
Heuristic Search
Prof. Dr. Goran Glavaš

8.1.2024

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Heuristics

• Greedy Best-First & Hill-Climbing Search

• A* Algorithm

• Heuristics Revisited

• Example: Path Finding on Terrain Map

Based on the materials from Prof. Dr. Jan Šnajder:
https://www.fer.unizg.hr/_download/repository/AI-3-HeuristicSearch.pdf

https://www.fer.unizg.hr/_download/repository/AI-3-HeuristicSearch.pdf

Recap: State Space Search

• We will denote the set of all states (state space) with S
• The state space is commonly so large that we can’t iteratively list all states

• All states in the space are not really „known” in advance

• When in state s, we typically only then compute the set of possible next states

A state space search problem is defined with a triple (s0, succ, goal) where s0 ∈ S is the
initial state, succ: S → ℘(S) is the successor function that for some state s returns a set

of states that we can transition to from s, and goal: S → {True, False} is a predicate
(function that returns a boolean value) that for a given state s determines if s is a goal
state or not (there can be multiple states that satisfy the goal predicate). A state space

search (typically) ends as soon as any goal state is found.

State space search

Recap: State Space Search

• There are generally two types of search

• Uninformed (blind) search
• No additional information about the problem, that could indicate whether

one state is perhaps closer to the goal state than another state

• Informed (directed, heuristic) search
• Additional information helps avoid some states and speed up the search

• Problem-specific estimate of state’s distance from the goal is available

Heuristic Search: Motivation

• Uninformed/blind search relies only on
exact information (initial state,
operators, goal predicate)
• Starting from an initial state, we try to

reach a goal state

• Always considering all possible transitions,
without knowing which is more promising

• Blind search doesn’t leverage additional
information about the nature of the
problem that might make the search
more efficient

Heuristics

• If we have an idea in which direction to look for the solution, why
not use this information to improve the search?

• Heuristics = problem-specific rules about the nature of the problem
• Purpose: direct the search towards the goal so it becomes more efficient

Heuristic function h: S → ℝ+ assigns to each state s ∈ S an estimate of the distance
between that state and the goal state

Heuristic function

Typical state space search problems

Example: 8-Puzzle

• Q: think of some examples of heuristic functions
• Estimates of distances between the state and goal state

• h1: number of displaced squares

• h2: sum of city-block (Manhattan) distances between the
current and correct/final position of each square/number

• Note that h1(s) ≤ h2(s)

• If the heuristic is „good” then it can substantially
reduce the number of states that are „opened” before
finding the goal

initial state

goal state

Heuristic Search

• Heuristic search algorithms decide on the order of „opening” nodes
in the search tree based on nodes’ values for a given heuristic h

• Greedy algorithms
• Greedy best-first search
• Hill-climbing

• Optimal* algorithm
• A-Star (A*)

• *Assuming the heuristic function satisfies certain properties

Content

• Heuristics

• Greedy Best-First Search & Hill-Climbing

• A* Algorithm

• Heuristics Revisited

• Example: Path Finding on Terrain Map

Recap: General Search Algorithm

• We define a general search algorithm
• Think of it as abstract search algorithm

• Contains functions, whose concrete implementation
depends on the choice of the actual search algorithm

• (Dynamic) Set of open nodes – nodes in the search
tree that we reached: a „frontier” of the search tree

• Generic (abstract) functions:
• take(l) – gets the next node from the set of open nodes l

• expand(n, succ) – expands node n using succ

• insert(n, l) – adds node n to the list of open nodes l

search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = take(open)

if goal(state(n))

return n

for m in expand(n, succ)

insert(m, open)

return False

Greedy Best-First Search

• If we could somehow know which of the
(states of) open nodes is the closest to a
goal state, we’d pick that state

• Heuristics estimate how close nodes
(their states) are to the goal state

• Greedy best-first: in each step takes the
node from open with minimal h score
• Like in UCS, open is a priority queue
• Only the priority is now given with h(s) and

not the cost of reaching s, cost(s)
• In pseudocode – s.heur is the h(s)

greedy-best-fs(s0, succ, goal, h)

open = [init(s0)]

while len(open) > 0

n = extract-min(open) # min of h

if goal(state(n))

return n

for m in expand(n, succ)

m.heur = h(state(m))

insert(m, open) # heap insertion
according to m.heur

return False

Greedy Best-First Search

• Always chooses the node that appears the
closest to the goal

• The chosen (whole) path may not be optimal,
but greedy best-first search doesn’t backtrack

• Q: even if the heuristic is perfect (h(s) = real
minimal distance from s to the goal state), greedy
search may not be optimal. Why?

• Greedy doesn’t consider the cost(s), only h(s)

• In reality, we don’t have an oracle/perfect heuristic

greedy-best-fs(s0, succ, goal, h)

open = [init(s0)]

while len(open) > 0

n = extract-min(open) # min of h

if goal(state(n))

return n

for m in expand(n, succ)

m.heur = h(state(m))

insert(m, open) # heap insertion
according to m.heur

return False

A B

C D

2

8

20

5

Init: A

Goal: B

h(A) = 15 h(B) = 0

h(C) = 13 h(D) = 5

Greedy Best-First Search

• So, greedy best-first search is not optimal

• It is also not complete (unless we explicitly
keep track of visited states)
• There can be a cycle of states with locally minimal

value of h

• Time complexity: O(bm)
• This is if we don’t consider the maintenance of

the priority queue, otherwise O(bm log bm)

• Space complexity: O(bm)

greedy-best-fs(s0, succ, goal, h)

open = [init(s0)]

while len(open) > 0

n = extract-min(open) # min of h

if goal(state(n))

return n

for m in expand(n, succ)

m.heur = h(state(m))

insert(m, open) # heap insertion
according to m.heur

return False

A

B

C D

Init: A

Goal: B

h(A) = 5

h(B) = 0

h(C) = 2 h(D) = 3

E h(E) = 3

Hill-Climbing Search

• Let’s ignore for a moment that greedy best-first search is not optimal

• Space complexity of greedy best-first search – O(bm) – would be
problematic, even if it was optimal

• Hill-Climbing is also „greedy” in principle, but does not keep track of
all open nodes at all
• Considers as next state only the ones reachable from current state
• And out of those, picks the one with minimal h

• GFBS: selects state with „globally” (from all known states so far) minimal h
• HC: selects state with locally (only states reachable from current) minimal h

Hill-Climbing Search

• Hill-Climbing is also „greedy” in principle, but
does not keep track of all open nodes at all
• Considers as next state only the ones reachable

from current state

• And out of those, picks the one with minimal h

• HC: selects state with locally (only states
reachable from current) minimal h

hill-climbing(s0, succ, goal, h)

n = init(s0)

while True:

if goal(state(n))

return n

M = expand(n, succ)

if len(M) = 0

return False

m = min(M, h)

if h(state(m)) > h(state(n))

return False

n = m

Hill-Climbing Search

• Hill-Climbing is easily trapped in the so-called
local optima and therefore obviously
• Not complete
• Not optimal

• Random restart
• Start many times from

different initial states

• Time complexity: O(m =|S|)

• Space complexity: O(1)
• No „open” set!

hill-climbing(s0, succ, goal, h)

n = init(s0)

while True:

if goal(state(n))

return n

M = expand(n, succ)

if len(M) = 0

return False

m = min(M, h)

if h(state(m)) > h(state(n))

return False

n = m

A B

C D

h(A) = 10 h(B) = 0

h(C) = 8 h(D) = 9

Content

• Heuristics

• Greedy Best-First & Hill-Climbing Search

• A* Algorithm

• Heuristics Revisited

• Example: Path Finding on Terrain Map

A* Algorithm

• In principle similar to the greedy best-first algorithm, but makes the
selection based on not just the heuristic but cost + heuristic

expand(n, succ)

sstates = succ(state(n))

nodes = []

for (s, c) in sstates

nodes = nodes ∪ (s, cost(n) + c)

return nodes

• As in UCS, we compute the cost
of the node when we create it

• A* selects the node from „open”
as the node n with minimal:

f(n) = cost(n) + h(state(n))

A* Algorithm

• A* selects the node from „open” as
the node n with minimal:

f(n) = cost(n) + h(state(n))

• „open” is (again) a priority queue

• It’s possible to revisit the same state
with smaller total cost (c+h)
• Keep track of the smallest discovered cost

for each state
• Hashtable of minimal known cost for

states (visited: key state, value is
minimal known cost for the state)

astar-search(s0, succ, goal, h)

visited = {}

open = [(s0, h(s0))]

visited[s0] = 0

while len(open) > 0

n = extract-min(open)

if goal(state(n))

return n

for m in expand(n, succ)

f = cost(m) + h(state(m))

if state(m) not in visited

visited[state[m]] = cost(m)

insert(m, open, f) # heap insertion

elif cost(m)< visited[state[m]]

visited[state[m]] = cost(m)

inop = False

for l in open

if state(l) == state(m)

decrease-prio(open, l, f)

inopen = True

break

if not inop

insert(m, open, f)

A* Algorithm: Example

A

ZB

C

D

E

FG

H

I

J
K

L

N

M O

R

P

S

Task: shortest path from A to Z
Heuristic: h(X) is the air distance from X to Z

h(A) = 57
h(B) = 31
h(C) = 26
h(D) = 17
h(E) = 12
h(F) = 35
h(G) = 30
h(H) = 21
h(I) = 47

h(J) = 17
h(K) = 13
h(L) = 32
h(M) = 40
h(N) = 61
h(O) = 35
h(P) = 20
h(R) = 27
h(S) = 25

7

A* Algorithm: Example

A

ZB

C

D

E

FG

H

I

J
K

L

N

M O

R

P

S

Task: shortest path from A to Z
Heuristic: h(X) is the air distance from X to Z

h(A) = 57
h(B) = 31
h(C) = 26
h(D) = 17
h(E) = 12
h(F) = 35
h(G) = 30
h(H) = 21
h(I) = 47
h(J) = 17
h(K) = 13
h(L) = 32
h(M) = 40
h(N) = 61
h(O) = 35
h(P) = 20
h(R) = 27
h(S) = 25
h(Z) = 0

Initialization:
open = [(A, 0+57)]
visited = {(A: 0)}

1. Iteration (expand(A, 0+57))
open = [(I, 12+47), (O, 28+35), (N, 9+61)]
visited = {A: 0, I: 12, N: 9, O: 28}

2. Iteration (expand(I, 12+47))
open = [(O, 28+35), (N, 9+61), (G, 41+30)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41}

3. Iteration (expand(O, 28+35))
open = [(N, 9+61), (G, 41+30), (F, 43+35)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41, F: 43}

4. Iteration (expand(N, 9+61))
open = [(G, 41+30), (F, 43+35)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41, F: 43}

7

A* Algorithm: Example

A

ZB

C

D

E

FG

H

I

J
K

L

N

M O

R

P

S

Task: shortest path from A to Z
Heuristic: h(X) is the air distance from X to Z

h(A) = 57
h(B) = 31
h(C) = 26
h(D) = 17
h(E) = 12
h(F) = 35
h(G) = 30
h(H) = 21
h(I) = 47
h(J) = 17
h(K) = 13
h(L) = 32
h(M) = 40
h(N) = 61
h(O) = 35
h(P) = 20
h(R) = 27
h(S) = 25
h(Z) = 0

4. Iteration (expand(N, 9+71))
open = [(G, 41+30), (F, 43+35)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41, F: 43}

5. Iteration (expand(G, 41+30))
open = [(R, 47+27), (F, 43+35), (S, 60+25), (M, 59+40)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59}

6. Iteration (expand(R, 47+27))
open = [(F, 43+35), (D, 66+17) (S, 60+25), (M, 59+40)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59, D: 66}

7. Iteration (expand(F, 43+35))
open = [(D, 66+17), (S, 60+25), (M, 59+40), (K, 85+13)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59, D: 66, K: 85}

7

A* Algorithm: Example

A

ZB

C

D

E

FG

H

I

J
K

L

N

M O

R

P

S

Task: shortest path from A to Z
Heuristic: h(X) is the air distance from X to Z

h(A) = 57
h(B) = 31
h(C) = 26
h(D) = 17
h(E) = 12
h(F) = 35
h(G) = 30
h(H) = 21
h(I) = 47
h(J) = 17
h(K) = 13
h(L) = 32
h(M) = 40
h(N) = 61
h(O) = 35
h(P) = 20
h(R) = 27
h(S) = 25
h(Z) = 0

7. Iteration (expand(F, 43+35))
open = [(D, 66+17), (S, 60+25), (M, 59+40), (K, 85+13)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59, D: 66, K: 85}

8. Iteration (expand(D, 66+17))
→ (K, 66+7 = 73) (h = 13)
open = [(D, 66+17), (S, 60+25), (M, 59+40), (K, 85+13)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59, D: 66, K: 85}

→ open = [(D, 66+17), (S, 60+25), (K, 73+13), (M, 59+40)]
visited = {A: 0, I: 12, N: 9, O: 28, G: 41, F: 43, R: 47,

S: 60, M: 59, D: 66, K: 73}

...

7

A* Algorithm: Properties

• A* is complete
• Cannot end in infinite loop
• Eventually reaches goal state (if reachable)

• If heuristic h is optimistic, A* is optimal

• Time and space complexity?
• If h is optimistic, then no state will be

expanded more than once
• Thus, complexity O(bd+1) becomes

O(min(bd+1, b|S|))
• In most problems, b|S| < bd

astar-search(s0, succ, goal, h)

visited = {}

open = [(s0, h(s0))]

visited[s0] = 0

while len(open) > 0

n = extract-min(open)

if goal(state(n))

return n

for m in expand(n, succ)

f = cost(m) + h(state(m))

if state(m) not in visited

visited[state[m]] = cost(m)

insert(m, open, f) # heap insertion

elif cost(m)< visited[state[m]]

visited[state[m]] = cost(m)

inop = False

for l in open

if state(l) == state(m)

decrease-prio(open, l, f)

inopen = True

break

if not inop

insert(m, open, f)

Putting search algorithms in perspective

g(n) = cost(n)

Content

• Heuristics

• Greedy Best-First & Hill-Climbing Search

• A* Algorithm

• Heuristics Revisited

• Example: Path Finding on Terrain Map

Properties of heuristics

• If the heuristic is not optimistic, the search may bypass the optimal
path because it seems more expensive than it really is

Heuristic function h is optimistic (or admissible) if and only if it never overestimates,
that is, its value is never greater than the true cost needed to reach the goal:

∀s ∈ S. h(s) ≤ h∗(s)
where h*(s) is the true minimal cost of reaching the goal state from state s.

Optimistic heuristic

Example: 8-Puzzle

• Q: Are these two heuristics optimistic?
• Cost: number of moves

• h1(s): number of displaced squares

• h2(s): sum of city-block (Manhattan) distances between the
current and correct/final position of each square/number

• What about:
• h3(s) = 0?
• h4(s) = 1?
• h5(s) = h*(s)?
• h6(s) = min(2, h∗(s))?
• h7(s) = max(3,h∗(s))?

initial state

goal state

Consistent heuristics

• For an optimistic heuristic h, there exists an
upper bound for f = cost + h (across all states)

f(n) = cost(n) + h(state(n)) ≤ C

• C = max. value of f than any node during A*
search with h would have

• As we search, the value f(n) for the states we
expand may generally increase and decrease

• If f(n) would only monotonically increase as we
execute A*
• Guarantee that once expanded the first time (extract-

min), a state cannot be reached with smaller f

• No need to check and decrease priority in open!
• Faster execution!

astar-search(s0, succ, goal, h)

visited = {}

open = [(s0, h(s0))]

visited[s0] = 0

while len(open) > 0

n = extract-min(open)

if goal(state(n))

return n

for m in expand(n, succ)

f = cost(m) + h(state(m))

if state(m) not in visited

visited[state[m]] = cost(m)

insert(m, open, f) # heap insertion

elif cost(m)< visited[state[m]]

visited[state[m]] = cost(m)

inop = False

for l in open

if state(l) == state(m)

decrease-prio(open, l, f)

inopen = True

break

if not inop

insert(m, open, f)

Consistent heuristics

• When is a heuristic h consistent?
• f = cost(n) + h(state(n)) cannot drop, this means that drop in h for

neighboring states s1, s2cannot be larger than cost of the transition c(s1, s2)

• ∀n2 ∈ expand(n1)→ f(n2) ≥ f(n1)

cost(n2) + h(state(n2)) ≥ cost(n1) + h(state(n1))

(cost(n1) + c(s1, s2)) + h(s2) ≥ cost(n1) + h(s1)

c(s1, s2) + h(s2) ≥ h(s1)

c(s1, s2) ≥ h(s1) - h(s2)

• A consistent heuristic is necessarily optimistic, but not vice-versa
• Still, most optimistic heuristics used in practical problems are also consistent

Example: heuristics properties

h(n)
c(s1, s2)

Q1: Is the heuristic optimistic?
Q2: Is it consistent?

Comparing heuristics

• You can say also that h2 is more optimistic than h1

• A more informed algorithm (a less optimistic heuristic) will generally search
through a smaller state space

• Caveat: cost of the heuristic computation h(s) also must be considered
• More informed heuristics typically have larger computation runtimes

Let A1* and A2* be two optimal A* search algorithms (for the same problem) with
corresponding heuristics h1 and h2. We say that A1* dominates (or is more informed

than) A2* if and only if: ∀s ∈ S. h1(s) ≥ h2(s)

Optimistic heuristic

Good heuristics

• A good heuristic is:
(1) optimistic,

(2) well informed
• We try to find the least optimistic of all optimistic heuristics

(3) simple to compute
• Ideal heuristic is the oracle one, but to have it we need to solve the original problem 

• Heuristic computation cannot be as expensive than solving the original problem!

• What happens if the heuristic is pessimistic?
• We may not get an optimal solution, but perhaps one that is good enough

• A pessimistic heuristic would additionally reduce the number of nodes/states

• Trading off solution quality for computational efficiency!

Coming up with heuristics

Q: How do we come up with a good heuristic for a problem?

(1) problem relaxation
• True cost of a relaxed (easier) problem

• Example: 8-puzzle
• h = sum of Manhattan distances of current position to correct position for blocks

• Relaxed problem: we are allowed to move blocks as if other blocks are not there

(2) Combining heuristics
• If we have optimistic heuristics h1, h2, ..., hn than h(s) = max(h1(s), ..., hn(s)) is

also going to be optimistic and more informed than each of the individual hi

Coming up with heuristics

Q: How do we come up with a good heuristic for a problem?

(3) Using sub-problem costs
• Memorization approach, applicable if across different problems common

subproblems occur – quite common in game playing

• Database of stored solutions (actual costs) for subproblems – use them as
„oracle” heuristics when known subproblems are recognized

(4) Learning heuristics
• Use of machine learning to derive useful heuristics. We design features that

describe each state: x1(s), x2(s), ..., xm(s) and learn weights w1, ..., wm such that

h(s) = w1x1(s) + w2x2(s)

Content

• Heuristics

• Greedy Best-First & Hill-Climbing Search

• A* Algorithm

• Heuristics Revisited

• Example: Path Finding on Terrain Map

Problem: Path Finding on Terrain Map

• You’re given a terrain map: positions (x, y) assigned an altitude a(x,y)

• You can directly move between two positions (x1,y1) to (x2,y2) if
• |x1 − x2| ≤ 1

• |y1 − y2| ≤ 1

• ∆a = a(x2,y2) − a(x1,y1) ≤ m (you can climb at most m meters for 1 meter of
direction change)

• This rule defines the allowed state transitions

• The cost of moving from (x1,y1) to (x2,y2) is

(x2 − x1)2 + (y2 − y1)
2 + (½ * sgn(∆a) + 1) ·|∆a|

Problem: Path Finding
on Terrain Map

• You read the configuration of the
terrain from a file

• A list of positions (x, y, a)

• Start and goal positions (xs, ys)
and (xg, yg) given

• You can plot the terrain in 2D:
altitude can be indicated with
a color

• Find optimal path from the red
to green dot

Problem: Path Finding on Terrain Map

• Uniform cost search (uninformed,
no heuristics)
• Yellow/green –visited „states”

(positions)

• States visited: 140K+

Problem: Path Finding on Terrain Map

• A* search

• Heuristic: air distance

• (x − xg)
2 + (y − yg)

2

• Yellow/green – visited „states”
(positions)

• States visited: 64K+

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и
тан

н
я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w
ọ
n

ib
e

er
e

?

ค ำถำม?

	Default Section
	Slide 1: Heuristic Search Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Recap: State Space Search
	Slide 4: Recap: State Space Search
	Slide 5: Heuristic Search: Motivation
	Slide 6: Heuristics
	Slide 7: Typical state space search problems
	Slide 8: Example: 8-Puzzle
	Slide 9: Heuristic Search
	Slide 10: Content
	Slide 11: Recap: General Search Algorithm
	Slide 12: Greedy Best-First Search
	Slide 13: Greedy Best-First Search
	Slide 14: Greedy Best-First Search
	Slide 15: Hill-Climbing Search
	Slide 16: Hill-Climbing Search
	Slide 17: Hill-Climbing Search
	Slide 18: Content
	Slide 19: A* Algorithm
	Slide 20: A* Algorithm
	Slide 21: A* Algorithm: Example
	Slide 22: A* Algorithm: Example
	Slide 23: A* Algorithm: Example
	Slide 24: A* Algorithm: Example
	Slide 25: A* Algorithm: Properties
	Slide 26: Putting search algorithms in perspective
	Slide 27: Content
	Slide 28: Properties of heuristics
	Slide 29: Example: 8-Puzzle
	Slide 30: Consistent heuristics
	Slide 31: Consistent heuristics
	Slide 32: Example: heuristics properties
	Slide 33: Comparing heuristics
	Slide 34: Good heuristics
	Slide 35: Coming up with heuristics
	Slide 36: Coming up with heuristics
	Slide 37: Content
	Slide 38: Problem: Path Finding on Terrain Map
	Slide 39: Problem: Path Finding on Terrain Map
	Slide 40: Problem: Path Finding on Terrain Map
	Slide 41: Problem: Path Finding on Terrain Map
	Slide 42: Questions?

