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Graph: definition, types

• Directed (gerichteter) graph – edges have directions: (u, v) ≠ (v, u)

A graph G = (V, E) is a pair of sets, with V as a set of vertices, and E a set of edges
between the vertices E ⊆ { (u,v) | u, v ∈ V}. If the graph is undirected, the relation

defined by an edges is symmetric, or E ⊆ {{u,v} | u, v ∈ V}, that is, edges are sets of two 
vertices rather than ordered pairs. 

Graph: formal definition

Image from ADS course of Andreas Hotho



Graphs: connectivity

• Undirected graphs
• Vertices u and v connected is there exist a path (i.e., a 

sequence of edges) in G from u to v

• Graph G is connected if any two vertices from V are 
connected

• Directed graphs
• Strongly connected: if for every two nodes u, v both path 

from u to v and path from v to u exist

• Weakly connected: if the corresponding undirected graph
(make directed edges with undirected) is connected 

Image from Wikipedia



Strongly Connected Components 

• Directed graph can have one or more SCCs

• A node can be a part of more than one SCC

• Many algorithms for directed graphs

(1) decompose the graph into SCCs

(2) run separately on each SCC

(3) combine solutions based on the structure of connections between SCCs

A strongly connected component of a directed graph G=(V, E) is a maximal set of vertices 
C ⊆ V such that for every pair of vertices u, v ∈ C such that there exists both a path from u

to v and a path from v to u (i.e., u and v are reachable from each other)

Strongly connected component



Strongly Connected Components: Recursive DFS

• Algorithm for identifying SCCs – the Kosaraju’s 
algorithm – leverages DFS on G and its 
transpose GT

• (Recursive) DFS variant for the whole graph
• Nodes must stay „visited” once they have been 

visited, regardless from which source node we start
• Three states for a vertex: unvisited (0), visited (1) 

and finished (2)
• The „finished” state is not strictly necessary, but it 

facilitates the following of the algorithm visually

• Global variable „time”
• For each vertex v records the time steps of „visiting” (vt, 

when state change 0→1) and „finishing” (ft, when state 
change 1 → 2)

dfs(G)

for each vertex u in G.V

u.state = 0

time = 0 

for each vertex u in G.V

if u.state == 0

dfs_visit(G, u)  

dfs_visit(G, u)

time = time + 1

u.state = 1 # visited

u.vt = time

for each vertex v in G.Adj[u]

if v.state == 0 # if v unvisited

dfs_visit(G, v)

u.state = 2 # finished

time = time + 1

u.ft = time       



Recursive DFS

Image from Cormen et al. 



Topological sort with Recursive DFS

• Q: How can we leverage the times u.ft for topological sort?
• The exact u.vt and u.ft depend on the order of processing nodes without 

incoming edges (below, we assume: 1. Hemd, 2. Uhr, 3. Unterhose, 4. Socken)
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Strongly connected components

• We will need the transpose of the graph G

• G and GT have exactly the same strongly connected components
• Q: Why?

A transpose of a directed graph G=(V, E) is a graph G = (V, ET) where ET = {(v, u) : (u, v) ∈
V}. In other words, GT is what you get if you invert the direction of all the edges in G.

Transpose of a directed graph



Detecting SCCs: Kosaraju’s algorithm

• Q: Why does this work, that is, 

produces the SCCs?

dfs(G)

for each vertex u in G.V

u.state = 0

time = 0 

for each vertex u in G.V

if u.state == 0

dfs_visit(G, u)  

dfs_decrease(G)

for each vertex u in G.V

u.state = 0

time = 0 

sccs = [] 

for u in G.V decreasing by u.ft

if u.state == 0

tree = dfs_visit(G, u)   

sccs.add(tree)

return sccs

strongly_connected_components(G):

dfs(G) # each vertex u gets u.ft

GT = transpose(G)

sccs = dfs_decrease(GT)

return sccs



Kosaraju’s SCC algorithm: analysis

• To explain why the SCC algorithm works, we introduce the concept of 
a component graph

• Component graph GSCC of any directed graph G is a directed acyclic 
graph (DAG). Q: Can you prove this? 

A component graph of a graph G is a „meta” graph GSCC = (VSCC, ESCC) where each node 
represents one strongly connected component of G. Let G have K SCCs, {C1, C2, ..., CK}. 

The vertex set VSCC is {v1, v2, ..., vk} with each vi representing one component Ci. An edge 
(vi, vj) ∈ ESCC if G contains an edge (x, y) where x ∈ Ci and y ∈ Cj

Component graph



Kosaraju’s SCC algorithm: analysis

• Original directed graph G, after running DFS on 
it, with strongly connected components shaded
• Q: How many root calls (i.e., non-recursive) to 
dfs_visit did we have? 

• Q: Which vertices were the „roots” of the DFS 
searches? 

• Transposed graph GT, dark nodes indicate the 
„roots” of DFS on GT

• In each component it is the node with largest u.ft

• Component graph GSCC of G

Images from Cormen et al. 



Kosaraju’s SCC algorithm: analysis

• For a strongly connected component C, let f(C)
be the maximal u.ft of its nodes

• If (u, v) in E such that u in Ci and v in Cj, then
f(Ci) > f(Cj) (in GT it’s the opposite, f(Ci) < f(Cj))

• DF-Trees from DFS on GT generate SCCs (if 
carried out in decreasing order of u.ft)

• Proof: inductive
• DFS in GT on a vertex u (root of the DFS tree) that 

belongs to component Ci will collect all nodes 
reachable from u – will not miss any node from Ci

• Q: But can it collect a node from another 
component?

• No! Because any edge exiting Ci in GT can only be to 
a component for which f(Ci) < f(Cj), i.e., the 
component that’s already been identified   

Images from Cormen et al. 



Kosaraju’s SCC algorithm: analysis

Images from Cormen et al. 

strongly_connected_components(G):

dfs(G) # each vertex u gets u.ft

GT = transpose(G)

sccs = dfs_decrease(G)

return sccs

• Q: Runtime complexity of SCCs 
algorithm?

• First DFS (on G): O(V + E)

• Graph transposition – assuming adjacency 
list representation of G: O(V + E)

• Second DFS (on GT): O(V + E)
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Shortest paths on weighted graphs

• There can be multiple paths from u to v with the same weight

0 1 kpassing through nodes <v , v , ..., v > then has the weight w(p) = 𝑖=1

We are given a weighted directed graph G(V, E) with the weights w: E→ℝ. The path p
𝑘

−
σ 𝑤 𝑣𝑖 1, 𝑣𝑖 . The

shortest path problem for a pair of vertices (u, v) amounts to finding the path from u to v 
(from all the possible paths that exist) with the lowest w(p), if such a path exists at all.

Single-pair shortest-path problem



Shortest paths problems

• Types
• Single-pair shortest-path: find the shortest paths from u to v

• Single source shortest paths: find the shortest paths between some specified source 
vertex u to all other vertices in the graph

• Single destination shortest-paths: find the shortest paths from all other vertices in 
the graph to some specified destination vertex v
• We can easily cast this to single source shortest paths problem. Q: How?

• All-pairs shortest-paths: find sh. path from u to v for every pair of vertices u and v
• Q: Just run single source shortest paths V times (once with each vertex as a source)?



Optimal substructure of shortest paths

• Shortest paths algorithms rely on the property that a shortest path 
between two vertices contains other shortest paths within it
• Dijkstra’s algorithm (single-source): uses this in a greedy manner

• Floyd-Warshall algorithm (all pairs): uses this for dynamic programming

• Prove that subpaths of shortest paths are shortest paths
• Path p = <v0, v1, ..., vk>, subpath pij = <vi, vi+1 ..., vj>

• We can decompose p into p0i, pij and pjk

• Then w(p) = w(p0i) + w(pij) + w(pjk)

• Assume a shorter path p’ij between vi and vj, w(p’ij) < w(p’ij)
• Then there would be a shorter path p’ between v0 and vk : w(p’) = w(p0i) + w(p’ij) + w(pjk)



Shortest paths and negative weights

• The Dijkstra algorithm we’ll examine assumes that there are no 
negative weights in the graph

• Negative weights
• One or more edges in the graph have negative weights
• Q: Are shortest path problems still well-defined with negative weights?
• Depends on whether there are negative weights cycles

• If yes, no longer well-defined problem
• Q: Why?

• Even without negative weights, a shortest „walk” never has cycles
• Q: why?



Single-source shortest paths: Bellman-Ford

• Bellman-Ford algorithm: general 
directed graph, with negative edges

• Two helper functions
• Initialize (s gets distance 0, other 

vertices inf)

• relax: changes the distance if better is 
found through some vertex

• „Relax” all edges

|V|-1 times

initialize(G, s)

for each v in G.V 

v.dist = inf 

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v) 

v.dist = u.dist + w(u, v)

v.prec = u

bellman-ford(G, w, s) 

initialize(G)

for i in 1 to |G.V| - 1

for each edge (u, v) in G.E

relax(u, v, w)

for each edge (u, v) in G.E

if v.dist > u.dist + w(u, v) # negative weight cycle

return False

return True



Bellman-Ford algorithm

initialization After 1. iteration After 2. iteration

After 3. iteration After 4. iteration

bellman-ford(G, w, s) 

initialize(G)

for i in 1 to |G.V| - 1

for each edge (u, v) in G.E

relax(u, v, w)

for each edge (u, v) in G.E

if v.dist > u.dist + w(u, v)

return False

return True

• Q: Why does the for loop 
run |G.V| - 1 times?

• Q: Runtime of Bellman-
Ford?

• Q: What if we knew we had 
no negative weights?



Single-source shortest paths: Dijkstra

• Dijkstra algorithm: weighted directed 
graph, with non-negative weights

• Maintains a set of S vertices whose final 
shortest-path distance from source s 
has been determined
• Since there are no negative edges, onde 

determined, it cannot be changed

• From the remaining edges V-S, in each 
iteration, we select a vertex greedily
• One that has the smallest estimate of the 

distance from s

initialize(G, s)

for each v in G.V 

v.dist = inf 

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v) 

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s) 

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u]

relax(u, v, w)



Dijkstra algorithm

initialization After 1. iteration After 2. iteration

After 3. iteration After 4. iteration After 5. iteration



Dijkstra algorithm: runtime analysis

• Q: runtime of Dijkstra?

• How fast can we extract the min value 
from Q?

• Q: Data structure that extracts the 
minimum of a dynamic set the fastest?

initialize(G, s)

for each v in G.V 

v.dist = inf 

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v) 

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s) 

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u]

relax(u, v, w)



Recap: Priority Queue

• We’ve used heap as a data structure that supports heapsort
• In most practical sorting applications, quicksort faster than heapsort

• But heap is useful for more than just sorting, as an actual 
implementation of an ADS called priority queue

A set of elements S, each s ∈ S has a corresponding priority number (key) assigned to it.
Elements with higher priority should be processed before elements of lower priority. 

Elements with the same priority should be processed in the order of insertion (queue).

• Min-Priority queue has:
• Insert, Minimum, Extract-Min,Decrease-Prio

Priority queuing



Dijkstra algorithm: runtime analysis

• Q: runtime of Dijkstra?

• Data structure: min-heap

• What operations on min-heap do we 
need?
• build_heap

• extract_min (minimum)

• decrease_prio

initialize(G, s)

for each v in G.V 

v.dist = inf 

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v) 

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s) 

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u]

relax(u, v, w)



Recap: Build heap

• How many times and for which indices 
(nodes) of the array do we need to call 
heapify in order to transform an array into 
a heap?

• heapify propagates the „smaller values 
down”
• We actually want to propagate the „larger

values up”

• To convert an array into a heap, we will call 
heapify in a bottom-up manner, for each 
non-leaf node

• binary tree has n elements: how many 
non-leaf nodes (nln) does it have?

build_heap(A) 

A.HeapSize = A.length 

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)



Recap: Build heap – runtime

• Let H be the height of the tree, H = └log2n┘
• Let h be the height of a node/index

• Let d be the depth of a node/index, d = H – h

• T(n) = ℎ=0σ𝐻 2𝑑

ℎ=0σ𝐻

∗ 𝑂(ℎ)
(𝐻 − ℎ) ∗

2 𝑂(ℎ)=

= ℎ=0σ𝐻

ℎ=0≤ σ𝐻

2𝐻/2ℎ ∗ 𝑂(ℎ)

𝑛/2ℎ ∗ 𝑂(ℎ)

ℎ=0= 𝑂(𝑛 σ𝐻
2ℎ

𝑂 ℎ )

= 𝑶 𝒏

H = └log2n┘means that

෍

ℎ=0

2H ≤ n < 2H+1

O(h) means T(h) = c*h
When H is large (approx. infinity)

∞
𝑐 ∗ ℎ

2ℎ
= 𝑐 ∗ 𝟐



Recap: min-priority queue

Extract-Min(A)

if A.HeapSize < 1

error „underflow”

min = A[0]

A[0] = A[A.HeapSize - 1] 

A.HeapSize = A.HeapSize – 1 

heapify(A, 0)

return min

O(log n)

Decrease-Prio(A, i, key)

if key > A[i]

error „new key larger than current”

A[i].key = key

# restore heap property

while i > 0 and A[i].key < A[parent(i)].key

exchange(A[i], A[parent(i)])

i = parent(i)

O(log n)



Dijkstra algorithm: runtime analysis

• Q: runtime of Dijkstra?

• Data structure: min-heap

• What operations on min-heap do we 
need?
• build_heap: O(V)
• extract_min (minimum): O(V log V)
• decrease_prio: O(E log V)

• Total: O((V+E) log V)
• If the graph is very dense, so that E

approaches V2, then O(V2 log V)

initialize(G, s)

for each v in G.V 

v.dist = inf 

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v) 

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s) 

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u] # total E times

relax(u, v, w)



Dijkstra algorithm: runtime analysis

• Q: runtime of Dijkstra?

• Data structure: array (we know the index 
of each vertex in the array)

• What operations do we need?
• „build_heap”: O(V) (V times O(1))

• extract_min (minimum): O(V2) (V times O(V))

• decrease_prio: O(E) (E times O(1))

• Total: O(V2+E) = O(V2)
• Faster than min-heap if the graph is dense

initialize(G, s)

for each v in G.V 

v.dist = inf 

v.prev = null

s.dist = 0

relax(u, v, w)

if v.dist > u.dist + w(u, v) 

v.dist = u.dist + w(u, v)

v.prec = u

dijkstra(G, w, s) 

initialize(G)

S = [] # empty set

Q = G.V # set of nodes to be „finished”

while len(Q) > 0 # while Q not empty

u = extract_min(Q) # node with smallest u.dist

S = S ∪ {u}

for each v in G.Adj[u] # total E times

relax(u, v, w)
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