ALGORITHMS IN AI \& DATA SCIENCE 1 (AKIDS 1)

Dynamic Programming: Some Problems
 Prof. Dr. Goran Glavaš

Content

- DP Recap
- Knapsack Problem
- Minimal Edit Distance

Dynamic Programming

- Dynamic programming solves problems with following properties:
- Divisible into subproblems of the same type as the original problem
- Solution to the subproblem is part of the solution to the whole problem

- Subproblems repeat a lot: storing solutions of solved subproblems crucial
- Commonly applied to (discrete) optimization problems
- Problems that have many possible solutions
- Solutions have values or costs associated to them
- We want to find the optimal solution - one with max value or min cost
- There can be more than one optimal solution!

Example DP Problem: Rod cutting

Rod-cutting problem

A company buys long steel rods and cuts them into shorter rods which it then sells. For each rod of length i (in inches), we know the corresponding price p_{i} the company sells it for. Given a rod of length n inches and a table of prices p_{i} for $i=1,2, \ldots, n$ determine the maximal revenue r_{n} the company can have from that rod and find a cutting s that achieves that maximal revenue. Not that, in principle, if p_{n} is large enough the optimal revenue may be achieved without any cutting at all.

Length i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Price p_{i}	1	5	8	9	10	17	17	20	24	26

Dynamic programming

- Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution

- Top-down manner (recursively)
- Bottom-up manner (without recursion)
- Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution

- Not enough just to know what the optimal (max or min) value is
- Need to know which „sequence of steps" leads to that optimal solution
- For example, in rod-cutting - where exactly to cut (sub-rods of which lengths to sell)

Dynamic programming: solution memorization

- Avoid the exponential complexity of the recursive solution $\mathbf{O}\left(2^{n}\right)$
- As usual, the solution is to trade some space for time
- Memorization
- Once the solution for a subproblem is computed the first time, store it
- When you encounter the same subproblem, simply retrieve its solution
- Obviously, this only helps in case of repeating subproblems

```
cut_rod(p, n)
    r = {} # empty solutions hashtable
    return cut_rod_rec(p,n,r)
cut_rod_rec(p, n, r)
    if n in r # lookup key in hashtable
        return r[n]
    q = -inf
    if }\textrm{n}==
        q=0
    else
        for i in 1 to n
            t = p[i] + cut_rod_rec(p,n-i,r)
            if t > q
                q = t
    r[n] = q # store when computed 1st time
    return r
```


Dynamic programming: bottom up

- Bottom-up DP - the idea is that of iterative induction:
- We know the solution of the smallest subproblem
- For rod-cutting, this is when $\mathrm{n}=0$
- If I know r_{k-i}-the solution for all $i<k$, then I know how to compute the solution for r_{k} - the solution for k
- Q: Runtime of bottom-up approach?

```
cut_rod_iter(p, n)
    r[0] = 0
    r[1] = p[1]
    for i in 2 to n
        # we're looking for the max
        for j in 1 to i
        q = p[j] + r[i-j]
        if q > r[i]
            r[i] = q
    return r[n]
```

- Clearly O(n^{2})

Rod-cutting: complete example

Length i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Price p_{i}	1	5	8	9	10	17	17	20	24	26

```
- }\mp@subsup{r}{1}{}=\mp@subsup{p}{1}{}=
- }\mp@subsup{r}{2}{}=\operatorname{max}(\mp@subsup{p}{1}{}+\mp@subsup{r}{1}{},\mp@subsup{p}{2}{})=\operatorname{max}(1+1,5)=5,\mp@subsup{s}{2}{}=
- }\mp@subsup{r}{3}{}=\operatorname{max}(\mp@subsup{p}{1}{}+\mp@subsup{r}{2}{},\mp@subsup{p}{2}{}+\mp@subsup{r}{1}{},\mp@subsup{p}{3}{})=\operatorname{max}(1+5,5+1,8)=8,\mp@subsup{s}{3}{}=
- }\mp@subsup{r}{4}{}=\operatorname{max}(\mp@subsup{p}{1}{}+\mp@subsup{r}{3}{},\mp@subsup{p}{2}{}+\mp@subsup{r}{2}{},\mp@subsup{p}{3}{}+\mp@subsup{r}{1}{},\mp@subsup{p}{4}{})=\operatorname{max}(1+8,5+5,8+1,9)=10,\mp@subsup{s}{4}{}=
- }\mp@subsup{r}{5}{}=\operatorname{max}(1+10,5+8,8+5,9+1,10)=13,\mp@subsup{s}{5}{}=
- }\mp@subsup{r}{6}{}=\operatorname{max}(1+13,5+10,8+8,9+5,10+1,17)=17, s6 = 6
- }\mp@subsup{r}{7}{}=\operatorname{max}(1+16,5+5,8+10,9+8,10+5,17+1,17)=18, s s = 3
    print(s[i]) # cuts / lengths
r r}=\operatorname{max}(1+16,5+5,8+10,9+8,10+5,17+1,17)=18,\mp@subsup{s}{7}{}=3, i = i-s[i
- }\mp@subsup{r}{8}{}=\operatorname{max}(1+18,5+17,8+13,9+10,10+8,17+5,18+1,20)=22, s8 = 6
- }\mp@subsup{r}{9}{}=\operatorname{max}(1+22,5+18,8+17,9+13,10+10,17+8,17+5,22+1,24)=25,\mp@subsup{s}{9}{}=
- }\mp@subsup{r}{10}{}=\operatorname{max}(1+25,5+22,8+18,9+17,10+13,17+10,17+8,20+5,24+1,26)=27, s s10 = 6
```

- Reconstruction of the solution: $\mathrm{s}_{10}=6 \rightarrow \mathrm{~s}_{4(=10-6)}=2 \rightarrow \mathrm{~s}_{2(=4-2)}=2 \rightarrow \mathrm{~s}_{0(=2-2)}$ end!
- Optimal solution is to cut only once, after the 6 th inch. We sell two rods, 6 and 4 inch long.

Content

- DP Recap
- Knapsack Problem
- Minimal Edit Distance

The Knapsack Problem

The binary (or 0-1) knapsack problem is given as follows. A thief is robbing a store and finds n items in the store. The i-th item has a weight w_{i} and value v_{i}. The thief wants to steal the most valuable possible load, but he's limited with the maximal weight W his knapsack can carry. What is the maximal value the thief can steal (and which set of items are to be stolen)?

- Binary knapsack problem: each item is either taken or not
- Cannot take a part/fraction of an item
- There exists also the fractional knapsack problem - thief can take any fraction (real number between 0 and 1) of an item
- Easier problem, can be solved greedily

Knapsack problem - greedy approach?

- Greedy strategy: choice that (locally) most increases the value
- Binary vs. Fractional knapsack problem
- Binary: greedy (per „kg" of weight) doesn’t work (not an optimal solution)
- Fractional: greedy works (per „kg" of weight)

Item 1: 6\$/kg Item $2: 5 \$ / \mathrm{kg}$ Item 3: $4 \$ / \mathrm{kg}$

Knapsack problem: DP solution

- Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

- Quite analogous to structure of the solution for the rod-cutting problem
- We start with an empty knapsack and n items we could put in it
- n choices for the first item
- Place an i-th item $\left(v_{i}, w_{i}\right) \rightarrow$ the remaining knapsack capacity is $W-W_{i}$
- Let $I=\left\{i_{1}, \ldots, i_{n}\right\}$ be the set of all items
- Assume an optimal solution consists of K items $i_{1}, i_{2}, \ldots i_{k}$
- The value of the optimal load: $\mathrm{v}=\mathrm{v}_{\mathrm{i1}}+\mathrm{v}_{\mathrm{i} 2}+\ldots+\mathrm{v}_{\mathrm{iK}}$
- The weight of the optimal load: $w=w_{i 1}+w_{i 2}+\ldots+w_{i K} \leq W$

Knapsack problem: DP solution

- Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

- Let I $=\left\{i_{1}, \ldots, i_{n}\right\}$ be the set of all items
- Assume an optimal solution consists of K items $i_{1}, i_{2}, \ldots i_{k}$
- The value of the optimal load: $v=v_{i 1}+v_{i 2}+\ldots+v_{i K}$
- The weight of the optimal load: $w=w_{i 1}+w_{i 2}+\ldots+w_{i K} \leq W$
- If we remove any item i_{k}, the remaining k - 1 items represent an optimal solution for the subproblem:
- items: I / \{i $\}$, knapsack capacity: W - $W_{i k}$

Knapsack problem: DP solution

- Developing a DP algorithm involves the following steps:

2. Recursively define the value of an optimal solution

- If we remove any item i_{k}, the remaining k - 1 items represent an optimal solution for the subproblem:
- items: I / \{i $\}$, knapsack capacity: W - W_{ik}
- How many items can we remove from the solution?
- Since we don't know how many items an optimal solution has, we need to consider every item in I

$$
\operatorname{val}(I, W)=\max _{\mathrm{i}_{\mathrm{k}} \in \mathrm{I}} \operatorname{val}\left(I / /\left\{i_{\mathrm{k}}\right\}, W-\mathrm{W}_{\mathrm{k}}\right)+\mathrm{v}_{\mathrm{k}}
$$

- If we assume that i_{k} is part of the optimal solution, then the rest of the knapsack must be filled with the items that are an optimal solution for the remaining capacity $W-W_{k}$

Knapsack problem: DP solution

- Recursive implementation (no memorization)

```
knapsack(W, I, V, W)
    val = 0
    if len(I) == 0 or W == 0 # no items or knapsack capacity left
        return 0
    for i in I
        if w[i] \leq W
        q = knapsack (W - w[i], I / {i}, v, w) + v[i]
        if q > val
            val = q
    return val
```


Knapsack problem: DP solution

- Q: Where are the repeating subproblems?
- Set of all items: $\|=\left\{i_{1}, \ldots, i_{n}\right\}$

- Without memorization of subsolution problems
- Exponential runtime complexity, $\mathbf{O}\left(2^{n}\right)$

Dynamic programming

- Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution

- Bottom-up manner (without recursion)
- Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution

- Not enough just to know what the optimal (max or min) value is
- Need to know which ,"sequence of steps" leads to that optimal solution
- For example, in rod-cutting - where exactly to cut (sub-rods of which lengths to sell)

Knapsack problem: iterative DP solution

- We could add memorization to the recursive computation
- DP: iterative solution more common (with memorization)
- We will iterate over increasing subsets of items
- In each iteration, we will consider only up to first k items, for different capacities of the knapsack
- val [k, $\left.W^{\prime}\right]$: maximal value if considering only first k items, for capacity W^{\prime}
- By the time we compute val [k, W'] we compare
- val[k-1, $\left.W^{\prime}\right]$ and \# this means not including the k-th item
- val[k-1, $\left.W^{\prime}-W_{k}\right]+v_{k} \#$ this means adding k-th item - O if $W^{\prime}-W_{k}<0$

Knapsack problem: iterative DP solution

- 4 items: $i_{1}, i_{2}, i_{3}, i_{4}$, knapsack capacity $W=8$
- Weights: $w_{1}=3, w_{2}=4, w_{3}=6, w_{4}=5$
- Values: $v_{1}=2, v_{2}=3, v_{3}=1, v_{4}=4$
- Initialization: set 0s for row i_{0} and column $W^{\prime}=0$

Items (\mathbf{w}, \mathbf{v})	$\mathbf{W}^{\prime}=\mathbf{0}$	$\mathbf{W}^{\prime}=\mathbf{1}$	$\mathbf{W}^{\prime}=\mathbf{2}$	$\mathbf{W}^{\prime}=\mathbf{3}$	$\mathbf{W}^{\prime}=\mathbf{4}$	$\mathbf{W}^{\prime}=5$	$\mathbf{W}^{\prime}=6$	$\mathbf{W}^{\prime}=\mathbf{7}$	$\mathbf{W}^{\prime}=8$
$\mathrm{i}_{0}=$ no item	0	0	0	0	0	0	0	0	0
$\mathrm{i}_{1}(3,2)$	0								
$\mathrm{i}_{2}(4,3)$	0								
$\mathrm{i}_{3}(6,1)$	0								
$\mathrm{i}_{4}(5,4)$	0								

Knapsack problem: iterative DP solution

Items (w, v)	$W^{\prime}=\mathbf{0}$	$W^{\prime}=1$	$W^{\prime}=2$	$W^{\prime}=3$	$W^{\prime}=4$	$W^{\prime}=5$	$W^{\prime}=6$	$W^{\prime}=7$	$W^{\prime}=8$
$\mathrm{i}_{0}=$ no item	0	0	0	0	0	0	0	0	0
$\mathrm{i}_{1}(3,2)$	0	0	0	2	2	2	2	2	2
$\mathrm{i}_{2}(4,3)$	0								
$\mathrm{i}_{3}(6,1)$	0								
$\mathrm{i}_{4}(5,4)$	0								

- $\operatorname{val}\left[\mathrm{i}=1, \mathrm{~W}^{\prime}=\mathrm{x}\right]=\max \left(\operatorname{val}\left[\mathrm{i}=0, \mathrm{~W}^{\prime}=\mathrm{x}\right]\right.$,

$$
\left.\operatorname{val}\left[i=0, W^{\prime}-w_{1}\right]+v_{k} \text { if } W^{\prime}-w_{1} \geq 0 \text { else } 0\right)
$$

Knapsack problem: iterative DP solution

Items (\mathbf{w}, \mathbf{v})	$\mathbf{W}^{\prime}=\mathbf{0}$	$\mathbf{W}^{\prime}=1$	$\mathbf{W}^{\prime}=\mathbf{2}$	$\mathbf{W}^{\prime}=\mathbf{3}$	$\mathbf{W}^{\prime}=\mathbf{4}$	$\mathbf{W}^{\prime}=5$	$\mathbf{W}^{\prime}=6$	$\mathbf{W}^{\prime}=7$	$\mathbf{W}^{\prime}=8$
$\mathrm{i}_{0}=$ no item	0	0	0	0	0	0	0	0	0
$\mathrm{i}_{1}(3,2)$	0	0	0	2	2	2	2	2	2
$\mathrm{i}_{2}(4,3)$	0	0	0	2	3	3	3	5	5
$\mathrm{i}_{3}(6,1)$	0								
$\mathrm{i}_{4}(5,4)$	0								

- $v a l\left[i=2, W^{\prime}=x\right]=\max \left(v a l\left[i=1, W^{\prime}=x\right]\right.$,

$$
\left.\operatorname{val}\left[i=1, W^{\prime}-w_{2}\right]+v_{2} \text { if } W^{\prime}-w_{2} \geq 0 \text { else } 0\right)
$$

Knapsack problem: iterative DP solution

Items (\mathbf{w}, \mathbf{v})	$W^{\prime}=\mathbf{0}$	$W^{\prime}=\mathbf{1}$	$W^{\prime}=\mathbf{2}$	$W^{\prime}=\mathbf{3}$	$W^{\prime}=4$	$W^{\prime}=5$	$W^{\prime}=6$	$W^{\prime}=7$	$W^{\prime}=8$
$\mathrm{i}_{0}=$ no item	0	0	0	0	0	0	0	0	0
$\mathrm{i}_{1}(3,2)$	0	0	0	2	2	2	2	2	2
$\mathrm{i}_{2}(4,3)$	0	0	0	2	3	3	3	5	5
$\mathrm{i}_{3}(6,1)$	0	0	0	2	3	3	3	5	5
$\mathrm{i}_{4}(5,4)$	0								

- $\operatorname{val}\left[\mathrm{i}=3, \mathrm{~W}^{\prime}=\mathrm{x}\right]=\max \left(\operatorname{val}\left[\mathrm{i}=2, \mathrm{~W}^{\prime}=\mathrm{x}\right]\right.$,

$$
\left.\operatorname{val}\left[i=2, W^{\prime}-w_{3}\right]+v_{3} \text { if } W^{\prime}-w_{3} \geq 0 \text { else } 0\right)
$$

Knapsack problem: iterative DP solution

Items (\mathbf{w}, \mathbf{v})	$W^{\prime}=\mathbf{0}$	$W^{\prime}=\mathbf{1}$	$W^{\prime}=\mathbf{2}$	$W^{\prime}=\mathbf{3}$	$W^{\prime}=\mathbf{4}$	$W^{\prime}=5$	$W^{\prime}=\mathbf{6}$	$W^{\prime}=\mathbf{7}$	$W^{\prime}=8$
$\mathrm{i}_{0}=$ no item	0	0	0	0	0	0	0	0	0
$\mathrm{i}_{1}(3,2)$	0	0	0	2	2	2	2	2	2
$\mathrm{i}_{2}(4,3)$	0	0	0	2	3	3	3	5	5
$\mathrm{i}_{3}(6,1)$	0	0	0	2	3	3	3	5	5
$\mathrm{i}_{4}(5,4)$	0	0	0	2	3	4	4	5	6

- $v a l\left[i=4, W^{\prime}=x\right]=\max \left(v a l\left[i=3, W^{\prime}=x\right]\right.$,

$$
\operatorname{val}\left[\mathrm{i}=3, \mathrm{~W}^{\prime}-\mathrm{w}_{4}\right]+v_{4} \text { if } \mathrm{W}^{\prime}-\mathrm{w}_{4} \geq 0 \text { else } 0 \text {) }
$$

Knapsack problem: DP solution

- Iterative solution

```
knapsack_iter(I, W, W, V)
    val = array[|I|+1][W+1] # 2-D array, assume 0-indexing for both dimensions
    # initialization
    for i in 0 to len(I)
        val[i][0] = 0
    for w' in 0 to w
        val[0][\mp@subsup{w}{}{\prime}]=0
    for i in 1 to len(I)
        for w' in 1 to W
            V'=0
            if w'-w[i] \geq 0
                v' = val[i-1, w'-w[i]] + v[i]
            val[i, w'] = max(val[i-1, w'], v')
    return val[|I|][W]
```


Dynamic programming

- Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution

- Bottom-up manner (without recursion)
- Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution

- Not enough just to know what the optimal (max or min) value is
- Need to know which ,"sequence of steps" leads to that optimal solution
- For example, in rod-cutting - where exactly to cut (sub-rods of which lengths to sell)

Knapsack problem: iterative DP solution

Items (\mathbf{w}, \mathbf{v})	$\mathbf{W}^{\prime}=\mathbf{0}$	$\mathbf{W}^{\prime}=\mathbf{1}$	$\mathbf{W}^{\prime}=\mathbf{2}$	$\mathbf{W}^{\prime}=\mathbf{3}$	$\mathbf{W}^{\prime}=\mathbf{4}$	$\mathbf{W}^{\prime}=5$	$\mathbf{W}^{\prime}=\mathbf{6}$	$\mathbf{W}^{\prime}=\mathbf{7}$	$\mathbf{W}^{\prime}=8$
$\mathrm{i}_{0}=$ no item	0	0	0	0	0	0	0	0	0
$\mathrm{i}_{1}(3,2)$	0	0	0	2	2	2	2	2	2
$\mathrm{i}_{2}(4,3)$	0	0	0	$2 \uparrow$	3	3	3	5	5
$\mathrm{i}_{3}(6,1)$	0	0	0	2	3	3	3	5	5
$\mathrm{i}_{4}(5,4)$	0	0	0	2	3	4	4	5	6

- $\operatorname{val}\left[i=4, W^{\prime}=x\right]=\max \left(\operatorname{val}\left[i=3, W^{\prime}=x\right]\right.$,

$$
\left.\operatorname{val}\left[i=3, w^{\prime}-w_{4}\right]+v_{4} \text { if } w^{\prime}-w_{4} \geq 0 \text { else } 0\right)
$$

- Q: Which items were taken, and which not?
- When the „backward" path crosses columns, item was added, when it stays in the same column, it was omitted

Knapsack problem: DP solution

- Save the „path" - for each cell remember where the max came from

```
knapsack_iter(I, W, W, v)
    val = array[|I|+1][W+1]
    pred = array[|I|+1][W+1]
    for i in 0 to len(I)
        val[i][0] = 0
        pred[i][0] = null
    for w' in 0 to w
        val[0][w'] = 0
        pred[0][w'] = null
    for i in 1 to len(I)
        for w' in 1 to w
        v
            if w'-w[i] \geq 0
                v' = val[i-1, w'- w[i]] + v[i]
```

 pred[i, w'] = (i-1, w'- w[i])
    ```
```

if val[i-1, w'] \geq v'

```
if val[i-1, w'] \geq v'
    val[i, w'] = val[i-1, w']
    val[i, w'] = val[i-1, w']
    pred[i, w'] = (i-1, w')
    pred[i, w'] = (i-1, w')
    else
    else
        val[i, w'] = v'
```

 val[i, w'] = v'
    ```
```

get_items(I, W, w, v)

```
get_items(I, W, w, v)
    val, pred = knapsack_iter(I, W, w, v)
    val, pred = knapsack_iter(I, W, w, v)
    print(val[|I|][W]) # optimal value
    print(val[|I|][W]) # optimal value
    i = |I|
    i = |I|
    w = W
    w = W
    while i > 0
    while i > 0
            jr w' = pred[i][w]
            jr w' = pred[i][w]
            if w' != w
            if w' != w
        print(i)
        print(i)
            i = j
            i = j
            w = w'
```

 w = w'
    ```

\section*{Content}
- DP Recap
- Knapsack Problem
- Minimal Edit Distance

\section*{Minimal Edit Distance}

The minimal edit distance problem asks to determine the minimal number of atomic/unit operations that convert one string to another. The minimal edit distance is used in many applications (e.g., information retrieval, bioinformatics) as a measure of proximity between sequences of symbols (commonly characters). Most often, the three atomic operations being counted are: (character) insertion, deletion, and replacement
- Often also called just Edit distance or Levenshtein distance
- Q: How many unit operations do we need to convert
- „ailgorthm" into ,,algorithm"?
- „intrligenece" into „intelligence"?

\section*{Dynamic programming}
- Developing a DP algorithm involves the following steps:
1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution
- Bottom-up manner (without recursion)
- Memorize the solutions to solved subproblems!!!

\section*{4. Construct an optimal solution}
- Not enough just to know what the optimal (max or min) value is
- Need to know which ,"sequence of steps" leads to that optimal solution
- For example, in rod-cutting - where exactly to cut (sub-rods of which lengths to sell)

\section*{Minimal Edit Distance: Problem Structure}
- We have two sequence of characters
- \(\boldsymbol{x}=x_{1}, x_{2}, \ldots, x_{m}\)
- \(\mathbf{y}=y_{1}, y_{2}, \ldots, y_{n}\)
- Edit distance between whole strings: \(\operatorname{dist}(\mathrm{m}, \mathrm{n})\)
- dist \((\mathrm{i}, \mathrm{j})\) indicates the distances between substrings \(\mathbf{x}_{\mathbf{i}}=x_{1}, x_{2}, \ldots, x_{i}\) and \(\mathbf{y}_{\mathrm{j}}=\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{j}}\)
- Q: Express the edit distance between \(\mathbf{x}\) and \(\mathbf{y}(m\) and \(n)\) in terms of the edit distances between their substrings?

\section*{Minimal Edit Distance: Problem Structure}
- Q: Express the edit distance between \(\mathbf{x}\) and \(\mathbf{y}(m\) and \(n\) ) in terms of the edit distances between their substrings?
- Edit distance of converting \(\mathbf{x}\) to \(\mathbf{y}\) is the smallest of the following:
1. edit distance between \(\mathbf{x}_{\mathrm{m}-1}\) and \(\mathbf{y}+1\) (deletion of \(x_{m}\) )
2. edit distance between \(\mathbf{x}\) and \(\mathbf{y}_{\mathrm{n}-1}+1\) (insertion of \(y_{n}\) )
3. edit distance between \(\mathbf{x}_{\mathrm{m}-1}\) and \(\mathbf{y}_{\mathrm{n}-1}+\left\{1\right.\) if \(\mathrm{x}_{\mathrm{m}} \neq \mathrm{y}_{\mathrm{n}}\) else 0\(\}\) (replacement)
- The same holds for any i and j, not just whole strings (m and \(n\) )

\section*{Dynamic programming}
- Developing a DP algorithm involves the following steps:
1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution
- Bottom-up manner (without recursion)
- Memorize the solutions to solved subproblems!!!

\section*{4. Construct an optimal solution}
- Not enough just to know what the optimal (max or min) value is
- Need to know which ,"sequence of steps" leads to that optimal solution
- For example, in rod-cutting - where exactly to cut (sub-rods of which lengths to sell)

\section*{Edit distance: recursive definition of optimal value}

- Q: Write the recursive algorithm for solving the edit distance
- Q: Where are the repetitive subproblems?

\section*{Edit Distance: Recursively (no memorization)}
- For the example, we will follow only one thread of recursion (first subproblem)
- „sany" vs. „sam"
- min(dist(,,san", ,,sam") + 1, dist(,,sany", ,,sa") + 1, dist(,,san", ,,sa") + 1)
- „san" vs. „sam"
- min(dist(,,sa", ,,sam") + 1, dist(,,san", ,,sa") + 1, dist(,,sa", ,,sa") + 1)
- „sa" vs. „sam"
- min(dist(,,s", ,,sam") + 1, dist(,,sa", , sa") \(\left.+1, \operatorname{dist}\left(,, s^{\prime \prime},,, s a "\right)+1\right)\)
- „s" vs. „sam"
- min(dist(,„", ,,sam") + 1, dist(,,s", ,,sa") + 1, dist(,„", ,,sa") + 1)
- „" vs. „sam"
- return 3

\section*{Dynamic programming}
- Developing a DP algorithm involves the following steps:

\section*{1. Characterize the structure of an optimal solution}
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution
- Bottom-up manner (without recursion)

\section*{4. Construct an optimal solution}
- Not enough just to know what the optimal (max or min) value is
- Need to know which „sequence of steps" leads to that optimal solution
- For example, in rod-cutting - where exactly to cut (sub-rods of which lengths to sell)

\section*{Edit Distance: Iterative solution}
- Create a matrix of size \(m+1, n+1\) (+1 for empty string)
- Initialize [0, j] with \(j\) and [i, 0] with \(i\)
- Fill the table cell by cell (same as in knapsack)
- \([\mathrm{i}, \mathrm{j}]=\boldsymbol{\operatorname { m i n }}([\mathrm{i}-1, \mathrm{j}]+1\),
\[
\begin{aligned}
& {[i, j-1]+1,} \\
& {[i-1, j-1]+1 \text { if } x_{i} \neq y_{j}, 0 \text { otherwise) }}
\end{aligned}
\]
- Q: Write the iterative algorithm for solving the Edit Distance

\section*{Example - Levenshtein non-recursively}
\begin{tabular}{|c|c|c|c|c|}
\hline & & \(\mathbf{s}\) & \(\mathbf{a}\) & \(\mathbf{m}\) \\
\hline \(\mathbf{-}\) & 0 & 1 & 2 & 3 \\
\hline \(\mathbf{s}\) & 1 & 0 & 1 & 2 \\
\hline \(\mathbf{a}\) & 2 & 1 & 0 & 1 \\
\hline \(\mathbf{n}\) & 3 & 2 & 1 & 1 \\
\hline \(\mathbf{y}\) & 4 & 3 & 2 & \(\mathbf{2}\) \\
\hline
\end{tabular}

\section*{Dynamic programming}
- Developing a DP algorithm involves the following steps:

\section*{1. Characterize the structure of an optimal solution}
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution
- Bottom-up manner (without recursion)
4. Construct an optimal solution
- Not enough just to know what the optimal (max or min) value is
- Need to know which „sequence of steps" leads to that optimal solution
- For example, in rod-cutting - where exactly to cut (sub-rods of which lengths to sell)

\section*{Edit distance: solution reconstruction}
- For edit distance, we normally just want the minimal value
- But if we wanted, we could reconstruct the actual edit operations
- Q: How?
- A: Analogous to how we did it for knapsack - for each cell, remember from which of the three possibilities the min value came
- Q: write the iterative algorithm for solving edit distance that allows for the reconstruction of the optimal solution
- Q: write the function that reconstructs and prints the optimal solution (i.,e., the sequence of edit operations)

\section*{Questions?}
```

