[l CAIDAS WiNLP

ALGORITHMS IN Al & DATA SCIENCE 1 (AKIDS 1)

-
‘(o y
=
A.
\
4 h

h

V,' -.‘ : v

Dynamic Programming:
Some Problems

Prof. Dr. Goran Glavas

4.12.2023

Content

* DP Recap
* Knapsack Problem
* Minimal Edit Distance

Dynamic Programming

* Dynamic programming solves problems with following properties:
e Divisible into subproblems of the same type as the original problem
* Solution to the subproblem is part of the solution to the whole problem

* Subproblems repeat a lot: storing solutions of solved subproblems crucial

 Commonly applied to (discrete) optimization problems
* Problems that have many possible solutions
e Solutions have values or costs associated to them

 We want to find the optimal solution — one with max value or min cost
* There can be more than one optimal solution!

Example DP Problem: Rod cutting

/ Rod-cutting problem

A company buys long steel rods and cuts them into shorter rods which it then sells. For
each rod of length / (in inches), we know the corresponding price p, the company sells it
for. Given a rod of length n inches and a table of prices p, fori=1, 2, ..., n determine the
maximal revenue r_ the company can have from that rod and find a cutting s that
achieves that maximal revenue. Not that, in principle, if p, is large enough the optimal
revenue may be achieved without any cutting at all.

_ /

Length / 1 2 3 4 5 6 7 8 9 10

Price p, 1 5 8 9 10 17 17 20 24 26

Dynamic programming

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
e Top-down manner (recursively)
e Bottom-up manner (without recursion)
 Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
* Not enough just to know what the optimal (max or min) value is

* Need to know which ,,sequence of steps” leads to that optimal solution
* For example, in rod-cutting — where exactly to cut (sub-rods of which lengths to sell)

Dynamic programming: solution memorization

cut rod(p, n)

* Avoid the exponential complexity of r = {} # empty solutions hashtable
the recursive solution O(2") return cut_rod_rec(p,n,)
e As usual, the solution is to trade cut _rod rec(p, n, r)
some space for time if n in r # lookup key in hashtable
return r [n|
* Memorization q = —-inf
* Once the solution for a subproblem is if n ==
computed the first time, store it g =0
* When you encounter the same else
subproblem, simply retrieve its for | in | to n
solution

] . _ t = p[i] + cut rod rec(p, n-1,r)
* Obviously, this only helps in case of if ¢ > o

repeating subproblems g =t

r[n] = g # store when computed 1lst time

return r

Dynamic programming: bottom up

* Bottom-up DP — the idea is that of
iterative induction:

* We know the solution of the smallest
subproblem
* For rod-cutting, thisiswhenn =0

* If I know r, . —the solution for all i <k,
then | know how to compute the
solution for r,— the solution for k

* Q: Runtime of bottom-up approach?
 Clearly O(n?)

cut _rod iter(p, n)

ro={}
r[0] =
r[l] =
for i in 2 to n
r{1] = -inf

we’'re looking for the max
for] in 1 to 1
g =rprlJ] + rli-7]
if g > r[i]
r[i] =g

return r [n]

Rod-cutting: complete example

Length / 5 6 7 8 9 10
Price p, 10 17 17 20 24 26
cr,=p,=1

© r,=max(p, +1,,p,) = max(1+1,5) = 5,5, = 2

© ry=max(p, +r, p,+ry, ps) =max(1+5,5+1,8) =8,5,=3

* ry=max(p, +ry, py+r,y, py+ry, p,) = max(1+8, 545, 8+1,9) =10,s, =2
* ro=max(1+10,5+8,8+5,9+1,10) =13, s, = 2
° rg=max(1+13,5+10,8+8,9+45,10+1,17) =17,5,=6

* r,=max(1+16,5+5,8+10,9+8,10+5,17+1,17) =18, s, =3

° rg=max(1+18,5+17,8+13,9+10,10+8,1745,18+1,20) = 22,5, =6
° rg=max(1+22,5+18,8+17,9+13,10+10,17+8,17+5,22+1,24) = 25, Sg=3
° r,o=max(1+25,5+22,8+18,9+17,10+13,17+10,17+8,20+5,24+1,26) = 27, Sip="6

* Reconstruction of the solution: s, =6 2 s4.10.6)=2 2 Syc4.2)= 2 2 Sp(=2.2) €Nd!

get solution_rod iter(p, n)

r, s = cut_rod iter(p, n)
print(r[n]) # max price
1 =n

while 1 > 0
print(s[i]) # cuts / lengths

1 = 1i-s[1]

* Optimal solution is to cut only once, after the 6th inch. We sell two rods, 6 and 4 inch long.

Content

* DP Recap
* Knapsack Problem
* Minimal Edit Distance

The Knapsack Problem

(Binary) knapsack problem

The binary (or 0-1) knapsack problem is given as follows. A thief is robbing a store and
finds n items in the store. The i-th item has a weight w, and value v,. The thief wants to
steal the most valuable possible load, but he’s limited with the maximal weight \W his

knapsack can carry. What is the maximal value the thief can steal (and which set of items
are to be stolen)? j

* Binary knapsack problem: each item is either taken or not
» Cannot take a part/fraction of an item

* There exists also the fractional knapsack problem — thief can take any
fraction (real number between O and 1) of an item

* Easier problem, can be solved greedily

Knapsack problem — greedy approach?

* Greedy strategy: choice that (locally) most increases the value

* Binary vs. Fractional knapsack problem

e Binary: greedy (per , kg” of weight) doesn’t work (not an optimal solution)
e Fractional: greedy works (per ,kg” of weight)

ltem 1: 65/kg
ltem 2: 55/kg
ltem 3: 45/kg item 3

item 2

item 1

$60

SI00 $120 knapsack

Knapsack
problem

optimal

+

20 $100

= 5220

greedy

300 5120 I

20

10

$100
+

$60

= 5160

30

10

$120

$60

= 5180

Solutions to

binary problem

greedy = optimal

20
30

$80

+

20] $100
+

10} 360
= 5240

Greedy solution to
fractional problem

Knapsack problem: DP solution

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

* Quite analogous to structure of the solution for the rod-cutting problem
We start with an empty knapsack and n items we could put in it
n choices for the first item
Place an i-th item (v, w,) = the remaining knapsack capacity is W - w,
Let I ={i, ..., I} be the set of all items

Assume an optimal solution consists of Kitems i, i, ... I,
* The value of the optimal load: v=v, +v, +..+v,
* The weight of the optimal load: w=w,; + w, +...+w, W

Knapsack problem: DP solution

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

* Let1={i, ..., I } bethe set of all items

* Assume an optimal solution consists of Kitems i, i, ... I,
* The value of the optimal load: v=v, +v, +..+v,
* The weight of the optimal load: w=w,, + w, +...+w, W

* If we remove any item i,, the remaining k-1 items represent an optimal
solution for the subproblem:

* items: | / {i |, knapsack capacity: W - w,,

Knapsack problem: DP solution

* Developing a DP algorithm involves the following steps:

2. Recursively define the value of an optimal solution

* If we remove any item i, the remaining k-1 items represent an optimal
solution for the subproblem:

* items: |/ {i,}, knapsack capacity: \W - w;,

* How many items can we remove from the solution?

e Since we don’t know how many items an optimal solution has, we need to consider
every itemin |

val(l, W) =max ., val(l / {i.}, W -w,) +v,

* If we assume that i, is part of the optimal solution, then the rest of the knapsack must
be filled with the items that are an optimal solution for the remaining capacity W - w,

Knapsack problem: DP solution

e Recursive implementation (no memorization)

knapsack (W, I, v, w)
val = 0
if len(I) == 0 oxr W == 0 # no items or knapsack capacity left
return O

for i in I
if wl[i] £ W
g = knapsack (W - w[i], T / {i}, v, w) + v[i]
if g > val
val = g

return val

Knapsack problem: DP solution

* O: Where are the repeating subproblems?
* Setof all items: 1 ={i, ..., I}

ks(l, W) =max (ks(I={i,}, W—=w,)+vy, ks(I={i,}, W=w,)+v,, ..., ks(I={i,.}, W=w_)+Vv,)

\] \ J l J

e \ Y

max (ks(l—{i, i,}, W—w;—w,) +v,, max(ks(l—{i, i;}, W—w,—w,)+vy, max(ks(l—{i i}, W-—w —w,)+v,,
ks(l={i, 1.}, W—=w,—w.) +v;, ks(1={i, 1.}, W—=w,—w.) +v;, ks(l={i,, i}, W—=w_ —w,) +v,,

’

ks(h={ip i}, W—w,;—w,) +v,) ks(h={i, i,}h, W—w,—w,) +v,) ks(h={i 1L W=w_ —w_ .)+v,)

* Without memorization of subsolution problems
e Exponential runtime complexity, O(2")

Dynamic programming

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
e Bottom-up manner (without recursion)
* Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
* Not enough just to know what the optimal (max or min) value is

* Need to know which ,,sequence of steps” leads to that optimal solution
e For example, in rod-cutting — where exactly to cut (sub-rods of which lengths to sell)

Knapsack problem: iterative DP solution

* We could add memorization to the recursive computation
* DP: iterative solution more common (with memorization)

* We will iterate over increasing subsets of items
* In each iteration, we will consider only up to first k items, for different
capacities of the knapsack
e vall[k, W’]:maximalvalue if considering only first k items, for capacity \W’

* By the time we compute val[k, W’]we compare
e val[k-1, W'] and # this means not including the k-th item
* vallk-1, W' - w.] + v, # this means adding k-th item
e 0 if W - w, <O

Knapsack problem: iterative DP solution

4items: i, i, I5, 1, , knapsack capacity W =8

Weights: w, =3, w,=4, w, =6, w,=5

Values: v, =2,v,=3,v,=1,v,=4

Initialization: set Os for row i; and column W' =0

ip= no item
i, (3, 2)
i, (4, 3)
i5 (6, 1)
i (5,4)

o O O O O

Knapsack problem: iterative DP solution

ip= no item 0 0 0 0 0 0 0 0
(H 2) 0 0 0 2 2 2 2 2 2

i, (4, 3) 0

i5 (6, 1) 0

iy (5, 4) 0

e valli=1, W =x] = max(val[i=0, W =],
valli=0, W —w] +v if W —w,20else 0)

Knapsack problem: iterative DP solution

ip= no item 0 0

i, (3, 2) 0 0 2 2 2 2 2 2
, @ 2) 0 0 2 3 3 3 5 5
i5 (6, 1) 0

iy (5, 4) 0

e valli=2, W =x] = max(valli=1, W =],
valli=1, W —w,] +v, if W —w,2>20else 0)

Knapsack problem: iterative DP solution

ftems (w,y) |W=0 W=1 [W=2 |W=3 [W=4 |W=-5_|W=6_[W=7 |W=-38_

ip= no item 0 0 0 0 0 0 0 0 0
i (3,2) 0 0 0 2 2 2 2 2 2
(4, 2) 0 0 0 2 3 3 3 5 5
(8 1) 0 0 0 2 3 3 3 5 5
i, (5, 4) 0

e valli=3, W =x] = max(valli=2, W =x],
valli=2, W —w,] + v, if W —w,>0else 0)

Knapsack problem: iterative DP solution

ftems (w,y) |W=0 W=1 [W=2 |W=3 [W=4 |W=-5_|W=6_[W=7 |W=-38_

ip= no item 0 0 0 0 0 0 0 0 0
i, (3,2) 0 0 0 2 2 2 2 2 2
i, (4, 3) 0 0 0 2 3 3 3 5 5
i, (6, 1) 0 0 0 2 3 3 3 5 5
s (B, %) 0 0 0 2 3 4 4 5 6

e valli=4, W =x] = max(valli=3, W =],
valli=3, W —w,] +v,ifW —w,20else 0)

Knapsack problem: DP solution

e |[terative solution

knapsack iter (I, W, w, V)
val = array[|I|+1][W+1] # 2-D array, assume 0O-indexing for both dimensions
initialization
for i in 0 to len(I)
val[1][0] =0
for w in 0 to W

val[0][w'] = 0 Q: Runtime?

for 1 in 1 to len(I)
for w/ in 1 to W

v =0
if w' - w[i] 2 0

v/ = wvall[i-1, w/ — w[1]] + v[1]
valli, w'] = max(vall[i-1, w'], v")

return val [|I|][W]

Dynamic programming

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
e Bottom-up manner (without recursion)
* Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
* Not enough just to know what the optimal (max or min) value is

* Need to know which ,,sequence of steps” leads to that optimal solution
e For example, in rod-cutting — where exactly to cut (sub-rods of which lengths to sell)

Knapsack problem: iterative DP solution

ip= no item 0 0 0 0 0 0 0 0
i, (3,2) 0 (O\OZT 2 2 2 2 2
i, (4, 3) 0 0 0 ZT 3 3 3 5 5
i5 (6, 1) 0 0 0 2 «— 3 3 3 5 5
iy (5, 4) 0 0 0 2 3 /A 4 5 —6

e valli=4, W =x] = max(val[i=3, W =x],
valli=3, W —w,] +v, if W —w,20else 0)

* Q: Which items were taken, and which not?

 When the ,backward” path crosses columns, item was added, when it stays in the same
column, it was omitted

Knapsack problem: DP solution

e Save the ,path” — for each cell remember where the max came from

knapsack_iter (I, W, w, V)
val = array [|IT[+1] [W+1]
pred = array[|I|+1] [W+1]
for i in 0 to len(I)

val[1i]1[0] = 0 get items (I, W, w, V)
pred(i][0] = null val, pred = knapsack iter (I, W, w, V)
for w in 0 to W . - .
val[0][w'] = O print(val[|I|][W]) # optimal wvalue
pred[0] [w'] = null
for i in 1 to len (I) i = |I|
for w/ in 1 to W w =W
v/ =0 . .
if wi— wlil = 0 WhJ.'le 1 >0 |
v/ = vall[i-1, w/ — w[i]] + vI[i] 7, wi = pred[1] [w]
if w = w
if vall[i-1, w'] 2 v’/ : .
valli, w'] = valli-1, w’] print (1)
pred[i, w'] = (i-1, w’) 1=
else w o= w'
valli, w'] = v’/
pred[i, w’'] = (i-1, w/'— w[i])

return val, pred

Content

* DP Recap
* Knapsack Problem
* Minimal Edit Distance

Minimal Edit Distance

(Minimal Edit Distance

The minimal edit distance problem asks to determine the minimal number of
atomic/unit operations that convert one string to another. The minimal edit distance is
used in many applications (e.g., information retrieval, bioinformatics) as a measure of
proximity between sequences of symbols (commonly characters). Most often, the three
atomic operations being counted are: (character) insertion, deletion, and replacement

* Often also called just Edit distance or Levenshtein distance

* : How many unit operations do we need to convert
e ,ailgorthm” into ,,algorithm”?
e intrligenece” into ,intelligence”?

Dynamic programming

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
e Bottom-up manner (without recursion)
* Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
* Not enough just to know what the optimal (max or min) value is

* Need to know which ,,sequence of steps” leads to that optimal solution
e For example, in rod-cutting — where exactly to cut (sub-rods of which lengths to sell)

Minimal Edit Distance: Problem Structure

* We have two sequence of characters
® X=Xy, Xy eeey X
¢ y = Y11 y21 cee) yn

* Edit distance between whole strings: dist(m, n)

* dist(i,]) indicates the distances between substrings x. = x,, x,, ..., X,
and yj= y11 y2/ veey yJ

* O: Express the edit distance between x and y (m and n) in terms of
the edit distances between their substrings?

Minimal Edit Distance: Problem Structure

* (: Express the edit distance between x and y (m and n) in terms of the edit
distances between their substrings?

 Edit distance of converting x to y is the smallest of the following:
1. edit distance between x_ ,andy + 1 (deletion of x_)
2. edit distance betweenxandy, ,+ 1 (insertion ofy,)

3. edit distance between x_ ;andy, .+ {1if x_#y, else 0}(replacement)

* The same holds for any i and j, not just whole strings (m and n)

Dynamic programming

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
e Bottom-up manner (without recursion)
* Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
* Not enough just to know what the optimal (max or min) value is

* Need to know which ,,sequence of steps” leads to that optimal solution
e For example, in rod-cutting — where exactly to cut (sub-rods of which lengths to sell)

Edit distance: recursive definition of optimal value

m—

max(i,j) if mln(I,J)=0 # if one of the strings is empty

dist(i’ J) — diSt(i-l, J) + 1 #deletion of x.
min — diSt(i, J-l) + 1 #insertion of y,
diSt(i-l, J-l) + 1{Xi = yj} # replacement of x; with y,

—

— if not the same

* Q: Write the recursive algorithm for solving the edit distance
* : Where are the repetitive subproblems?

Edit Distance: Recursively (no memorization)

* For the example, we will follow only one thread of recursion (first
subproblem)

7

e ,sany” vs. ,sam
* min(dist(,,san”, ,sam”) + 1, dist(,,sany”, ,sa”) + 1, |dist(,,san®, ,sa”) + 1)

e san” vs.,sam
* min(dist(,,sa”, ,,sam”) + 1, dist(,san®, ,,sa”) + 1, dist(,,sa”, ,sa”) + 1)

e sa”’ vs.,sam”
* min(dist(,s”, ,,sam”) + 1, dist(,sa” ,sa”) + 1, dist(,,s”, ,sa”) + 1)

”

7

e s”wvs.,sam”
* min(dist(,”, ,sam”) + 1, dist(,s”, ,sa”) + 1, dist(,”, ,,sa”) + 1)

)

e Vs, ,sam
* return 3

Dynamic programming

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
e Bottom-up manner (without recursion)

4. Construct an optimal solution
* Not enough just to know what the optimal (max or min) value is

* Need to know which ,,sequence of steps” leads to that optimal solution
* For example, in rod-cutting — where exactly to cut (sub-rods of which lengths to sell)

Edit Distance: Iterative solution

* Create a matrix of size m+1, n+1 (+1 for empty string)
* Initialize [0, |] with j and [i, O] with i

* Fill the table cell by cell (same as in knapsack)
* [i, j]]=min([i-1,]] + 1,

i, j-1] + 1,

-1, -1] + 1if x; # v, O otherwise)

* Q: Write the iterative algorithm for solving the Edit Distance

Example — Levenshtein non-recursively

Dynamic programming

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
e Bottom-up manner (without recursion)

4. Construct an optimal solution
* Not enough just to know what the optimal (max or min) value is

* Need to know which ,,sequence of steps” leads to that optimal solution
* For example, in rod-cutting — where exactly to cut (sub-rods of which lengths to sell)

Edit distance: solution reconstruction

* For edit distance, we normally just want the minimal value

* But if we wanted, we could reconstruct the actual edit operations
* Q: How?

* A: Analogous to how we did it for knapsack — for each cell, remember from which of
the three possibilities the min value came

* O: write the iterative algorithm for solving edit distance that allows for the
reconstruction of the optimal solution

* Q: write the function that reconstructs and prints the optimal solution
(i.,e., the sequence of edit operations)

Questions?

Pitanja?

é¢Preguntas?
Fragor?

BHHE1M|]

Porandukuéra?

Questlons?

Vragen? Epwtl’]GElg,

eali

c

! HET pwusimusi?
o =
Z Sorusu olan? g BREX? é
3 Fragen'-’

Pytan a?
¢opuU Blu0(]

Y

	Default Section
	Slide 1: Dynamic Programming: Some Problems Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Dynamic Programming
	Slide 4: Example DP Problem: Rod cutting
	Slide 5: Dynamic programming
	Slide 6: Dynamic programming: solution memorization
	Slide 7: Dynamic programming: bottom up
	Slide 8: Rod-cutting: complete example
	Slide 9: Content
	Slide 10: The Knapsack Problem
	Slide 11: Knapsack problem – greedy approach?
	Slide 12: Knapsack problem: DP solution
	Slide 13: Knapsack problem: DP solution
	Slide 14: Knapsack problem: DP solution
	Slide 15: Knapsack problem: DP solution
	Slide 16: Knapsack problem: DP solution
	Slide 17: Dynamic programming
	Slide 18: Knapsack problem: iterative DP solution
	Slide 19: Knapsack problem: iterative DP solution
	Slide 20: Knapsack problem: iterative DP solution
	Slide 21: Knapsack problem: iterative DP solution
	Slide 22: Knapsack problem: iterative DP solution
	Slide 23: Knapsack problem: iterative DP solution
	Slide 24: Knapsack problem: DP solution
	Slide 25: Dynamic programming
	Slide 26: Knapsack problem: iterative DP solution
	Slide 27: Knapsack problem: DP solution
	Slide 28: Content
	Slide 29: Minimal Edit Distance
	Slide 30: Dynamic programming
	Slide 31: Minimal Edit Distance: Problem Structure
	Slide 32: Minimal Edit Distance: Problem Structure
	Slide 33: Dynamic programming
	Slide 34: Edit distance: recursive definition of optimal value
	Slide 35: Edit Distance: Recursively (no memorization)
	Slide 36: Dynamic programming
	Slide 37: Edit Distance: Iterative solution
	Slide 38: Example – Levenshtein non-recursively
	Slide 39: Dynamic programming
	Slide 40: Edit distance: solution reconstruction
	Slide 41: Questions?

