
Graph Algorithms
Prof. Dr. Goran Glavaš

27.11.2023

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Strongly Connected Components

• Single-Source Shortest Path

Graph: definition, types

• Directed (gerichteter) graph – edges have directions: (u, v) ≠ (v, u)

A graph G = (V, E) is a pair of sets, with V as a set of vertices, and E a set of edges
between the vertices E ⊆ { (u,v) | u, v ∈ V}. If the graph is undirected, the relation

defined by an edges is symmetric, or E ⊆ {{u,v} | u, v ∈ V}, that is, edges are sets of two
vertices rather than ordered pairs.

Graph: formal definition

Image from ADS course of Andreas Hotho

Graphs: connectivity

• Undirected graphs
• Vertices u and v connected is there exist a path (i.e., a

sequence of edges) in G from u to v

• Graph G is connected if any two vertices from V are
connected

• Directed graphs
• Strongly connected: if for every two nodes u, v both path

from u to v and path from v to u exist

• Weakly connected: if the corresponding undirected graph
(make directed edges with undirected) is connected

Image from Wikipedia

Strongly Connected Components

• Directed graph can have one or more SCCs

• A node can be a part of more than one SCC

• Many algorithms for directed graphs

(1) decompose the graph into SCCs

(2) run separately on each SCC

(3) combine solutions based on the structure of connections between SCCs

A strongly connected component of a directed graph G=(V, E) is a maximal set of vertices
C ⊆ V such that for every pair of vertices u, v ∈ C such that there exists both a path from u

to v and a path from v to u (i.e., u and v are reachable from each other)

Strongly connected component

Strongly Connected Components: Recursive DFS

• Algorithm for identifying SCCs – the Kosaraju’s
algorithm – leverages DFS on G and its
transpose GT

• (Recursive) DFS variant for the whole graph
• Nodes must stay „visited” once they have been

visited, regardless from which source node we start
• Three states for a vertex: unvisited (0), visited (1)

and finished (2)
• The „finished” state is not strictly necessary, but it

facilitates the following of the algorithm visually

• Global variable „time”
• For each vertex v records the time steps of „visiting” (vt,

when state change 0→1) and „finishing” (ft, when state
change 1 → 2)

dfs(G)

for each vertex u in G.V

u.state = 0

time = 0

for each vertex u in G.V

if u.state == 0

dfs_visit(G, u)

dfs_visit(G, u)

time = time + 1

u.state = 1 # visited

u.vt = time

for each vertex v in G.Adj[u]

if v.state == 0 # if v unvisited

dfs_visit(G, v)

u.state = 2 # finished

time = time + 1

u.ft = time

Recursive DFS

Image from Cormen et al.

Topological sort with Recursive DFS

• Q: How can we leverage the times u.ft for topological sort?
• The exact u.vt and u.ft depend on the order of processing nodes without

incoming edges (below, we assume: 1. Hemd, 2. Uhr, 3. Unterhose, 4. Socken)

1/8

2/5

3/4

9/10
11/16

12/15 13/14

17/18

6/7

Strongly connected components

• We will need the transpose of the graph G

• G and GT have exactly the same strongly connected components
• Q: Why?

A transpose of a directed graph G=(V, E) is a graph G = (V, ET) where ET = {(v, u) : (u, v) ∈
V}. In other words, GT is what you get if you invert the direction of all the edges in G.

Transpose of a directed graph

Detecting SCCs: Kosaraju’s algorithm

• Q: Why does this work, that is,

produces the SCCs?

dfs(G)

for each vertex u in G.V

u.state = 0

time = 0

for each vertex u in G.V

if u.state == 0

dfs_visit(G, u)

dfs_decrease(G)

for each vertex u in G.V

u.state = 0

time = 0

sccs = []

for u in G.V decreasing by u.ft

if u.state == 0

tree = dfs_visit(G, u)

sccs.add(tree)

return sccs

strongly_connected_components(G):

dfs(G) # each vertex u gets u.ft

GT = transpose(G)

sccs = dfs_decrease(GT)

return sccs

Kosaraju’s SCC algorithm: analysis

• To explain why the SCC algorithm works, we introduce the concept of
a component graph

• Component graph GSCC of any directed graph G is a directed acyclic
graph (DAG). Q: Can you prove this?

A component graph of a graph G is a „meta” graph GSCC = (VSCC, ESCC) where each node
represents one strongly connected component of G. Let G have K SCCs, {C1, C2, ..., CK}.

The vertex set VSCC is {v1, v2, ..., vk} with each vi representing one component Ci. An edge
(vi, vj) ∈ ESCC if G contains an edge (x, y) where x ∈ Ci and y ∈ Cj

Component graph

Kosaraju’s SCC algorithm: analysis

• Original directed graph G, after running DFS on
it, with strongly connected components shaded
• Q: How many root calls (i.e., non-recursive) to
dfs_visit did we have?

• Q: Which vertices were the „roots” of the DFS
searches?

• Transposed graph GT, dark nodes indicate the
„roots” of DFS on GT

• In each component it is the node with largest u.ft

• Component graph GSCC of G

Images from Cormen et al.

Kosaraju’s SCC algorithm: analysis

• For a strongly connected component C, let f(C)
be the maximal u.ft of its nodes

• If (u, v) in E such that u in Ci and v in Cj, then
f(Ci) > f(Cj) (in GT it’s the opposite, f(Ci) < f(Cj))

• DF-Trees from DFS on GT generate SCCs (if
carried out in decreasing order of u.ft)

• Proof: inductive
• DFS in GT on a vertex u (root of the DFS tree) that

belongs to component Ci will collect all nodes
reachable from u – will not miss any node from Ci

• Q: But can it collect a node from another
component?

• No! Because any edge exiting Ci in GT can only be to
a component for which f(Ci) < f(Cj), i.e., the
component that’s already been identified

Images from Cormen et al.

Kosaraju’s SCC algorithm: analysis

Images from Cormen et al.

strongly_connected_components(G):

dfs(G) # each vertex u gets u.ft

GT = transpose(G)

sccs = dfs_decrease(G)

return sccs

• Q: Runtime complexity of SCCs
algorithm?

• First DFS (on G): O(V + E)

• Graph transposition – assuming adjacency
list representation of G: O(V + E)

• Second DFS (on GT): O(V + E)

Content

• Strongly Connected Components

• Single-Source Shortest Path

Shortest paths on weighted graphs

• There can be multiple paths from u to v with the same weight

0 1 kpassing through nodes <v , v , ..., v > then has the weight w(p) = 𝑖=1

We are given a weighted directed graph G(V, E) with the weights w: E→ℝ. The path p
𝑘

−
σ 𝑤 𝑣𝑖 1, 𝑣𝑖 . The

shortest path problem for a pair of vertices (u, v) amounts to finding the path from u to v
(from all the possible paths that exist) with the lowest w(p), if such a path exists at all.

Single-pair shortest-path problem

Shortest paths problems

• Types
• Single-pair shortest-path: find the shortest paths from u to v

• Single source shortest paths: find the shortest paths between some specified source
vertex u to all other vertices in the graph

• Single destination shortest-paths: find the shortest paths from all other vertices in
the graph to some specified destination vertex v
• We can easily cast this to single source shortest paths problem. Q: How?

• All-pairs shortest-paths: find sh. path from u to v for every pair of vertices u and v
• Q: Just run single source shortest paths V times (once with each vertex as a source)?

Optimal substructure of shortest paths

• Shortest paths algorithms rely on the property that a shortest path
between two vertices contains other shortest paths within it
• Dijkstra’s algorithm (single-source): uses this in a greedy manner

• Floyd-Warshall algorithm (all pairs): uses this for dynamic programming

• Prove that subpaths of shortest paths are shortest paths
• Path p = <v0, v1, ..., vk>, subpath pij = <vi, vi+1 ..., vj>

• We can decompose p into p0i, pij and pjk

• Then w(p) = w(p0i) + w(pij) + w(pjk)

• Assume a shorter path p’ij between vi and vj, w(p’ij) < w(p’ij)
• Then there would be a shorter path p’ between v0 and vk : w(p’) = w(p0i) + w(p’ij) + w(pjk)

Shortest paths and negative weights

• The Dijkstra algorithm we’ll examine assumes that there are no
negative weights in the graph

• Negative weights
• One or more edges in the graph have negative weights
• Q: Are shortest path problems still well-defined with negative weights?
• Depends on whether there are negative weights cycles

• If yes, no longer well-defined problem
• Q: Why?

• Even without negative weights, a shortest „walk” never has cycles
• Q: why?

Single-source shortest paths: Bellman-Ford

• Bellman-Ford algorithm: general
directed graph, with negative edges

• Two helper functions
• Initialize (s gets distance 0, other

vertices inf)

• relax: changes the distance if better is
found through some vertex

• „Relax” all edges

|V|-1 times

initialize(G, s)

for each v in G.V

v.dist = inf

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v)

v.dist = u.dist + w(u, v)

v.prec = u

bellman-ford(G, w, s)

initialize(G)

for i in 1 to |G.V| - 1

for each edge (u, v) in G.E

relax(u, v, w)

for each edge (u, v) in G.E

if v.dist > u.dist + w(u, v) # negative weight cycle

return False

return True

Bellman-Ford algorithm

initialization After 1. iteration After 2. iteration

After 3. iteration After 4. iteration

bellman-ford(G, w, s)

initialize(G)

for i in 1 to |G.V| - 1

for each edge (u, v) in G.E

relax(u, v, w)

for each edge (u, v) in G.E

if v.dist > u.dist + w(u, v)

return False

return True

• Q: Why does the for loop
run |G.V| - 1 times?

• Q: Runtime of Bellman-
Ford?

• Q: What if we knew we had
no negative weights?

Single-source shortest paths: Dijkstra

• Dijkstra algorithm: weighted directed
graph, with non-negative weights

• Maintains a set of S vertices whose final
shortest-path distance from source s
has been determined
• Since there are no negative edges, onde

determined, it cannot be changed

• From the remaining edges V-S, in each
iteration, we select a vertex greedily
• One that has the smallest estimate of the

distance from s

initialize(G, s)

for each v in G.V

v.dist = inf

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v)

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s)

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u]

relax(u, v, w)

Dijkstra algorithm

initialization After 1. iteration After 2. iteration

After 3. iteration After 4. iteration After 5. iteration

Dijkstra algorithm: runtime analysis

• Q: runtime of Dijkstra?

• How fast can we extract the min value
from Q?

• Q: Data structure that extracts the
minimum of a dynamic set the fastest?

initialize(G, s)

for each v in G.V

v.dist = inf

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v)

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s)

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u]

relax(u, v, w)

Recap: Priority Queue

• We’ve used heap as a data structure that supports heapsort
• In most practical sorting applications, quicksort faster than heapsort

• But heap is useful for more than just sorting, as an actual
implementation of an ADS called priority queue

A set of elements S, each s ∈ S has a corresponding priority number (key) assigned to it.
Elements with higher priority should be processed before elements of lower priority.

Elements with the same priority should be processed in the order of insertion (queue).

• Min-Priority queue has:
• Insert, Minimum, Extract-Min,Decrease-Prio

Priority queuing

Dijkstra algorithm: runtime analysis

• Q: runtime of Dijkstra?

• Data structure: min-heap

• What operations on min-heap do we
need?
• build_heap

• extract_min (minimum)

• decrease_prio

initialize(G, s)

for each v in G.V

v.dist = inf

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v)

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s)

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u]

relax(u, v, w)

Recap: Build heap

• How many times and for which indices
(nodes) of the array do we need to call
heapify in order to transform an array into
a heap?

• heapify propagates the „smaller values
down”
• We actually want to propagate the „larger

values up”

• To convert an array into a heap, we will call
heapify in a bottom-up manner, for each
non-leaf node

• binary tree has n elements: how many
non-leaf nodes (nln) does it have?

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)

Recap: Build heap – runtime

• Let H be the height of the tree, H = └log2n┘
• Let h be the height of a node/index

• Let d be the depth of a node/index, d = H – h

• T(n) = ℎ=0σ𝐻 2𝑑

ℎ=0σ𝐻

∗ 𝑂(ℎ)
(𝐻 − ℎ) ∗

2 𝑂(ℎ)=

= ℎ=0σ𝐻

ℎ=0≤ σ𝐻

2𝐻/2ℎ ∗ 𝑂(ℎ)

𝑛/2ℎ ∗ 𝑂(ℎ)

ℎ=0= 𝑂(𝑛 σ𝐻
2ℎ

𝑂 ℎ)

= 𝑶 𝒏

H = └log2n┘means that

ℎ=0

2H ≤ n < 2H+1

O(h) means T(h) = c*h
When H is large (approx. infinity)

∞
𝑐 ∗ ℎ

2ℎ
= 𝑐 ∗ 𝟐

Recap: min-priority queue

Extract-Min(A)

if A.HeapSize < 1

error „underflow”

min = A[0]

A[0] = A[A.HeapSize - 1]

A.HeapSize = A.HeapSize – 1

heapify(A, 0)

return min

O(log n)

Decrease-Prio(A, i, key)

if key > A[i]

error „new key larger than current”

A[i].key = key

restore heap property

while i > 0 and A[i].key < A[parent(i)].key

exchange(A[i], A[parent(i)])

i = parent(i)

O(log n)

Dijkstra algorithm: runtime analysis

• Q: runtime of Dijkstra?

• Data structure: min-heap

• What operations on min-heap do we
need?
• build_heap: O(V)
• extract_min (minimum): O(V log V)
• decrease_prio: O(E log V)

• Total: O((V+E) log V)
• If the graph is very dense, so that E

approaches V2, then O(V2 log V)

initialize(G, s)

for each v in G.V

v.dist = inf

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v)

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s)

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u] # total E times

relax(u, v, w)

Dijkstra algorithm: runtime analysis

• Q: runtime of Dijkstra?

• Data structure: array (we know the index
of each vertex in the array)

• What operations do we need?
• „build_heap”: O(V) (V times O(1))

• extract_min (minimum): O(V2) (V times O(V))

• decrease_prio: O(E) (E times O(1))

• Total: O(V2+E) = O(V2)
• Faster than min-heap if the graph is dense

initialize(G, s)

for each v in G.V

v.dist = inf

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v)

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s)

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u] # total E times

relax(u, v, w)

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

ਸਵਾਲ?Küsimusi?

D
o

m
an

d
e?

Ερωτήσεις;П
и

тан
н

я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

Frågor?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟ةلئسأ

A
w

ọ
n

ib
e

e
re

?

ค̊ำ
 ำถ
 ำม

?

	Slide 1: Graph Algorithms Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Graph: definition, types
	Slide 4: Graphs: connectivity
	Slide 5: Strongly Connected Components
	Slide 6: Strongly Connected Components: Recursive DFS
	Slide 7: Recursive DFS
	Slide 8: Topological sort with Recursive DFS
	Slide 9: Strongly connected components
	Slide 10: Detecting SCCs: Kosaraju’s algorithm
	Slide 11: Kosaraju’s SCC algorithm: analysis
	Slide 12: Kosaraju’s SCC algorithm: analysis
	Slide 13: Kosaraju’s SCC algorithm: analysis
	Slide 14: Kosaraju’s SCC algorithm: analysis
	Slide 15: Content
	Slide 16: Shortest paths on weighted graphs
	Slide 17: Shortest paths problems
	Slide 18: Optimal substructure of shortest paths
	Slide 19: Shortest paths and negative weights
	Slide 20: Single-source shortest paths: Bellman-Ford
	Slide 21: Bellman-Ford algorithm
	Slide 22: Single-source shortest paths: Dijkstra
	Slide 23: Dijkstra algorithm
	Slide 24: Dijkstra algorithm: runtime analysis
	Slide 25: Recap: Priority Queue
	Slide 26: Dijkstra algorithm: runtime analysis
	Slide 27: Recap: Build heap
	Slide 28: Recap: Build heap – runtime
	Slide 29: Recap: min-priority queue
	Slide 30: Dijkstra algorithm: runtime analysis
	Slide 31: Dijkstra algorithm: runtime analysis
	Slide 32: ਸਵਾਲ?Küsimusi?

