
Dynamic Programming:
Some Problems
Prof. Dr. Goran Glavaš

4.12.2023

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• DP Recap

• Knapsack Problem

• Minimal Edit Distance

Dynamic Programming

• Dynamic programming solves problems with following properties:
• Divisible into subproblems of the same type as the original problem
• Solution to the subproblem is part of the solution to the whole problem

• Subproblems repeat a lot: storing solutions of solved subproblems crucial

• Commonly applied to (discrete) optimization problems
• Problems that have many possible solutions
• Solutions have values or costs associated to them
• We want to find the optimal solution – one with max value or min cost

• There can be more than one optimal solution!

+

Example DP Problem: Rod cutting

Length i 1 2 3 4 5 6 7 8 9 10

Price pi 1 5 8 9 10 17 17 20 24 26

A company buys long steel rods and cuts them into shorter rods which it then sells. For
each rod of length i (in inches), we know the corresponding price pi the company sells it
for. Given a rod of length n inches and a table of prices pi for i = 1, 2, ..., n determine the

maximal revenue rn the company can have from that rod and find a cutting s that
achieves that maximal revenue. Not that, in principle, if pn is large enough the optimal

revenue may be achieved without any cutting at all.

Rod-cutting problem

Dynamic programming

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
• Top-down manner (recursively)
• Bottom-up manner (without recursion)
• Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
• Not enough just to know what the optimal (max or min) value is
• Need to know which „sequence of steps” leads to that optimal solution

• For example, in rod-cutting – where exactly to cut (sub-rods of which lengths to sell)

Dynamic programming: solution memorization

• Avoid the exponential complexity of
the recursive solution O(2n)

• As usual, the solution is to trade
some space for time

• Memorization
• Once the solution for a subproblem is

computed the first time, store it
• When you encounter the same

subproblem, simply retrieve its
solution

• Obviously, this only helps in case of
repeating subproblems

cut_rod_rec(p, n, r)

if n in r # lookup key in hashtable

return r[n]

q = -inf

if n == 0

q = 0

else

for i in 1 to n

t = p[i] + cut_rod_rec(p, n-i,r)

if t > q

q = t

r[n] = q # store when computed 1st time

return r

cut_rod(p, n)

r = {} # empty solutions hashtable

return cut_rod_rec(p,n,r)

Dynamic programming: bottom up

• Bottom-up DP – the idea is that of
iterative induction:
• We know the solution of the smallest

subproblem

• For rod-cutting, this is when n = 0

• If I know rk-i – the solution for all i < k,
then I know how to compute the
solution for rk – the solution for k

• Q: Runtime of bottom-up approach?
• Clearly O(n2)

cut_rod_iter(p, n)

r = {}

r[0] = 0

r[1] = p[1]

for i in 2 to n

r[i] = -inf

we’re looking for the max

for j in 1 to i

q = p[j] + r[i-j]

if q > r[i]

r[i] = q

return r[n]

Rod-cutting: complete example

• r1 = p1 = 1

• r2 = max(p1 + r1, p2) = max(1+1, 5) = 5, s2 = 2

• r3 = max(p1 + r2, p2 + r1, p3) = max(1+5, 5+1, 8) = 8, s3 = 3

• r4 = max(p1 + r3, p2 + r2, p3 + r1, p4) = max(1+8, 5+5, 8+1, 9) = 10, s4 = 2

• r5 = max(1+10,5+8,8+5,9+1,10) = 13, s5 = 2

• r6 = max(1+13,5+10,8+8,9+5,10+1, 17) = 17, s6 = 6

• r7 = max(1+16,5+5,8+10,9+8,10+5,17+1,17) = 18, s7 = 3

• r8 = max(1+18,5+17,8+13,9+10,10+8,17+5,18+1,20) = 22, s8 = 6

• r9 = max(1+22,5+18,8+17,9+13,10+10,17+8,17+5,22+1,24) = 25, s9 = 3

• r10 = max(1+25,5+22,8+18,9+17,10+13,17+10,17+8,20+5,24+1,26) = 27, s10 = 6

• Reconstruction of the solution: s10 = 6 → s4(=10-6) = 2 → s2(=4-2) = 2 → s0(=2-2) end!
• Optimal solution is to cut only once, after the 6th inch. We sell two rods, 6 and 4 inch long.

get_solution_rod_iter(p, n)

r, s = cut_rod_iter(p, n)

print(r[n]) # max price

i = n

while i > 0

print(s[i]) # cuts / lengths

i = i-s[i]

Length i 1 2 3 4 5 6 7 8 9 10

Price pi 1 5 8 9 10 17 17 20 24 26

Content

• DP Recap

• Knapsack Problem

• Minimal Edit Distance

The Knapsack Problem

• Binary knapsack problem: each item is either taken or not
• Cannot take a part/fraction of an item

• There exists also the fractional knapsack problem – thief can take any
fraction (real number between 0 and 1) of an item
• Easier problem, can be solved greedily

The binary (or 0-1) knapsack problem is given as follows. A thief is robbing a store and
finds n items in the store. The i-th item has a weight wi and value vi . The thief wants to
steal the most valuable possible load, but he’s limited with the maximal weight W his
knapsack can carry. What is the maximal value the thief can steal (and which set of items
are to be stolen)?

(Binary) knapsack problem

Knapsack problem – greedy approach?

• Greedy strategy: choice that (locally) most increases the value

• Binary vs. Fractional knapsack problem
• Binary: greedy (per „kg” of weight) doesn’t work (not an optimal solution)

• Fractional: greedy works (per „kg” of weight)

Greedy solution to
fractional problem

Knapsack
problem

Solutions to
binary problem

Item 1: 6$/kg
Item 2: 5$/kg
Item 3: 4$/kg

greedyoptimal greedy = optimal

Knapsack problem: DP solution

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
• Quite analogous to structure of the solution for the rod-cutting problem

• We start with an empty knapsack and n items we could put in it

• n choices for the first item

• Place an i-th item (vi, wi)→ the remaining knapsack capacity is W - wi

• Let I = {i1, ..., in} be the set of all items

• Assume an optimal solution consists of K items i1, i2, ... iK
• The value of the optimal load: v = vi1 + vi2 + ... + viK

• The weight of the optimal load: w = wi1 + wi2 + ... + wiK ≤ W

Knapsack problem: DP solution

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
• Let I = {i1, ..., in} be the set of all items

• Assume an optimal solution consists of K items i1, i2, ... iK
• The value of the optimal load: v = vi1 + vi2 + ... + viK

• The weight of the optimal load: w = wi1 + wi2 + ... + wiK ≤ W

• If we remove any item ik, the remaining k-1 items represent an optimal
solution for the subproblem:

• items: I / {ik}, knapsack capacity: W - wik

Knapsack problem: DP solution

• Developing a DP algorithm involves the following steps:

2. Recursively define the value of an optimal solution
• If we remove any item ik, the remaining k-1 items represent an optimal

solution for the subproblem:
• items: I / {ik}, knapsack capacity: W - wik

• How many items can we remove from the solution?
• Since we don’t know how many items an optimal solution has, we need to consider

every item in I

val(I, W) = max ik ∈ I val(I / {ik}, W - wk) + vk

• If we assume that ik is part of the optimal solution, then the rest of the knapsack must
be filled with the items that are an optimal solution for the remaining capacity W - wk

Knapsack problem: DP solution

• Recursive implementation (no memorization)

knapsack(W, I, v, w)

val = 0

if len(I) == 0 or W == 0 # no items or knapsack capacity left

return 0

for i in I

if w[i] ≤ W

q = knapsack(W – w[i], I / {i}, v, w) + v[i]

if q > val

val = q

return val

Knapsack problem: DP solution

• Q: Where are the repeating subproblems?

• Set of all items: I = {i1, ..., in}

ks(I, W) = max (ks(I – {i1}, W – w1) + v1, ks(I – {i2}, W – w2) + v2, ... , ks(I – {in}, W – wn) + vn)

• Without memorization of subsolution problems
• Exponential runtime complexity, O(2n)

max (ks(I – {i1, i2}, W – w1 – w2) + v2,
ks(I – {i1, i3}, W – w1 – w3) + v3,
... ,
ks(I – {i1, in}, W – w1 – wn) + vn)

max (ks(I – {i2, i1}, W – w2 – w1) + v1,
ks(I – {i2, i3}, W – w2 – w3) + v3,
... ,
ks(I – {i2, in}, W – w2 – wn) + vn)

max (ks(I – {in, i1}, W – wn – w1) + v1,
ks(I – {in, in}, W – wn – w2) + v2,
... ,
ks(I – {in, in-1}, W – wn – wn-1) + vn-1)

Dynamic programming

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
• Bottom-up manner (without recursion)
• Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
• Not enough just to know what the optimal (max or min) value is
• Need to know which „sequence of steps” leads to that optimal solution

• For example, in rod-cutting – where exactly to cut (sub-rods of which lengths to sell)

Knapsack problem: iterative DP solution

• We could add memorization to the recursive computation

• DP: iterative solution more common (with memorization)

• We will iterate over increasing subsets of items
• In each iteration, we will consider only up to first k items, for different

capacities of the knapsack

• val[k, W’]: maximal value if considering only first k items, for capacity W’

• By the time we compute val[k, W’]we compare
• val[k-1, W’] and # this means not including the k-th item

• val[k-1, W’ - wk] + vk # this means adding k-th item

• 0 if W’ – wk < 0

Knapsack problem: iterative DP solution

• 4 items: i1, i2, i3, i4 , knapsack capacity W = 8

• Weights: w1 = 3, w2 = 4, w3 = 6, w4 = 5

• Values: v1 = 2, v2 = 3, v3 = 1, v4 = 4

• Initialization: set 0s for row i0 and column W’ = 0

Items (w, v) W’ = 0 W’ = 1 W’ = 2 W’ = 3 W’ = 4 W’ = 5 W’ = 6 W’ = 7 W’ = 8

i0 = no item 0 0 0 0 0 0 0 0 0

i1 (3, 2) 0

i2 (4, 3) 0

i3 (6, 1) 0

i4 (5, 4) 0

Knapsack problem: iterative DP solution

• val[i = 1, W’ = x] = max(val[i = 0, W’ = x],

val[i = 0, W’ – w1] + vk if W’ – w1 ≥ 0 else 0)

Items (w, v) W’ = 0 W’ = 1 W’ = 2 W’ = 3 W’ = 4 W’ = 5 W’ = 6 W’ = 7 W’ = 8

i0 = no item 0 0 0 0 0 0 0 0 0

i1 (3, 2) 0

i2 (4, 3) 0

i3 (6, 1) 0

i4 (5, 4) 0

0 0 2 2 2 2 2 2

Knapsack problem: iterative DP solution

• val[i = 2, W’ = x] = max(val[i = 1, W’ = x],

val[i = 1, W’ – w2] + v2 if W’ – w2 ≥ 0 else 0)

Items (w, v) W’ = 0 W’ = 1 W’ = 2 W’ = 3 W’ = 4 W’ = 5 W’ = 6 W’ = 7 W’ = 8

i0 = no item 0 0 0 0 0 0 0 0 0

i1 (3, 2) 0

i2 (4, 3) 0

i3 (6, 1) 0

i4 (5, 4) 0

0 0 2 2 2 2 2 2

0 0 2 3 3 3 5 5

Knapsack problem: iterative DP solution

• val[i = 3, W’ = x] = max(val[i = 2, W’ = x],

val[i = 2, W’ – w3] + v3 if W’ – w3 ≥ 0 else 0)

Items (w, v) W’ = 0 W’ = 1 W’ = 2 W’ = 3 W’ = 4 W’ = 5 W’ = 6 W’ = 7 W’ = 8

i0 = no item 0 0 0 0 0 0 0 0 0

i1 (3, 2) 0

i2 (4, 3) 0

i3 (6, 1) 0

i4 (5, 4) 0

0 0 2 2 2 2 2 2

0 0 2 3 3 3 5 5

0 0 2 3 3 3 5 5

Knapsack problem: iterative DP solution

• val[i = 4, W’ = x] = max(val[i = 3, W’ = x],

val[i = 3, W’ – w4] + v4 if W’ – w4 ≥ 0 else 0)

Items (w, v) W’ = 0 W’ = 1 W’ = 2 W’ = 3 W’ = 4 W’ = 5 W’ = 6 W’ = 7 W’ = 8

i0 = no item 0 0 0 0 0 0 0 0 0

i1 (3, 2) 0

i2 (4, 3) 0

i3 (6, 1) 0

i4 (5, 4) 0

0 0 2 2 2 2 2 2

0 0 2 3 3 3 5 5

0 0 2 3 3 3 5 5

0 0 2 3 4 4 5 6

Knapsack problem: DP solution

• Iterative solution
knapsack_iter(I, W, w, v)

val = array[|I|+1][W+1] # 2-D array, assume 0-indexing for both dimensions

initialization

for i in 0 to len(I)

val[i][0] = 0

for w’ in 0 to W

val[0][w’] = 0

for i in 1 to len(I)

for w’ in 1 to W

v’ = 0

if w’– w[i] ≥ 0

v’ = val[i-1, w’– w[i]] + v[i]

val[i, w’] = max(val[i-1, w’], v’)

return val[|I|][W]

Q: Runtime?

Dynamic programming

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
• Bottom-up manner (without recursion)
• Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
• Not enough just to know what the optimal (max or min) value is
• Need to know which „sequence of steps” leads to that optimal solution

• For example, in rod-cutting – where exactly to cut (sub-rods of which lengths to sell)

Knapsack problem: iterative DP solution

• val[i = 4, W’ = x] = max(val[i = 3, W’ = x],

val[i = 3, W’ – w4] + v4 if W’ – w4 ≥ 0 else 0)

• Q: Which items were taken, and which not?
• When the „backward” path crosses columns, item was added, when it stays in the same

column, it was omitted

Items (w, v) W’ = 0 W’ = 1 W’ = 2 W’ = 3 W’ = 4 W’ = 5 W’ = 6 W’ = 7 W’ = 8

i0 = no item 0 0 0 0 0 0 0 0 0

i1 (3, 2) 0

i2 (4, 3) 0

i3 (6, 1) 0

i4 (5, 4) 0

0 0 2 2 2 2 2 2

0 0 2 3 3 3 5 5

0 0 2 3 3 3 5 5

0 0 2 3 4 4 5 6

Knapsack problem: DP solution

• Save the „path” – for each cell remember where the max came from
knapsack_iter(I, W, w, v)

val = array[|I|+1][W+1]

pred = array[|I|+1][W+1]

for i in 0 to len(I)

val[i][0] = 0

pred[i][0] = null

for w’ in 0 to W

val[0][w’] = 0

pred[0][w’] = null

for i in 1 to len(I)

for w’ in 1 to W

v’ = 0

if w’– w[i] ≥ 0

v’ = val[i-1, w’– w[i]] + v[i]

if val[i-1, w’] ≥ v’

val[i, w’] = val[i-1, w’]

pred[i, w’] = (i-1, w’)

else

val[i, w’] = v’

pred[i, w’] = (i-1, w’– w[i])

return val, pred

get_items(I, W, w, v)

val, pred = knapsack_iter(I, W, w, v)

print(val[|I|][W]) # optimal value

i = |I|

w = W

while i > 0

j, w’ = pred[i][w]

if w’ != w

print(i)

i = j

w = w’

Content

• DP Recap

• Knapsack Problem

• Minimal Edit Distance

Minimal Edit Distance

• Often also called just Edit distance or Levenshtein distance

• Q: How many unit operations do we need to convert
• „ailgorthm” into „algorithm”?

• „intrligenece” into „intelligence”?

The minimal edit distance problem asks to determine the minimal number of
atomic/unit operations that convert one string to another. The minimal edit distance is

used in many applications (e.g., information retrieval, bioinformatics) as a measure of
proximity between sequences of symbols (commonly characters). Most often, the three
atomic operations being counted are: (character) insertion, deletion, and replacement

Minimal Edit Distance

Dynamic programming

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
• Bottom-up manner (without recursion)
• Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
• Not enough just to know what the optimal (max or min) value is
• Need to know which „sequence of steps” leads to that optimal solution

• For example, in rod-cutting – where exactly to cut (sub-rods of which lengths to sell)

Minimal Edit Distance: Problem Structure

• We have two sequence of characters
• x = x1, x2, ..., xm

• y = y1, y2, ..., yn

• Edit distance between whole strings: dist(m, n)
• dist(i, j) indicates the distances between substrings xi = x1, x2, ..., xi

and yj = y1, y2, ..., yj

• Q: Express the edit distance between x and y (m and n) in terms of
the edit distances between their substrings?

Minimal Edit Distance: Problem Structure

• Q: Express the edit distance between x and y (m and n) in terms of the edit
distances between their substrings?

• Edit distance of converting x to y is the smallest of the following:

1. edit distance between xm-1 and y + 1 (deletion of xm)

2. edit distance between x and yn-1 + 1 (insertion of yn)

3. edit distance between xm-1 and yn-1 + {1 if xm ≠ yn else 0} (replacement)

• The same holds for any i and j, not just whole strings (m and n)

Dynamic programming

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
• Bottom-up manner (without recursion)
• Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
• Not enough just to know what the optimal (max or min) value is
• Need to know which „sequence of steps” leads to that optimal solution

• For example, in rod-cutting – where exactly to cut (sub-rods of which lengths to sell)

Edit distance: recursive definition of optimal value

max(i, j) if min(i, j) = 0 # if one of the strings is empty

dist(i-1, j) + 1 # deletion of xi

min dist(i, j-1) + 1 # insertion of yj

dist(i-1, j-1) + 1{xi ≠ yj} # replacement of xi with yj

if not the same

dist(i, j)

• Q: Write the recursive algorithm for solving the edit distance
• Q: Where are the repetitive subproblems?

Edit Distance: Recursively (no memorization)

• For the example, we will follow only one thread of recursion (first
subproblem)

• „sany” vs. „sam”
• min(dist(„san”, „sam”) + 1, dist(„sany”, „sa”) + 1, dist(„san”, „sa”) + 1)

• „san” vs. „sam”
• min(dist(„sa”, „sam”) + 1, dist(„san”, „sa”) + 1, dist(„sa”, „sa”) + 1)

• „sa” vs. „sam”
• min(dist(„s”, „sam”) + 1, dist(„sa”, „sa”) + 1, dist(„s”, „sa”) + 1)

• „s” vs. „sam”
• min(dist(„”, „sam”) + 1, dist(„s”, „sa”) + 1, dist(„”, „sa”) + 1)

• „” vs. „sam”
• return 3

Dynamic programming

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
• Bottom-up manner (without recursion)

4. Construct an optimal solution
• Not enough just to know what the optimal (max or min) value is
• Need to know which „sequence of steps” leads to that optimal solution

• For example, in rod-cutting – where exactly to cut (sub-rods of which lengths to sell)

Edit Distance: Iterative solution

• Create a matrix of size m+1, n+1 (+1 for empty string)

• Initialize [0, j] with j and [i, 0] with i

• Fill the table cell by cell (same as in knapsack)
• [i, j] = min([i-1, j] + 1,

[i, j-1] + 1,

[i-1, j-1] + 1 if xi ≠ yj, 0 otherwise)

• Q: Write the iterative algorithm for solving the Edit Distance

Example – Levenshtein non-recursively

_ s a m

_ 0 1 2 3

s 1 0 1 2

a 2 1 0 1

n 3 2 1 1

y 4 3 2 2

Dynamic programming

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
• Bottom-up manner (without recursion)

4. Construct an optimal solution
• Not enough just to know what the optimal (max or min) value is
• Need to know which „sequence of steps” leads to that optimal solution

• For example, in rod-cutting – where exactly to cut (sub-rods of which lengths to sell)

Edit distance: solution reconstruction

• For edit distance, we normally just want the minimal value

• But if we wanted, we could reconstruct the actual edit operations
• Q: How?
• A: Analogous to how we did it for knapsack – for each cell, remember from which of

the three possibilities the min value came

• Q: write the iterative algorithm for solving edit distance that allows for the
reconstruction of the optimal solution

• Q: write the function that reconstructs and prints the optimal solution
(i.,e., the sequence of edit operations)

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и

тан
н

я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w

ọ
n

ib
e

er
e

?

ค ำถำม?

	Default Section
	Slide 1: Dynamic Programming: Some Problems Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Dynamic Programming
	Slide 4: Example DP Problem: Rod cutting
	Slide 5: Dynamic programming
	Slide 6: Dynamic programming: solution memorization
	Slide 7: Dynamic programming: bottom up
	Slide 8: Rod-cutting: complete example
	Slide 9: Content
	Slide 10: The Knapsack Problem
	Slide 11: Knapsack problem – greedy approach?
	Slide 12: Knapsack problem: DP solution
	Slide 13: Knapsack problem: DP solution
	Slide 14: Knapsack problem: DP solution
	Slide 15: Knapsack problem: DP solution
	Slide 16: Knapsack problem: DP solution
	Slide 17: Dynamic programming
	Slide 18: Knapsack problem: iterative DP solution
	Slide 19: Knapsack problem: iterative DP solution
	Slide 20: Knapsack problem: iterative DP solution
	Slide 21: Knapsack problem: iterative DP solution
	Slide 22: Knapsack problem: iterative DP solution
	Slide 23: Knapsack problem: iterative DP solution
	Slide 24: Knapsack problem: DP solution
	Slide 25: Dynamic programming
	Slide 26: Knapsack problem: iterative DP solution
	Slide 27: Knapsack problem: DP solution
	Slide 28: Content
	Slide 29: Minimal Edit Distance
	Slide 30: Dynamic programming
	Slide 31: Minimal Edit Distance: Problem Structure
	Slide 32: Minimal Edit Distance: Problem Structure
	Slide 33: Dynamic programming
	Slide 34: Edit distance: recursive definition of optimal value
	Slide 35: Edit Distance: Recursively (no memorization)
	Slide 36: Dynamic programming
	Slide 37: Edit Distance: Iterative solution
	Slide 38: Example – Levenshtein non-recursively
	Slide 39: Dynamic programming
	Slide 40: Edit distance: solution reconstruction
	Slide 41: Questions?

