
Dynamic Programming
Prof. Dr. Goran Glavaš

30.11.2023

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Divide-and-Conquer

• Dynamic Programming
• Recursive DP

• Iterative (Bottom-Up) DP

What are algorithms built from?

• Building blocks of algorithms
• Elementary operations

• Sequential processing (one processing lines)

• Parallel processing (multiple processing lines)

• Conditions (conditioned execution)

• Loops (repetition)

• Subprograms (modular construction of an algorithm)

• Recursion

Recursion

• Recursive algorithms solve recursive problems:
• Divisible into subproblems of the same type as the original problem

• Solution to the subproblem is part of the solution to the whole problem

Input: Natural number n
(Desired) Output: Factorial n! = 1 * 2 * ...* n

prod <- 1

for x in [2, 3, ..., n] do

prod <- prod * x

Iterative solution But n! is a recursive problem

n! = n * (n-1)!

= n * (n-1) * (n-2)!

= ...

= n * (n-1) * (n-2) * ... * 3 * 2 * 1

Factorial (Fakultät) problem

Dynamic Programming

• Dynamic programming solves problems with following properties:
• Divisible into subproblems of the same type as the original problem
• Solution to the subproblem is part of the solution to the whole problem

• Subproblems repeat a lot: storing solutions of solved subproblems crucial

• Commonly applied to (discrete) optimization problems
• Problems that have many possible solutions
• Solutions have values or costs associated to them
• We want to find the optimal solution – one with max value or min cost

• There can be more than one optimal solution!

+

Example DP Problem: Rod cutting

Length i 1 2 3 4 5 6 7 8 9 10

Price pi 1 5 8 9 10 17 17 20 24 26

A company buys long steel rods and cuts them into shorter rods which it then sells. For
each rod of length i (in inches), we know the corresponding price pi the company sells it
for. Given a rod of length n inches and a table of prices pi for i = 1, 2, ..., n determine the

maximal revenue rn the company can have from that rod and find a cutting s that
achieves that maximal revenue.

Rod-cutting problem

• Note that, in principle, if pn is large enough, the optimal revenue may be achieved
without any cutting at all.

Example DP Problem: Rod cutting

• Let’s have a toy example: short rod – n = 4

• Even for such a short rod, we have already 8 different potential
solutions (with no cutting as one of them)

• We will denote solution with ordinary additive notation:
• 4 = 1 + 1 + 2: means that we cut the rod of length 4 inches (left to right) into

segments of 1 inch, 1 inch, and 2 inches
• But 1+1+2, 1+2+1, 2+1+1 all clearly have the same value – if we computed the price

for one, we don’t need to for the other (repeating subproblems)

Image from Cormen et al.

Example DP Problem: Rod cutting

• Assume that an optimal solution cuts the rod into k pieces

• General notation is then:

n = i1 + i2 + i3 + ... + ik (rod pieces of lengths i1, ..., ik inches)

rn = pi1 + pi2 + ... + pik (prices pi1, ..., pik euros for rods of lengths i1, ..., ik inches)

• Divide-and-conquer: the problem naturally decomposable into the
subproblems of the same type („definable recursively”)

rn = max(pn, r1+rn-1, r2+rn-2, ..., rn-2+r2, rn-1+r1)

• Note that rm+ rn-m = rn-m+ rm

• Note that r1 = p1 as the 1-inch rod cannot be cut further

Example DP Problem: Rod cutting

• We can further simplify the formulation of the problem
• Assume we’re making the first cut

• There are only n posibilities for the first cut: after 1, 2, ..., n inches of length
• Note that „cutting after n inches” means not cutting the rod at all

• If the first cut is after i inches then the cost ri = pi + rn-1

• Assume r0 = 0

• Reformulate the problem as

rn = max1 ≤ i ≤ n (pi + rn−i)

Example DP Problem: Rod cutting

rn = max1 ≤ i ≤ n (pi + rn−i)

• Recursive (divide-and-conquer) solution:

cut_rod(p, n) # p is the array with prices

if n == 0 # termination criterion of recursion

return 0

r = -inf

for i in 1 to n

q = p[i] + cut_rod(p, n-i) # recursive call

if q > r

r = q

return r

Example DP Problem: Rod cutting

• Q: What is potentially
problematic here?

• Q: How long will this run for
some large n?
• How many calls of cut-rod?

• Repeating subproblems!
• cut_rod is called again and again

with the same length arguments!

cut_rod(p, n)

if n == 0

return 0

r = -inf

for i in 1 to n

q = p[i] + cut_rod(p, n-i)

if q > r

r = q

return r

Example DP Problem: Rod cutting

• Let’s plot the tree of recursive calls
(for n = 4):

• cut_rod(p, 2)called 2 times,

• cut_rod(p, 1)called 4 times

• cut_rod(p, 0)called 8 times

cut_rod(p, n)

if n == 0

return 0

r = -inf

for i in 1 to n

q = p[i] + cut_rod(p, n-i)

if q > r

r = q

return r

• Q: runtime T(n)?
• No. nodes in the tree: 16 = 24

• Can be computed recursively

T(n) = 1 + σ𝑗=0
𝑛−1T(j)

• Exponential complexity: O(2n)

Content

• Divide-and-Conquer

• Dynamic Programming
• Recursive (Top-Down) DP

• Iterative (Bottom-Up) DP

Dynamic programming

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
• Top-down manner (recursively)
• Bottom-up manner (without recursion)
• Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
• Not enough just to know what the optimal (max or min) value is
• Rod-cutting: need to know where to cut the rod ☺! (and not just the maximal price we can

achieve for the rod of given length)

Dynamic programming: solution memorization

• Avoid the exponential complexity of
the recursive solution O(2n)

• As usual, the solution is to trade some
space for time

• Memorization
• Once the solution for a subproblem is

computed the first time, store it

• When you encounter the same
subproblem, simply retrieve its solution

• Obviously, this only helps in case of
repeating subproblems

cut_rod_rec(p, n, r)

if n in r # lookup key in hashtable

return r[n]

q = -inf

if n == 0

q = 0

else

for i in 1 to n

t = p[i] + cut_rod_rec(p, n-i,r)

if t > q

q = t

r[n] = q # store when computed 1st time

return r[n]

cut_rod(p, n)

r = {} # empty solutions hashtable

return cut_rod_rec(p,n,r)

Dynamic programming: solution memorization

• Memorization
• Once the solution for a subproblem is

computed the first time, store it

• When you encounter the same
subproblem, simply retrieve its solution

• Q: Runtime?

cut_rod_rec(p, n, r)

if n in r # lookup key in hashtable

return r[n]

q = -inf

if n == 0

q = 0

else

for i in 1 to n

t = p[i] + cut_rod_rec(p, n-i, r)

if t > q

q = t

r[n] = q # store when computed 1st time

return r[n]

cut_rod(p, n)

r = {} # empty solution values hashtable

return cut_rod_rec(p,n,r)

Dynamic programming: solution memorization

• Memorization
• Once the solution for a subproblem

is computed the first time, store it

• When you encounter the same
subproblem, simply retrieve its
solution

• Top-down DP solution
• Recursion + memorization

• But we can also „build” the solution
bottom up („real” DP)

cut_rod_rec(p, n, r)

if n in r # lookup key in hashtable

return r[n]

q = -inf

if n == 0

q = 0

else

for i in 1 to n

t = p[i] + cut_rod_rec(p, n-i)

if t > q

q = t

r[n] = q # store when computed 1st time

return r

cut_rod(p, n)

r = {} # empty solutions hashtable

return cut_rod_rec(p,n,r)

Content

• Divide-and-Conquer

• Dynamic Programming
• Recursive DP

• Iterative (Bottom-Up) DP

Dynamic programming: bottom up

• Bottom-up DP – the idea is that of iterative induction:
• We know the solution of the smallest subproblem

• For rod-cutting, this is when n = 1

• If we know rk-i – the solution for all i < k, then we know how to compute the
solution for rk – the solution for k

• r1 = p1 = 1

• r2 = max(p1 + r1, p2) = max(1+1, 5) = 5

• r3 = max(p1 + r2, p2 + r1, p3) = max(1+5, 5+1, 8) = 8

• r4 = max(p1 + r3, p2 + r2, p3 + r1, p4) = max(1+8, 5+5, 8+1, 9) = 10
• ...

Length i 1 2 3 4 5 6 7 8 9 10

Price pi 1 5 8 9 10 17 17 20 24 26

Dynamic programming: bottom up

• Bottom-up DP – the idea is that of
iterative induction:
• We know the solution of the smallest

subproblem

• For rod-cutting, this is when n = 1

• If we know rk-i – the solution for all i < k,
then we know how to compute the
solution for rk – the solution for k

• Q: Runtime of bottom-up approach?
• O(n2)

cut_rod_iter(p, n)

r = {}

r[0] = 0

r[1] = p[1]

for i in 2 to n

r[i] = -inf

we’re looking for the max

for j in 1 to i

q = p[j] + r[i-j]

if q > r[i]

r[i] = q

return r[n]

Dynamic programming: reconstructing solution

• Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution

• Top-down manner (recursively)
• Bottom-up manner (without recursion)
• Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
• Not enough just to know what the optimal (max or min) value is
• Example – rod-cutting: need to know where to cut the rod ☺! (and not just the

maximal price we can achieve for the rod of given length)

Dynamic programming: reconstructing solution

• So far, we only computed the optimal
value, but not the solution itself

• Rod-cutting: we know the max. price,
but not where to cut!

• Both for iterative (bottom-up) and
recursive (top-down) approach
• Need to add additional information for

reconstructing the actual solution

• RC: store from which subproblem (j) the
maximum for the problem (i) came

cut_rod_iter(p, n)

r = {}

r[0] = 0

r[1] = p[1]

for i in 2 to n

r[i] = -inf

we’re looking for the max

for j in 1 to i

q = p[j] + s[i-j]

if q > r[i]

r[i] = q

return r

cut_rod_rec(p, n, r)

if n in r

return r[n]

q = -inf

if n == 0

t = 0

else

for i in 1 to n

t = p[i] + cut_rod(p, n-i, r)

if t > q

q = t

r[n] = q

return r

cut_rod(p, n)

r = {}

return cut_rod_rec(p,n,r)

Top-down (recursive) Bottom-up (iterative)

Dynamic programming: reconstructing solution

• So far, we only computed the optimal
value, but not the solution itself

• Rod-cutting: we know the max. price,
but not where to cut!

• Both for iterative (bottom-up) and
recursive (top-down) approach
• Need to add additional information for

reconstructing the actual solution

• RC: store from which subproblem (j) the
maximum for the problem (i) came

Bottom-up (iterative)

cut_rod_iter(p, n)

r = {}

r[0] = 0

r[1] = p[1]

s = {}

for i in 2 to n

r[i] = -inf

for j in 1 to i

q = p[j] + r[i-j]

if q > r[i]

r[i] = q

s[i] = j

return r

Rod-cutting: complete example

• r1 = p1 = 1

• r2 = max(p1 + r1, p2) = max(1+1, 5) = 5, s2 = 2

• r3 = max(p1 + r2, p2 + r1, p3) = max(1+5, 5+1, 8) = 8, s3 = 3

• r4 = max(p1 + r3, p2 + r2, p3 + r1, p4) = max(1+8, 5+5, 8+1, 9) = 10, s4 = 2

• r5 = max(1+10,5+8,8+5,9+1,10) = 13, s5 = 2

• r6 = max(1+13,5+10,8+8,9+5,10+1, 17) = 17, s6 = 6

• r7 = max(1+16,5+5,8+10,9+8,10+5,17+1,17) = 18, s7 = 3

• r8 = max(1+18,5+17,8+13,9+10,10+8,17+5,18+1,20) = 22, s8 = 6

• r9 = max(1+22,5+18,8+17,9+13,10+10,17+8,17+5,22+1,24) = 25, s9 = 3

• r10 = max(1+25,5+22,8+18,9+17,10+13,17+10,17+8,20+5,24+1,26) = 27, s10 = 6

• Reconstruction of the solution: s10 = 6 → s4(=10-6) = 2 → s2(=4-2) = 2 → s0(=2-2) end!
• Optimal solution is to cut twice, we sell three rods, 6, 2, and 2 inches long.

cut_rod_iter(p, n)

r = {}

r[0] = 0

r[1] = p[1]

s = {}

for i in 2 to n

r[i] = -inf

for j in 1 to i

q = p[j] + r[i-j]

if q > r[i]

r[i] = q

s[i] = j

return r, s

Length i 1 2 3 4 5 6 7 8 9 10

Price pi 1 5 8 9 10 17 17 20 24 26

Rod-cutting: complete example

• r1 = p1 = 1

• r2 = max(p1 + r1, p2) = max(1+1, 5) = 5, s2 = 2

• r3 = max(p1 + r2, p2 + r1, p3) = max(1+5, 5+1, 8) = 8, s3 = 3

• r4 = max(p1 + r3, p2 + r2, p3 + r1, p4) = max(1+8, 5+5, 8+1, 9) = 10, s4 = 2

• r5 = max(1+10,5+8,8+5,9+1,10) = 13, s5 = 2

• r6 = max(1+13,5+10,8+8,9+5,10+1, 17) = 17, s6 = 6

• r7 = max(1+16,5+5,8+10,9+8,10+5,17+1,17) = 18, s7 = 3

• r8 = max(1+18,5+17,8+13,9+10,10+8,17+5,18+1,20) = 22, s8 = 6

• r9 = max(1+22,5+18,8+17,9+13,10+10,17+8,17+5,22+1,24) = 25, s9 = 3

• r10 = max(1+25,5+22,8+18,9+17,10+13,17+10,17+8,20+5,24+1,26) = 27, s10 = 6

• Reconstruction of the solution: s10 = 6 → s4(=10-6) = 2 → s2(=4-2) = 2 → s0(=2-2) end!
• Optimal solution is to cut twice, we sell three rods, 6, 2, and 2 inches long.

get_solution_rod_iter(p, n)

r, s = cut_rod_iter(p, n)

print(r[n]) # max price

i = n

while i > 0

print(s[i]) # cuts / lengths

i = i-s[i]

Length i 1 2 3 4 5 6 7 8 9 10

Price pi 1 5 8 9 10 17 17 20 24 26

Dynamic programming & AI

• Dynamic programming is used often in AI & DS applications

• This is why next time we will solve a couple more problems with
dynamic programming (bottom-up)
• Knapsack Problem

• Minimal Edit Distance

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и
тан

н
я

?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w
ọ
n

ib
e

e
re

?

ค ำถำม?

	Default Section
	Slide 1: Dynamic Programming Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: What are algorithms built from?
	Slide 4: Recursion
	Slide 5: Dynamic Programming
	Slide 6: Example DP Problem: Rod cutting
	Slide 7: Example DP Problem: Rod cutting
	Slide 8: Example DP Problem: Rod cutting
	Slide 9: Example DP Problem: Rod cutting
	Slide 10: Example DP Problem: Rod cutting
	Slide 11: Example DP Problem: Rod cutting
	Slide 12: Example DP Problem: Rod cutting
	Slide 13: Content
	Slide 14: Dynamic programming
	Slide 15: Dynamic programming: solution memorization
	Slide 16: Dynamic programming: solution memorization
	Slide 17: Dynamic programming: solution memorization
	Slide 18: Content
	Slide 19: Dynamic programming: bottom up
	Slide 20: Dynamic programming: bottom up
	Slide 21: Dynamic programming: reconstructing solution
	Slide 22: Dynamic programming: reconstructing solution
	Slide 23: Dynamic programming: reconstructing solution
	Slide 24: Rod-cutting: complete example
	Slide 25: Rod-cutting: complete example
	Slide 26: Dynamic programming & AI
	Slide 27: Questions?

