E C AIDAS WI{iNLP

ALGORITHMS IN Al & DATA SCIENCE 1 (AKIDS 1)

-
3 N y
=
A.
\
4 h

h

V,' -.‘ : v

Dynamic Programming

Prof. Dr. Goran Glavas

30.11.2023

Content

* Divide-and-Conquer

* Dynamic Programming
* Recursive DP
* |terative (Bottom-Up) DP

What are algorithms built from?

 Building blocks of algorithms

* Elementary operations

e Sequential processing (one processing lines)
Parallel processing (multiple processing lines)
Conditions (conditioned execution)
Loops (repetition)
Subprograms (modular construction of an algorithm)
Recursion

Recursion

* Recursive algorithms solve recursive problems:
 Divisible into subproblems of the same type as the original problem
* Solution to the subproblem is part of the solution to the whole problem

Factorial (Fakultdt) problem

Input: Natural number n
(Desired) Output: Factorialn/ =1 *2 *...*n

Iterative solution But n! is a recursive problem
prod <T 1 n! = n* (n-1)!
for x in [2, 3, ..., n] do —n % (n-1) * (n-2)!

prod <- prod * x —_—
=n * (n-1) * (n-2) * ... * 3 * 2 * 1

Dynamic Programming

* Dynamic programming solves problems with following properties:
* Divisible into subproblems of the same type as the original problem
e Solution to the subproblem is part of the solution to the whole problem

"

e Subproblems repeat a lot: storing solutions of solved subproblems crucial

« Commonly applied to (discrete) optimization problems
* Problems that have many possible solutions
 Solutions have values or costs associated to them

 We want to find the optimal solution — one with max value or min cost
* There can be more than one optimal solution!

Example DP Problem: Rod cutting

[Rod-cutting problem

A company buys long steel rods and cuts them into shorter rods which it then sells. For
each rod of length i (in inches), we know the corresponding price p, the company sells it
for. Given a rod of length n inches and a table of prices p. fori=1, 2, ..., n determine the
maximal revenue r_ the company can have from that rod and find a cutting s that
achieves that maximal revenue.

_ v

Length / 1 2 3 4 5 6 7 8 9 10
Price p, 1 5 8 9 10 17 17 20 24 26

* Note that, in principle, if p,, is large enough, the optimal revenue may be achieved
without any cutting at all.

Example DP Problem: Rod cutting

* Let’s have a toy example: shortrod —n =4

e Even for such a short rod, we have already 8 different potential
solutions (with no cutting as one of them)

9 1 8 5 5 8 1
Q))) el ey P
(a) (b) (c) (d)
Image from Cormen et al.

DOID OO MO0 OO0
(e () (g) ()

* We will denote solution with ordinary additive notation:

* 4=1+1+2: means that we cut the rod of length 4 inches (left to right) into
segments of 1 inch, 1 inch, and 2 inches

e But 1+1+2, 1+2+1, 2+1+1 all clearly have the same value — if we computed the price
for one, we don’t need to for the other (repeating subproblems)

Example DP Problem: Rod cutting

* Assume that an optimal solution cuts the rod into k pieces
* General notation is then:

n=i,+i,+i;+..+i_ (rod pieces of lengths i, ..., i, inches)

(=P, +py,+...+p,(pricesp, ..., p, euros for rods of lengths i, ..., i, inches)

* Divide-and-conquer: the problem naturally decomposable into the
subproblems of the same type (,definable recursively”)

ro=max(p,, r+r, o, 0 5y ey Foot0s, 1 F0)

* Notethatr +r _=r +r,
* Note that r, = p, as the 1-inch rod cannot be cut further

Example DP Problem: Rod cutting

* We can further simplify the formulation of the problem
* Assume we’re making the first cut

* There are only n posibilities for the first cut: after 1, 2, ..., n inches of length
* Note that ,cutting after n inches” means not cutting the rod at all

* If the first cutis after /inches thenthe costr =p +r,
* Assume r, =0

* Reformulate the problem as

rn = maxl <i<n (p| -+ rn—i)

Example DP Problem: Rod cutting

rn = maxl <i<n (p| + rn—i)

* Recursive (divide-and-conquer) solution:

cut rod(p, n) # p is the array with prices
if n == 0 # termination criterion of recursion
return 0
r = —-inf
for i in 1 to n
g = pl[i] + cut rod(p, n-1) # recursive call
if g > -
r=4dqg
return r

Example DP Problem: Rod cutting

* O: What is potentially cut_rod(p, n)
: if n == 0
problematic here? e
r = —-inf

] . for 1 in 1 to n
* O: How long will this run for g = pli]l + cut rod(p, n-i)

some large n? if g > ¢
 How many calls of cut-rod? r =9
return r

* Repeating subproblems!

* cut rod is called again and again
with the same length arguments!

Example DP Problem: Rod cutting

* Let’s plot the tree of recursive calls cut_rod(p, n)
(for n = 4): e =0
return O
r = —-inf

for 1 in 1 to n
g = pl[i] + cut rod(p, n-1i)
if g > -
r=49q
return r

* Q: runtime T(n)?
 No. nodes in the tree: 16 = 2°

ed 2 times, _
44t e Can be computed recursively
e Imes _ :
| T(n)=1+X725 T()
ed 8 times

* Exponential complexity: O(2")

Content

* Divide-and-Conquer

* Dynamic Programming
e Recursive (Top-Down) DP
* |terative (Bottom-Up) DP

Dynamic programming

* Developing a DP algorithm involves the following steps:

1.

2.

4.

Characterize the structure of an optimal solution
Recursively define the value of an optimal solution

Compute the value of an optimal solution

* Top-down manner (recursively)

e Bottom-up manner (without recursion)

* Memorize the solutions to solved subproblems!!!

Construct an optimal solution
* Not enough just to know what the optimal (max or min) value is

* Rod-cutting: need to know where to cut the rod ©! (and not just the maximal price we can
achieve for the rod of given length)

Dynamic programming: solution memorization

cut rod(p, n)

* Avoid the exponential complexity of r = {} # empty solutions hashtable
the recursive solution O(2") return cut_rod rec(p,n,r)
e As usual, the solution is to trade some cut_rod rec(p, n, r)
space for time if n in r # lookup key in hashtable
return r [n|
* Memorization g = -inf
* Once the solution for a subproblem is if n == 0
computed the first time, store it q =0
* When you encounter the same else o
subproblem, simply retrieve its solution for 1 in | to n
.]] t = p[i] + cut rod rec(p, n-i,r)
* Obviously, this only helps in case of if £ o> o -
repeating subproblems -
r[n] = g # store when computed 1st time

return r[n]

Dynamic programming: solution memorization

cut rod(p, n)
¢ Memorization r = {} # empty solution values hashtable

* Once the solution for a subproblem is return cut_rod rec(p,n,r)
computed the first time, store it cut rod rec(o, o, o)

* When you encounter the same if n in r # lookup key in hashtable

subproblem, simply retrieve its solution ~ TET4R T

g = —-1inf
if n == 0
g =0

else

for i in 1 to n
t = p[i] + cut rod rec(p, n-i, r)
if ¢t > g
g =t
® Q: Runtime? r[n] = g # store when computed 1st time
return r[n]

Dynamic programming: solution memorization

cut rod(p, n)

¢ Memorization r = {} # empty solutions hashtable

e Once the solution for a subproblem return cut_rod rec(p,n,r)

is computed the first time, store it cut rod rec(p, n, r)

* When you encounter the same if n in r # lookup key in hashtable
subproblem, simply retrieve its return r[n]
solution 4 = —inf
if n ==
. = 0
* Top-down DP solution e
 Recursion + memorization for i in 1 to n
e But we can also ,,build” the solution t = pli] + cut_rod rec(p, n-i)
bottom up (,real” DP) if © > g
q =t
r[n] = g # store when computed 1st time

return r

Content

* Divide-and-Conquer

* Dynamic Programming
* Recursive DP
* |terative (Bottom-Up) DP

Dynamic programming: bottom up

* Bottom-up DP — the idea is that of iterative induction:
* We know the solution of the smallest subproblem
* For rod-cutting, thisis whenn =1

* If we know r,_. —the solution for all i < k, then we know how to compute the
solution for r,— the solution for k

Length i 1 2 3 4 5 6 7 8 9
Price p, 1 5 8 9 10 17 17 20 24
*r,=p,=1

© ry=max(p; +ry,p,) =max(1+1,5) =5
* ry=max(p, +r,,p,+r,, P3) =max(1+5, 5+1, 8) =8
r,=max(p, +ry, 0,41, Py+ry, py) = max(1+8, 545, 8+1, 9) =10

Dynamic programming: bottom up

* Bottom-up DP — the idea is that of
iterative induction:

* We know the solution of the smallest
subproblem
* For rod-cutting, thisis whenn =1

* If we know r,_ —the solution for all i <k,
then we know how to compute the
solution for r,— the solution for k

* Q: Runtime of bottom-up approach?
e O(n?)

cut _rod iter(p, n)

r= {}
r[0] =
r[1l] =
for i in 2 to n
r{i] = —-inf

we’re looking for the max
for) in 1 to 1
g =pli] + rli-7]
if g > r[i]
r[i] = g

return r[n]

Dynamic programming: reconstructing solution

* Developing a DP algorithm involves the following steps:

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution

3. Compute the value of an optimal solution
e Top-down manner (recursively)
e Bottom-up manner (without recursion)
 Memorize the solutions to solved subproblems!!!

4. Construct an optimal solution
* Not enough just to know what the optimal (max or min) value is

* Example — rod-cutting: need to know where to cut the rod ©! (and not just the
maximal price we can achieve for the rod of given length)

Dynamic programming: reconstructing solution

. Top-down (recursive)
* So far, we only computed the optimal, .,

value, but not the solution itself r= 0

return cut rod rec(p,n,r)

cut_rod rec(p, n, r)

* Rod-cutting: we know the max. price, = .

but not where to cut! rerumm
t =0
* Both for iterative (bottom-up) and e
recursive (top-down) approach £ = pli) + cue_rod(p, n-i,
* Need to add additional information for o
reconstructing the actual solution o

* RC: store from which subproblem (/) the
maximum for the problem (/) came

Bottom-up (iterative)

cut_rod_iter(p, n)

r = {}
r[0]
r{l]

pll]

for 1 in 2 to n

r[{i] = —-inf

we’re looking for the max
for 7 in 1 to 1
a=p[J] + sl1i-7]
if g > r[i]

) r[i] = ¢

return r

Dynamic programming: reconstructing solution

* So far, we only computed the optimal

) . Bottom-up (iterative)
value, but not the solution itself ot tterc
cut rod iter(p, n
* Rod-cutting: we know the max. price, o
but not where to cut! S11) = pli]
s = {}
e Both for iterative (bottom-up) and f°r[%]if_‘ et
recursive (top-down) approach for ; in | to -
* Need to add additional information for TR
o . if g > r[i]
reconstructing the actual solution rli] = g
, , s[i] = 3
* RC: store from which subproblem (/) the ’

maximum for the problem (/) came return -

Rod-cutting: complete example

Length / 5 6 7 8 9 10
Price p, 10 17 17 20 24 26
Cr,=p,= 1 cut_rod iter(p, n)

r,=max(p, +ry,p,) =max(1+1,5) =5,s,=2

ry=max(p, +r,, p,+ry, P3) =max(1+5, 5+1, 8) = 8,5, =3

r,=max(p, +r;, p,+ry, P+ 1y, p,) = max(1+8, 545, 8+1, 9) =10,s, =2
r-=max(1+10,5+8,8+5,9+1,10) =13,s. =2
re=max(1+13,5+10,8+8,945,10+1, 17) = 17,5, =6
r,=max(1+16,5+5,8+10,9+8,10+5,17+1,17) =18, s, = 3
ro=max(1+18,5+17,8+13,9+10,10+8,17+5,18+1,20) = 22,5, = 6
ro=max(1+22,5+18,8+17,9+13,10+10,17+8,17+45,22+1,24) = 25, s4 = 3

o= max(1+25,5+22,8+18,9+17,10+13,17+10,17+8,20+5,24+1,26) = 27, 5,, = 6

Reconstruction of the solution: s;,=6 2 S;_19.6)=2 2 Sy4)= 2 2 Sp(=2.2) €Nd!

e Optimal solution is to cut twice, we sell three rods, 6, 2, and 2 inches long.

r =
r[0]
r[1l]

S:

{}
=0
= pll]

{1

for i in 2 to n

r|

1] = —-inf

for) in 1 to 1

a = plJ]
if g > r|
r[ii] =

s[i] =

return r, s

+ r[i=7]
i]
q
]

Rod-cutting: complete example

Length / 5 6 7 8 9 10
Price p, 10 17 17 20 24 26
cr,=p,=1

© r,=max(p, +r, p,) =max(1+1,5) =5,s,=2

* ry=max(p, +r,, p,+r,, p3) = max(1+5, 5+1,8) =8,s5,=3

* r,=max(p, +ry, py+ry, py+ry, p,) = max(1+8, 545, 8+1, 9) =10,s, =2
* ro=max(1+10,5+8,8+5,9+1,10) = 13, s, = 2
° re=max(1+13,5+10,8+8,9+5,10+1, 17) = 17,s,= 6

° r,=max(1+16,5+5,8+10,9+8,10+5,17+1,17) = 18,5, =3

° rg=max(1+18,5+17,8+13,9+10,10+8,17+5,18+1,20) = 22,5, =6
° rg=max(1+22,5+18,8+17,9+13,10+10,17+8,17+5,22+1,24) = 25,54 =3
° ryo=max(1+25,5+22,8+18,9+17,10+13,17+10,17+8,20+5,24+1,26) = 27, 5,, = 6

get solution rod iter(p, n)

r, s = cut_rod iter(p, n)
print(r[n]) # max price
1 =n

while 1 > 0
print (s[i]) # cuts / lengths

1 = 1-s[1]

* Reconstruction of the solution: s,,=6 2 s;.106) = 2 2 Sy(24.2)= 2 2 Sp(=2.2) €nd!

e Optimal solution is to cut twice, we sell three rods, 6, 2, and 2 inches long.

Dynamic programming & Al

* Dynamic programming is used often in Al & DS applications

* This is why next time we will solve a couple more problems with
dynamic programming (bottom-up)
e Knapsack Problem
* Minimal Edit Distance

Questions?

Awon ibeere?

Pitanja?

é¢Preguntas?

Fragor?

¢ BHHEL1Ln||

Vragen? EP(DTI]O'ELQ,
Porandukuéra? eati

Sorusu olan? q Eﬁ:ﬁ(i?

iSepian

Questlons?

shuisnep| ajung

Fragen

Pytanla’-’
éapuewoq

—n

	Default Section
	Slide 1: Dynamic Programming Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: What are algorithms built from?
	Slide 4: Recursion
	Slide 5: Dynamic Programming
	Slide 6: Example DP Problem: Rod cutting
	Slide 7: Example DP Problem: Rod cutting
	Slide 8: Example DP Problem: Rod cutting
	Slide 9: Example DP Problem: Rod cutting
	Slide 10: Example DP Problem: Rod cutting
	Slide 11: Example DP Problem: Rod cutting
	Slide 12: Example DP Problem: Rod cutting
	Slide 13: Content
	Slide 14: Dynamic programming
	Slide 15: Dynamic programming: solution memorization
	Slide 16: Dynamic programming: solution memorization
	Slide 17: Dynamic programming: solution memorization
	Slide 18: Content
	Slide 19: Dynamic programming: bottom up
	Slide 20: Dynamic programming: bottom up
	Slide 21: Dynamic programming: reconstructing solution
	Slide 22: Dynamic programming: reconstructing solution
	Slide 23: Dynamic programming: reconstructing solution
	Slide 24: Rod-cutting: complete example
	Slide 25: Rod-cutting: complete example
	Slide 26: Dynamic programming & AI
	Slide 27: Questions?

