: 43, R: 47,
S: 60, M: 59, D: 66, K: 73}




A* Algorithm: Properties

astar-search(s,, succ, goal, h)

visited = {}
* A* is complete open = [{so, h(so))]
e e e . visited[s,] = 0
e Cannot end in infinite loop
. while len (open) > 0
e Eventually reaches goal state (if reachable) L = extract-min (open)
. . . o o . . . if goal (state(n))
* If heuristic / is optimistic, A* is optimal return n
for m in expand(n, succ)
f = cost(m) + h(state(m))
. . if state(m) not in visited
* Time and space complexity? visited[state[n]] = cost(n)
. . . . . insert (m, open, f) # heap insertion
* If h is optimistic, then no state will be elif cost(n)< vicited[state[n]]
expanded more than once visited[state[n]] = cost(m)
. inop = False
* Thus, complexity O(b°*') becomes for 1 in open
O(min(b“%, b|S|)) if state(l) == state(m)
d decrease-prio (open, 1, f)
* In most problems, b|S| <b inopen = True
break

if not inop
insert (m, open, f)



Putting search algorithms in perspective

g(n) = cost(n)

A*
h(s) =con7 w}m:onst.

uniformCostSearch greedyBestFirstSearch

g(n}=cm7 \fhout open list

breadthFirstSearch hillClimbingSearch
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Properties of heuristics

p

Heuristic function /1 is optimistic (or admissible) if and only if it never overestimates,
that is, its value is never greater than the true cost needed to reach the goal:
Vs € S. h(s) < h*(s)
where h'(s) is the true minimal cost of reaching the goal state from state s.

\_ J

* If the heuristic is not optimistic, the search may bypass the optimal
path because it seems more expensive than it really is



Example: 8-Puzzle

Are these two heuristics optimistic? initial state

e Cost: number of moves
8 . 7

: number of displaced squares
654
: sum of city-block (Manhattan) distances between the
current and correct/final position of each square/number 31211
 What about:
=07
=17 123
= ?
=min(2, )? 4 (5|6
= max(3, )? 718 .




Consistent heuristics

* For an optimistic heuristic /, there exists an
upper bound for f = cost + h (across all states)

f(n) = cost(n) + h(state(n)) < C

* C =max. value of f than any node during A*
search with / would have

e As we search, the value f(n) for the states we
expand may generally increase and decrease

* If f(n) would only monotonically increase as we
execute A*

e Guarantee that once expanded the first time (extract-
min), a state cannot be reached with smaller f

* No need to check and decrease priority in open!
* Faster execution!

astar-search(s,, succ, goal, h)

visited = {}
open = [(SQI h(SQ))]
visited[s,] = 0

while len (open) > 0
n = extract-min (open)
if goal (state(n))
return n
for m in expand(n, succ)
f = cost(m) + h(state(m))
if state(m) not in visited
visited[state[m]] = cost(m)
insert (m, open, f) # heap insertion
elif cost(m)< visited[state[m]]
vislited|[state[m]] = cost(m)
inop = False
for 1 in open

if state(l) == state(m)
decrease-prio(open, 1, f)
inopen = True
break

if not inop
insert (m, open, f)



Consistent heuristics

* When is a heuristic / consistent?

* f=cost(n) + h(state(n)) cannot drop, this means that drop in / for
neighboring states s, s,cannot be larger than cost of the transition c(s,, s,)

* Vn, € expand(n,) =2 f(n,) 2 f(n,)
cost(n,) + h(state(n,)) > cost(n,) + h(state(n,))
(cost(n,) +c(s,, s,)) + h(s,) = cost(n,) + h(s,)
c(sy, s,) +h(s,) = h(s,)
c(sy, s,) 2 h(s,) - h(s,)

* A consistent heuristic is necessarily optimistic, but not vice-versa
* Still, most optimistic heuristics used in practical problems are also consistent



Example: heuristics properties

h(n)

c(sy, S,)

Is the heuristic optimistic?
Is it consistent?




Comparing heuristics

Optimistic heuristic
p

Let A,* and A,™ be two optimal A* search algorithms (for the same problem) with
corresponding heuristics h, and h,. We say that A,* dominates (or is more informed
than) A,* if and only if: Vs € S. h,(s) = h,(s)

\_ J

* You can say also that h, is more optimistic than h,

* A more informed algorithm (a less optimistic heuristic) will generally search
through a smaller state space

e Caveat: cost of the heuristic computation /(s) also must be considered
* More informed heuristics typically have larger computation runtimes



Good heuristics

* A good heuristic is:
(1) optimistic,
(2) well informed
* We try to find the least optimistic of all optimistic heuristics
(3) simple to compute
* |deal heuristic is the oracle one, but to have it we need to solve the original problem ®
* Heuristic computation cannot be as expensive than solving the original problem!

 What happens if the heuristic is pessimistic?
* We may not get an optimal solution, but perhaps one that is good enough
A pessimistic heuristic would additionally reduce the number of nodes/states
* Trading off solution quality for computational efficiency!



Coming up with heuristics

Q: How do we come up with a good heuristic for a problem?

(1) problem relaxation
* True cost of a relaxed (easier) problem

* Example: 8-puzzle
* h =sum of Manhattan distances of current position to correct position for blocks
* Relaxed problem: we are allowed to move blocks as if other blocks are not there

(2) Combining heuristics

* If we have optimistic heuristics /1, /1, ..., h, than h(s) = max(h,(s), ..., h,(s)) is
also going to be optimistic and more informed than each of the individual



Coming up with heuristics

Q: How do we come up with a good heuristic for a problem?

(3) Using sub-problem costs

* Memorization approach, applicable if across different problems common
subproblems occur — quite common in game playing

e Database of stored solutions (actual costs) for subproblems — use them as
,oracle” heuristics when known subproblems are recognized

(4) Learning heuristics

* Use of machine learning to derive useful heuristics. We design features that
describe each state: x,(s), x,(s), ..., X.,(s) and learn weights w,, ..., w_, such that

h(s) = wyx,(s) + w,%,(s)
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Problem: Path Finding on Terrain Map

* You're given a terrain map: positions (x, y) assigned an altitude a(x,y)

* You can directly move between two positions (x,,y,) to (x,,y,) if
* |x,—x| <1
° |y1 - yzl <1

* Ao =a(x,,y,) = alx,y,) £m (you can climb at most m meters for 1 meter of
direction change)

* This rule defines the allowed state transitions

* The cost of moving from (x,,y,) to (x,,y,) is

\/(Xz = x)2+ (v, —v.)*+ (2 * sgn(Aa) + 1) -| A



Problem: Path Finding
on Terrain Map

* You read the configuration of the
terrain from a file

* A list of positions (x, v, o)

e Start and goal positions (x_, v.)
and (x,, v,) given

* You can plot the terrain in 2D:
altitude can be indicated with
a

* Find optimal path from the red
to dot




Problem: Path Finding on Terrain Map

* Uniform cost search (uninformed,
no heuristics)

—visited , states”
(positions)

e States visited: 140K+




Problem: Path Finding on Terrain Map

 A* search
 Heuristic: air distance

+ JOE =V

— visited ,,states”
(positions)

e States visited: 64K+
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