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Motivation

• Many analytical (“AI”) problems can be solved by 
searching through a space of possible states

• Starting from an initial state, we try to reach a goal 
state

• Sequence of actions leading from initial to goal 
state is the solution to the problem

• Problem: large number of states and many choices 
to make in each state

• Search must be carried out in a systematic manner



Typical state space search problems



State Space Search vs. Divide-and-Conquer

State space search
• Many different possible ”states” in 

which „solving” of the problem can be
• E.g., Imagine all different states in which a 

chessboard can be?

• Many different transitions from each 
state (to many possible next states)
• Large „branching factor”

• Finding a node that meets a particular 
criterion (goal node)
• Some kind of optimality can be an additional 

criterion
• But iterating through all states not feasible

Divide-and-Conquer
• Break the problem into subproblems of 

the same type

• „state” = subproblem to solve
• And its relation to the global problem

• Typically, a small(er) branching factor
• Problem broken into a small number of 

subproblems

• Typically needs to visit all states (solve all 
subproblems) 
• If „states” are revisited (repeating 

subproblems) –> dynamic programming

• Not searching for a special (goal) state but 
finding an optimum over all states



State Space Search: Formalization

• We will denote the set of all states (state space) with S
• The state space is commonly so large that we can’t iteratively list all states

• All states in the space are not really „known” in advance

• When in state s, we typically only then compute the set of possible next states

A state space search problem is defined with a triple (s0, succ, goal) where s0 ∈ S is the 
initial state, succ: S → ℘(S) is the successor function that for some state s returns a set 

of states that we can transition to from s, and goal: S → {True, False} is a predicate
(function that returns a boolean value) that for a given state s determines if s is a goal 
state or not (there can be multiple states that satisfy the goal predicate). A state space 

search (typically) ends as soon as any goal state is found. 

State space search



State Space Search: Example

initial state

goal state

• Q: What sequence of moves leads from the 
initial state to the goal state?

s0 =

succ( ) =

goal(          ) = False          goal(          ) = True

goal( ) = False



State Space Search: Graph

• State space search amounts to a search 
through a directed graph
• Nodes = states
• Edges = transitions between states

• The graph is, however, not specified 
explicitly (nodes not „given in advance”)
• Graphs given implicitly
• It may contain cycles (not a DAG!)

• If we also need/have transition costs, then 
it’s a weighted directed graph
• Q: how/why is this different than shortest 

paths problems (in directed graphs)?



State Space Search: Tree

• By searching through a directed graph, we gradually construct a 
search tree
• Q: Do you know any graph search algorithms that create search trees? ☺

• We do this by expanding one node at a time
• Q: this sounds familiar, no?☺

• Caveat: we typically don’t know the successors „out of the box”

• Often need to „compute” the set of possible successor states „on the fly”, 
as we don’t know them in advance (large space of possible states)

• Depending on the problem, succ function may not be trivial



Search strategy: from graph to search tree 

• Q: Heard of any search strategies for graphs (when we start from a predefined 
„initial node”)? ☺

• Q: Does revisiting states 

makes sense?

Search strategy defines the order in which the nodes are expanded. Different strategies 
yield different orders of states being visited.  

Search strategy



State vs. Node

• For efficient search, we often need to store more than just the state
in each node of the search tree 
• Especially true for informed SSS algorithms (which we cover next time)

• Node n = (s, d) is a data structure that stores the state s and the 
depth d of the node in the search tree 

• We will define the corresponding functions that return s and d from n
• state(n) = s
• depth(n) = d

• And a function setting a state as initial state of the search
• init(s) = (s, 0) (returns the node with state s and depth 0)



General Search Algorithm

• We define a general search algorithm
• Think of it as abstract search algorithm

• Contains functions, whose concrete implementation
depends on the choice of the actual search algorithm

• (Dynamic) Set of open nodes – nodes in the search 
tree that we reached: a „frontier” of the search tree 

• Generic (abstract) functions: 
• take(l) – gets the next node from the set of open nodes l

• expand(n, succ) – expands node n using succ 

• insert(n, l) – adds node n to the list of open nodes l

search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = take(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

insert(m, open)

return False



General Search Algorithm

• Generic (abstract) functions: 
• take(l) – gets the next node from the set of open nodes l

• expand(n, succ) – expands node n using succ 

• insert(n, l) – adds node n to the list of open nodes l

• When expanding a node, we must update all 
components stored in it

search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = take(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

insert(m, open)

return False

expand(n, succ)

sstates = succ(state(n))

nodes = []

for s in sstates

nodes = nodes ∪ (s, depth(n) + 1)

return nodes 
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Search 

• There are generally two types of search

• Uninformed (blind) search
• No additional information about the problem, that could indicate whether 

one state is perhaps closer to the goal state than another state

• Informed (directed, heuristic) search
• Additional information helps avoid some states and speed up the search 

• Problem-specific estimate of state’s distance from the goal is available



Comparing SSS Problems and Algorithms

Properties of the problem

• |S| – number of states

• b – branching factor of the search tree (number of states 
that are reached from some state) 

• d – the smallest depth at which we find a goal state 

• m – maximum depth of the search tree (can be infinity)



Comparing SSS Problems and Algorithms

Properties of the search algorithms

• Completeness – an algorithm is complete if and only if (iff) it finds a 
solution (goal state) whenever a solution exists

• Optimality – an algorithm is optimal if and only if the solution it finds 
is optimal, i.e., if finds the goal state with the „smallest cost”  

• Time complexity – runtime of the algorithm, corresponds to the 
number of generated nodes in the search tree 

• Space complexity – memory space occupied by the algorithm, 
corresponds to the number of stored nodes (maximal length of open)



Example: 8-Puzzle Problem

• Number of states |S|?
• How many different configs of the board?

• Imagine the board is empty and you’re „randomly” 
placing numbers one by one

• Minimal, maximal, and average b?
• Minimal? If the „empty block” is in the corner

• Maximal? If the „empty block” is in the middle

• Average? What other positions of the „empty 
block” are there?

initial state

goal state



Uninformed Search Strategies

• Breadth-First Search (BFS)

• Uniform Cost Search

• Depth-First Search (DFS)

• Depth-Limited Search

• Iterative Deepening Search 



Breadth-First Search

• BFS is already our good friend ☺

• General search algorithm → BFS?
• open needs to be a queue 

• take(open) is then dequeue(open)

• insert(m, open) is then enqueue(m, open)

• Reminder: in BFS, any node at depth d+1 is expanded only 
after all nodes at depth d have been expanded  

search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = take(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

insert(m, open)

return False



Breadth-First Search

• BFS is complete
• If there is node n in the search tree of BFS 

such that goal(state(n)) = True, BFS will 
clearly (eventually) find it

• BFS is optimal
• Reminder: BFS reaches vertices of the 

graph in shortest possible paths from the 
source vertex!

bfs-search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = dequeue(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

enqueue(m, open)

return False



Breadth-First Search

• Time complexity (on the search tree)
• d as (minimal) depth of any goal node

• 1 (root, s0) + b (first level) + b2 (second 
level) + ... + bd + bd+1 =  O(bd+1)

• Worst case: goal node last at the level d –
this means that most nodes of the level 
d+1 (bd+1 - b) will be added to open

• Space complexity: O(bd+1)

bfs-search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = dequeue(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

enqueue(m, open)

return False



Breadth-First Search

• Space complexity: O(bd+1)
• Main shortcoming of BFS

• Example: b = 4, d = 16, and 10B/node
• 4^17 * 10 B = ca. 43 GB of memory

bfs-search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = dequeue(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

enqueue(m, open)

return False



Uniform cost search

• Uniform cost search is a state-space-search algorithm for problems 
where there are transitions costs
• For a weighted state-transition graph

• Q: Why not just run shortest paths algorithms on graphs (e.g., Dijkstra)?

expand(n, succ)

sstates = succ(state(n))

nodes = []

for (s, c) in sstates

nodes = nodes ∪ (s, cost(n) + c)

return nodes

• If transitions differ in costs, we need 
to have a few modifications
• succ needs to return also the cost of 

transition: succ: S → ℘(S × ℝ+)

• Nodes store the total cost c to reach them 
instead of depth d: n(s, c), c = cost(n)

• expand(n, succ) needs to sum the cost 
(instead of increase depth)



Uniform cost search

• Uniform cost search is a state-space-search 
algorithm for problems where there are 
transitions costs

• General search algorithm → UCS?
• open needs to be a priority queue 

• take(open) is then extract-min(open)

• insert(m, open) is then a heap insertion

search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = take(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

insert(m, open)

return False



Uniform cost search

• Uniform cost search is a state-space-search algorithm for problems 
where there are transitions costs

• General search algorithm →UCS?
• open needs to be a priority queue 
• take(open) is then extract-min(open)
• insert(m, open) is then a heap insertion

• Reminder: heap is the DS used for implementing a priority queue
• Runtime of extract-min?   
• Runtime of insertion into heap?

search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = take(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

insert(m, open)

return False



Uniform Cost Search

• UCS is complete
• If there is node n in the search tree of BFS 

such that goal(state(n)) = True, BFS will 
clearly (eventually) find it

• UCS is optimal
• Q: prove it!
• Insertion of nodes into a priority queue

(key = cost), 
• Therefore, when UCS reaches a goal node, 

it will be with minimal possible cost!

ucs-search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = extract-min(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

insert(m, open) # heap insertion

return False



Uniform Cost Search

• Time & space complexity
• Let C* be the optimal (minimal) cost 

of reaching a goal node

• Let ε be the minimal transition cost

• The goal state is at depth d = ⌊C∗/ε⌋
• O(bd+1) = O(b⌊C∗/ε⌋+1)?

• But this ignores the cost of 
maintenance of the heap
• Heap insert: O(log n) where n is the size 

of open

• „n” = bd+1 = b⌊C∗/ε⌋+1

• Runtime: O(b⌊C∗/ε⌋+1 log b⌊C∗/ε⌋+1)

ucs-search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = extract-min(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

insert(m, open) # heap insertion

return False



Depth-First Search

• DFS is also already our good friend ☺

• General search algorithm → DFS?
• open needs to be a stack

• take(open) is then pop(open)

• insert(m, open) is then push(m, open)

search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = take(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

insert(m, open)

return False



Depth-First Search

• DFS is not* complete
• If there are cycles in the graph, DFS will 

result in an infinite loop
• *Assuming we allow revisiting of the already 

visited states

• DFS is not optimal
• Reminder: for DFS (unlike BFS) we don’t have a 

guarantee to have reached a state with minimal 
distance first time we discover it  

dfs-search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = pop(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

push(m, open)

return False



Depth-First Search

• m: the maximal depth of the search tree

• Time complexity
• O(bm), which is pretty bad if the search 

tree is unbalanced and m >> d (depth 
where the goal node is)

• We cannot really balance the search tree 
of a state space search graph
• It’s defined by the problem

• Space complexity
• O(b*m)
• Q: Why?

dfs-search(s0, succ, goal)

open = [init(s0)]

while len(open) > 0

n = pop(open)

if goal(state(n)) 

return n

for m in expand(n, succ)

push(m, open)

return False



Depth-Limited Search

• Effectively, limiting our DFS to the maximal depth

• Let k be the maximal depth that DFS is allowed to reach

• Best we can do with DFS if we have a runtime limitation (which we 
always do :)

• DLS is not complete: it will not find a solution if the goal node is at 
depth d > k (also not optimal, like DFS)

• Time complexity is O(bk)

• Space complexity is O(b*k)



Depth-Limited Search

Useful if:

• (1) we know the depth d at which 
the goal state will appear and

• (2) that depth is not prohibitively 
large

• Then we, obviously, set k to d

limited-dfs-search(s0, succ, goal, k)

open = [init(s0)]

while len(open) > 0

n = pop(open)

if goal(state(n)) 

return n

if depth(n) < k

for m in expand(n, succ)

push(m, open)

return False



Iterative Deepening Search

• Iterative Deepening Search is an iterative 
application of depth-limited search for 
increasing maximal allowed depth k

• Tradeoff between advantages of DFS and BFS
• Completeness/Optimality of BFS

• Space complexity of DFS 

• Still, if the goal node is very deep in the 
search tree, no uninformed search algorithm 
will be efficient enough

limited-dfs-search(s0, succ, goal, k)

open = [init(s0)]

while len(open) > 0

n = pop(open)

if goal(state(n)) 

return n

if depth(n) < k

for m in expand(n, succ)

push(m, open)

return False

iter-deep-search(s0, succ, goal)

for k = 0 to inf

n = limited-dfs-search

(s0, succ, goal, k)

if n ≠ False

return res



Iterative Deepening Search

• At first glance, IDS seems utterly inefficient:
same nodes expanded many times over again

• This is typically not a problem: expansion is 
more repeated the shallower the node is in 
the search tree

• Optimal and complete (like BFS)

• Time complexity: O(bd)
• Like BFS, better than DFS

• Space complexity: O(b*d)
• Like DFS, better than BFS

iter-deep-search(s0, succ, goal)

for k = 0 to inf

n = limited-dfs-search

(s0, succ, goal, k)

if n ≠ False

return res

IDS: A | A, B, C | A, B, D, E, C, F, G | A, B, D, H, I, E, J, K, ... 



Avoiding revisiting states

• If the search algorithm is optimal (BFS, 
IDS), there is no reason to allow 
repetition of states

• So we can keep track of visited states and 
avoid putting into open any node whose 
state has already been visited

• Q: what data structure to use for visited?

• If no state is ever repeated, complexity 
O(bd+1) reduces to O(min(bd+1, b*|S|))
• In most problems, b*|S| < bd

search(s0, succ, goal)

open = [init(s0)]

visited = []

while len(open) > 0

n = take(open)

if goal(state(n)) 

return n

visited = visited ∪ {state(n)}

for m in expand(n, succ)

if state(m) not in visited

insert(m, open)

return False
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Missionaries and Cannibals

N missionaries and N cannibals must be brought 
over by boat from one side of the river to the other. 

At no time should the missionaries be 
outnumbered by the cannibals on either side of the 
river. The boat can carry up to two passengers and 

cannot move by itself. We are looking for a solution 
with the fewest possible number of steps.

Missionaries & cannibals



Missionaries and Cannibals

• Problem = (s0, succ, goal)

• State representation? (m, c, position)
• m – number of missionaries on the left river bank (N-m on the right then)
• c – number of cannibals on the left river bank (N-c on the right then)
• position of the boat – L (left river bank) or R (right river bank)

• s0 = (N, N, L)

• State allowed (safe)? 
• safe(s) = True if (m ≥ c or m = 0) AND (N-m ≥ N-c or m = N)    

• goal: True if s = (0, 0, R) otherwise False



Missionaries and Cannibals

• Problem = (s0, succ, goal)

• State representation? (m, c, position)
• m – number of missionaries on the left river bank (N-m on the right then)

• c – number of cannibals on the left river bank (N-c on the right then)

• position of the boat – L (left river bank) or R (right river bank)

• succ(s = (m, c, pos))?
• If pos = L:  {(m-1, c, R), (m-2, c, R), (m-1, c-1, R), (m, c-1, R), (m, c-2, R)}

• If pos = R: {(m+1, c, L), (m+2, c, L), (m+1, c+1, L), (m, c+1, L), (m, c+2,L)}

• But only allowed states are kept, for which safe(s) = True



Recognizing a state space search problem

• Recognizing that a problem is a state-space-search problem is key –
then we need to figure out the suitable state representation and succ

• Have we described all that is relevant for the problem? 

• Have we abstracted away the unimportant details? 

• Do we generate all possible moves? 

• Are all moves that we generate legal? 

• Do we generate undesirable states? 

• Would it perhaps be smarter to incorporate state validity check 
directly into the test predicate goal? 

• What are the properties of our problem? |S| =? b =? d =? m=?

• Is this a difficult problem?
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