
Algorithmen, KI & Data Science 1

Winter semester 2023/24

Prof. Dr. Goran Glavaš,
M.Sc. Fabian David Schmidt
M.Sc. Benedikt Ebing
Lecture Chair XII for Natural Language Processing, Universität Würzburg

1. Exercise for “Algorithmen, KI & Data Science 1”

15.12.2023

1 Dynamic Programming

1. Recall Merge-sort from lecture 5. Would it be beneficial if we use top-down
dynamic programming with memoization in merge-sort? Explain briefly why or
why not.

No, as there are no overlapping subproblems. Therefore, it does not make sense
to memoize anything.

2. We want to compute the Levenshtein edit distance between Frodo and Gondor.
Consider the sub-problem of computing the distance between G and Frod. What
are the costs for insertion, deletion and replacement at this stage, respectively.

The below chart and table highlight the costs associated with insertion, deletion,
and replacement, respectively.

1



3. Write down the full 6× 5 array of distances between all prefixes as shown in the
lecture 13. What is the minimum edit distance between Frodo and Gondor?

The below table is not as such required and mostly serves to demonstrate the
full solution exploring all viable alternatives at every step.

4. Implement levenshtein_distance in the accompanied Jupyter Notebook
using memoization.

5. Consider the following two-player game: There is a row of n objects (assuming
n is even) with values v1, v2, · · · , vn. In the game, the two players make moves
alternatively. In each odd move, the first player either selects the first or the last
object of the row and removes it permanently from the row. In even turns, the
opponent plays the game in the same way. Each time the player picks some object,

2



it receives its value.

Devise a dynamic programming algorithm akin to the four steps as per the lecture
to determine the maximum value that the first player (i.e., the player starting the
game) can receive by the end of the game.

Let us define P (i, j) to be the maximum value that a player (any player!) can
get by playing on successive objects starting from object i and ending with
object j, inclusively, by making the first move. Suppose the first player chooses
object i with value vi, and the remaining objects in the row are objects i+ 1 to
j. The opponent either chooses object i+ 1 or object j. Note that the opponent
is smart enough and always chooses the object which yields the minimum value
for the first player. If the opponent takes object i + 1, the remaining objects
are objects i+ 2 to j, on which the first player’s maximum value is denoted by
P (i+ 2, j). On the other hand, if the opponent takes object j, the maximum is
P (i+ 1, j − 1). Therefore, the maximum amount first player can get when he
chooses object i is

vi +min{P (i+ 2, j), P (i+ 1, j − 1)}

Similarly, the maximum amount first player can get if chooses object j is

vj +min{P (i+ 1, j − 1), P (i, j − 2)}.

Concluding from the above statements, the recurrence relation for an optimal
solution is as follows.

P (i, j) = max{vi+min{P (i+2, j), P (i+1, j−1)}, vj+min{P (i+1, j−1), P (i, j−2)}}

And the base cases are

P (i, i) = vi and P (i, i+ 1) = max{vi, vi + 1}

Now, let us use this formula for dynamic programming approach, since it
can help us avoid computing the same optimal solutions for the subproblems
multiple times. To solve the problem, we need to fill a 2D table of size n× n,
where entry [i, j] in the table will contain the optimal solution OPT (i, j).

First, we initialize our table with zeros and fill it afterwords using the following
strategy. On each iteration k of filling the table, we compute P (i, j) using the
aforementioned recurrence relation for all i and j, such that i− j = k and i < j.
Our result in table is in place [1, n].

3


	Dynamic Programming

