ALGORITHMS IN AI \& DATA SCIENCE 1 (AKIDS 1)

Dynamic Programming

Prof. Dr. Goran Glavaš

Content

- Divide-and-Conquer
- Dynamic Programming
- Recursive DP
- Iterative (Bottom-Up) DP

What are algorithms built from?

- Building blocks of algorithms
- Elementary operations
- Sequential processing (one processing lines)
- Parallel processing (multiple processing lines)
- Conditions (conditioned execution)
- Loops (repetition)
- Subprograms (modular construction of an algorithm)
- Recursion

Recursion

- Recursive algorithms solve recursive problems:
- Divisible into subproblems of the same type as the original problem
- Solution to the subproblem is part of the solution to the whole problem

Factorial (Fakultät) problem

Input: Natural number n
(Desired) Output: Factorial $n!=1 * 2 * \ldots * n$

Iterative solution

```
prod <- 1
for x in [2, 3, ..., n] do
    prod <- prod * x
```

But $n!$ is a recursive problem

```
n! = n * (n-1)!
    =n* (n-1)* (n-2)!
    = ...
    n * (n-1) * (n-2) * ... * 3 * 2 * 1
```


Dynamic Programming

- Dynamic programming solves problems with following properties:
- Divisible into subproblems of the same type as the original problem
- Solution to the subproblem is part of the solution to the whole problem
- Subproblems repeat a lot: storing solutions of solved subproblems crucial
- Commonly applied to (discrete) optimization problems
- Problems that have many possible solutions
- Solutions have values or costs associated to them
- We want to find the optimal solution - one with max value or min cost
- There can be more than one optimal solution!

Example DP Problem: Rod cutting

Rod-cutting problem

A company buys long steel rods and cuts them into shorter rods which it then sells. For each rod of length i (in inches), we know the corresponding price p_{i} the company sells it for. Given a rod of length n inches and a table of prices p_{i} for $i=1,2, \ldots, n$ determine the maximal revenue r_{n} the company can have from that rod and find a cutting s that achieves that maximal revenue.

Length i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Price p_{i}	1	5	8	9	10	17	17	20	24	26

- Note that, in principle, if p_{n} is large enough, the optimal revenue may be achieved without any cutting at all.

Example DP Problem: Rod cutting

- Let's have a toy example: short rod $-\mathrm{n}=4$
- Even for such a short rod, we have already 8 different potential solutions (with no cutting as one of them)

(a)

(b)

(c)

(d)

Image from Cormen et al.

(e)

(f)

(g)

(h)

- We will denote solution with ordinary additive notation:
- 4 = $1+1+2$: means that we cut the rod of length 4 inches (left to right) into segments of 1 inch, 1 inch, and 2 inches
- But $1+1+2,1+2+1,2+1+1$ all clearly have the same value - if we computed the price for one, we don't need to for the other (repeating subproblems)

Example DP Problem: Rod cutting

- Assume that an optimal solution cuts the rod into k pieces
- General notation is then:

$$
\begin{aligned}
& n=i_{1}+i_{2}+i_{3}+\ldots+i_{k} \text { (rod pieces of lengths } i_{1}, \ldots, i_{k} \text { inches) } \\
& r_{n}=p_{i 1}+p_{i 2}+\ldots+p_{i k} \text { (prices } p_{i 1}, \ldots, p_{i k} \text { euros for rods of lengths } i_{1}, \ldots, i_{k} \text { inches) }
\end{aligned}
$$

- Divide-and-conquer: the problem naturally decomposable into the subproblems of the same type (,definable recursively")

$$
r_{n}=\max \left(p_{n}, r_{1}+r_{n-1}, r_{2}+r_{n-2}, \ldots, r_{n-2}+r_{2}, r_{n-1}+r_{1}\right)
$$

- Note that $r_{m}+r_{n-m}=r_{n-m}+r_{m}$
- Note that $r_{1}=p_{1}$ as the 1-inch rod cannot be cut further

Example DP Problem: Rod cutting

- We can further simplify the formulation of the problem
- Assume we're making the first cut
- There are only n posibilities for the first cut: after $1,2, \ldots, \mathrm{n}$ inches of length
- Note that „cutting after n inches" means not cutting the rod at all
- If the first cut is after i inches then the cost $r_{i}=p_{i}+r_{n-1}$
- Assume $r_{0}=0$
- Reformulate the problem as

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i+} r_{n-i}\right)
$$

Example DP Problem: Rod cutting

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i+} r_{n-i}\right)
$$

- Recursive (divide-and-conquer) solution:

```
cut_rod(p, n) # p is the array with prices
    if n == 0 # termination criterion of recursion
        return 0
    r = -inf
    for i in 1 to n
        q = p[i] + cut_rod(p, n-i) # recursive call
        if q > r
    return
```


Example DP Problem: Rod cutting

- Q: What is potentially problematic here?
- Q: How long will this run for some large n ?
- How many calls of cut-rod?

```
cut_rod(p, n)
    if n == 0
        return 0
    r = -inf
    for i in 1 to n
        q = p[i] + cut_rod(p, n-i)
        if q > r
            r = q
    return r
```

- Repeating subproblems!
- cut_rod is called again and again with the same length arguments!

Example DP Problem: Rod cutting

- Let's plot the tree of recursive calls (for $n=4$):

- cut_rod (p, 2) called 2 times,
- cut_rod (p, 1) called 4 times
- cut_rod (p, 0) called 8 times

```
cut_rod(p, n)
    if n == 0
        return 0
    r = -inf
    for i in 1 to n
        q = p[i] + cut_rod(p, n-i)
        if q > r
            r = q
    return r
- Q: runtime \(T(n)\) ?
```

- No. nodes in the tree: $16=2^{4}$
- Can be computed recursively

$$
\mathrm{T}(\mathrm{n})=1+\sum_{j=0}^{n-1} \mathrm{~T}(\mathrm{j})
$$

- Exponential complexity: $\mathrm{O}\left(2^{\mathrm{n}}\right)$

Content

- Divide-and-Conquer
- Dynamic Programming
- Recursive (Top-Down) DP
- Iterative (Bottom-Up) DP

Dynamic programming

- Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution

- Top-down manner (recursively)
- Bottom-up manner (without recursion)
- Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution

- Not enough just to know what the optimal (max or min) value is
- Rod-cutting: need to know where to cut the rod © ! (and not just the maximal price we can achieve for the rod of given length)

Dynamic programming: solution memorization

- Avoid the exponential complexity of the recursive solution $\mathbf{O}\left(2^{n}\right)$
- As usual, the solution is to trade some space for time
- Memorization
- Once the solution for a subproblem is computed the first time, store it
- When you encounter the same subproblem, simply retrieve its solution
- Obviously, this only helps in case of repeating subproblems

```
cut_rod(p, n)
    r = {} # empty solutions hashtable
    return cut_rod_rec(p,n,r)
cut_rod_rec(p, n, r)
    if n in r # lookup key in hashtable
        return r[n]
    q = -inf
    if }\textrm{n}==
        q=0
    else
        for i in 1 to n
            t = p[i] + cut_rod_rec(p,n-i,r)
            if t > q
                q=t
    r[n] = q # store when computed 1st time
    return r[n]
```


Dynamic programming: solution memorization

- Memorization
- Once the solution for a subproblem is computed the first time, store it
- When you encounter the same subproblem, simply retrieve its solution

```
cut_rod(p, n)
    r = {} # empty solution values hashtable
    return cut_rod_rec(p,n,r)
cut_rod_rec(p, n, r)
    if n in r # lookup key in hashtable
        return r[n]
    q = -inf
    if n == 0
        q=0
    else
        for i in 1 to n
        t = p[i] + cut_rod_rec(p, n-i, r)
        if t > q
                q=t
    r[n] = q # store when computed 1st time
    return r[n]
```


Dynamic programming: solution memorization

- Memorization
- Once the solution for a subproblem is computed the first time, store it
- When you encounter the same subproblem, simply retrieve its solution
- Top-down DP solution
- Recursion + memorization
- But we can also „build" the solution bottom up („real" DP)

```
cut_rod(p, n)
    r = {} # empty solutions hashtable
    return cut_rod_rec(p,n,r)
cut_rod_rec(p, n, r)
    if n in r # lookup key in hashtable
        return r[n]
    q = -inf
    if }\textrm{n}==
        q=0
    else
        for i in 1 to n
            t = p[i] + cut_rod_rec(p, n-i)
            if t > q
                q = t
    r[n] = q # store when computed 1st time
    return r
```


Content

- Divide-and-Conquer
- Dynamic Programming
- Recursive DP
- Iterative (Bottom-Up) DP

Dynamic programming: bottom up

- Bottom-up DP - the idea is that of iterative induction:
- We know the solution of the smallest subproblem
- For rod-cutting, this is when $\mathrm{n}=1$
- If we know r_{k-i} - the solution for all $i<k$, then we know how to compute the solution for r_{k} - the solution for k

Length i	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Price p_{i}	1	5	8	9	10	17	17	20	24	26

- $r_{1}=p_{1}=1$
- $r_{2}=\max \left(p_{1}+r_{1}, p_{2}\right)=\max (1+1,5)=5$
- $r_{3}=\max \left(p_{1}+r_{2}, p_{2}+r_{1}, p_{3}\right)=\max (1+5,5+1,8)=8$
- $r_{4}=\max \left(p_{1}+r_{3}, p_{2}+r_{2}, p_{3}+r_{1}, p_{4}\right)=\max (1+8,5+5,8+1,9)=10$

Dynamic programming: bottom up

- Bottom-up DP - the idea is that of iterative induction:
- We know the solution of the smallest subproblem
- For rod-cutting, this is when $\mathrm{n}=1$
- If we know r_{k-i}-the solution for all $i<k$, then we know how to compute the solution for r_{k} - the solution for k
- Q: Runtime of bottom-up approach?

```
cut_rod_iter(p, n)
    r[0] = 0
    r[1] = p[1]
    for i in 2 to n
        r[i] = -inf
        # we're looking for the max
        for j in 1 to i
        q = p[j] + r[i-j]
        if q > r[i]
            r[i] = q
    return r[n]
```

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Dynamic programming: reconstructing solution

- Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution

- Top-down manner (recursively)
- Bottom-up manner (without recursion)
- Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution

- Not enough just to know what the optimal (max or min) value is
- Example - rod-cutting: need to know where to cut the rod © ! (and not just the maximal price we can achieve for the rod of given length)

Dynamic programming: reconstructing solution

 for \(i\) in 2 to
 \(r[i]=-i n f\)
 \# we're looking for the max
 for \(j\) in 1 to
 \(q=p[j]+s[i-j]\)
 if \(q>r[i]\)
 \(r[i]=q\)
 return
 return
Top-down (recursive)
cut_rod (p, n)
$r=\{ \}$
return cut_rod_rec (p, n, r)

Bottom-up (iterative)
r = {}
r = {}
r[0] = 0
r[0] = 0
r[1] = p[1]

```
    r[1] = p[1]
```

```
```

cut_rod_iter(p, n)

```
```

```
cut_rod_iter(p, n)
```

```
```

cut_rod_iter(p, n)

```
\[
\text { return r }[n]
\]
\[
\begin{aligned}
& q=-i n f \\
& \text { if } n==0
\end{aligned}
\]

cut_rod_rec ( \(p, n, r\) )
- So far, we only computed the optimal value, but not the solution itself
- Rod-cutting: we know the max. price, but not where to cut!
- Both for iterative (bottom-up) and recursive (top-down) approach
- Need to add additional information for reconstructing the actual solution
- RC: store from which subproblem (j) the maximum for the problem (i) came

\section*{Dynamic programming: reconstructing solution}
- So far, we only computed the optimal value, but not the solution itself
- Rod-cutting: we know the max. price, but not where to cut!
```

Bottom-up (iterative)

```
```

cut_rod_iter(p, n)

```
cut_rod_iter(p, n)
    r = {}
    r = {}
    r[0] = 0
    r[0] = 0
    r[1] = p[1]
    r[1] = p[1]
    s = {}
    s = {}
    for i in 2 to n
    for i in 2 to n
        r[i] = -inf
        r[i] = -inf
        for j in 1 to
        for j in 1 to
            q = p[j] + r[i-j]
            q = p[j] + r[i-j]
            if q > r[i]
            if q > r[i]
                r[i] = q
                r[i] = q
                s[i] = j
```

 s[i] = j
    ```
    return

\section*{Rod-cutting: complete example}
\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|r|}
\hline Length \(i\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) \\
\hline Price \(p_{i}\) & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 26 \\
\hline
\end{tabular}
\[
\text { - } \begin{aligned}
r_{1} & =p_{1}=1 \\
\text { - } r_{2} & =\max \left(p_{1}+r_{1}, p_{2}\right)=\max (1+1,5)=5, s_{2}=2 \\
\text { - } r_{3} & =\max \left(p_{1}+r_{2}, p_{2}+r_{1}, p_{3}\right)=\max (1+5,5+1,8)=8, s_{3}=3 \\
-r_{4} & =\max \left(p_{1}+r_{3}, p_{2}+r_{2}, p_{3}+r_{1}, p_{4}\right)=\max (1+8,5+5,8+1,9)=10, s_{4}=2 \\
\text { - } r_{5} & =\max (1+10,5+8,8+5,9+1,10)=13, s_{5}=2 \\
\text { - } r_{6} & =\max (1+13,5+10,8+8,9+5,10+1,17)=17, s_{6}=6 \\
\text { - } r_{7} & =\max (1+16,5+5,8+10,9+8,10+5,17+1,17)=18, s_{7}=3 \\
\text { - } r_{8} & =\max (1+18,5+17,8+13,9+10,10+8,17+5,18+1,20)=22, s_{8}=6 \\
\text { - } r_{9} & =\max (1+22,5+18,8+17,9+13,10+10,17+8,17+5,22+1,24)=25, s_{9}=3 \\
\text { - } r_{10} & =\max (1+25,5+22,8+18,9+17,10+13,17+10,17+8,20+5,24+1,26)=27, s_{10}=6
\end{aligned}
\]
cut_rod_iter (p, n)
\(r=\{ \}\)
\(r[0]=0\)
\(r[1]=p[1]\)
\(s=\{ \}\)
\[
\begin{aligned}
& \text { for } i \text { in } 2 \text { to } n \\
& r[i]=-i n f \\
& \text { for } j \text { in } 1 \text { to } i \\
& q=p[j]+r[i-j] \\
& \text { if } q>r[i] \\
& r[i]=q \\
& s[i]=j
\end{aligned}
\]
- Reconstruction of the solution: \(\mathrm{s}_{10}=6 \rightarrow \mathrm{~s}_{4(=10-6)}=2 \rightarrow \mathrm{~s}_{2(=4-2)}=2 \rightarrow \mathrm{~s}_{0(=2-2)}\) end! return r , s
- Optimal solution is to cut twice, we sell three rods, 6,2 , and 2 inches long.

\section*{Rod-cutting: complete example}
\begin{tabular}{|l|r|r|r|r|r|r|r|r|r|r|}
\hline Length \(i\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) \\
\hline Price \(p_{i}\) & 1 & 5 & 8 & 9 & 10 & 17 & 17 & 20 & 24 & 26 \\
\hline
\end{tabular}
```

- }\mp@subsup{r}{1}{}=\mp@subsup{p}{1}{}=
- }\mp@subsup{r}{2}{}=\operatorname{max}(\mp@subsup{p}{1}{}+\mp@subsup{r}{1}{},\mp@subsup{p}{2}{})=\operatorname{max}(1+1,5)=5,\mp@subsup{s}{2}{}=
- }\mp@subsup{r}{3}{}=\operatorname{max}(\mp@subsup{p}{1}{}+\mp@subsup{r}{2}{},\mp@subsup{p}{2}{}+\mp@subsup{r}{1}{},\mp@subsup{p}{3}{})=\operatorname{max}(1+5,5+1,8)=8,\mp@subsup{s}{3}{}=
- }\mp@subsup{r}{4}{}=\operatorname{max}(\mp@subsup{p}{1}{}+\mp@subsup{r}{3}{},\mp@subsup{p}{2}{}+\mp@subsup{r}{2}{},\mp@subsup{p}{3}{}+\mp@subsup{r}{1}{},\mp@subsup{p}{4}{})=\operatorname{max}(1+8,5+5,8+1,9)=10,\mp@subsup{s}{4}{}=
- }\mp@subsup{r}{5}{}=\operatorname{max}(1+10,5+8,8+5,9+1,10)=13,\mp@subsup{s}{5}{}=
- }\mp@subsup{r}{6}{}=\operatorname{max}(1+13,5+10,8+8,9+5,10+1,17)=17, s6 = 6
- }\mp@subsup{r}{7}{}=\operatorname{max}(1+16,5+5,8+10,9+8,10+5,17+1,17)=18, s s = 3
print(s[i]) \# cuts / lengths
< (i = i-s[i]
- }\mp@subsup{r}{8}{}=\operatorname{max}(1+18,5+17,8+13,9+10,10+8,17+5,18+1,20)=22, s8 = 6
- }\mp@subsup{r}{9}{}=\operatorname{max}(1+22,5+18,8+17,9+13,10+10,17+8,17+5,22+1,24)=25, s, = 3
- }\mp@subsup{r}{10}{}=\operatorname{max}(1+25,5+22,8+18,9+17,10+13,17+10,17+8,20+5,24+1,26)=27, s⿱10 = 6

```
- Reconstruction of the solution: \(\mathrm{s}_{10}=6 \rightarrow \mathrm{~s}_{4(=10-6)}=2 \rightarrow \mathrm{~s}_{2(=4-2)}=2 \rightarrow \mathrm{~s}_{0(=2-2)}\) end!
- Optimal solution is to cut twice, we sell three rods, 6,2 , and 2 inches long.

\section*{Dynamic programming \& AI}
- Dynamic programming is used often in AI \& DS applications
- This is why next time we will solve a couple more problems with dynamic programming (bottom-up)
- Knapsack Problem
- Minimal Edit Distance

\section*{Questions?}
```

