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1 Heap(sort) & Priority Queue

1. What are the minimum and maximum numbers of elements in a heap of height h?

The height h of node n is the number of edges along the longest simple upward
path up to n. For instance, the height of a single node is 0 and for node 0 in a
min-heap A = [0, 1,2, 3] is 2.

Consider the complete min-heap with array representation A = [0, ..., 6] that has
a height h = 2. The ¢th level adds at least 1 (i.e. 1 node in bottom left of heap)
and at most 2¢ nodes. For i = 2, we therefore have Z;:o 2! = 3 nodes in the
complete binary tree at h — 1 = 1. Consequently, we have at least (ZLO 21)+1
and at most (Z?:o 2") nodes in a min heap of height h. These series denoting
the upper and lower bound of the number of nodes in a min heap of height A
can be simplified to 2" and 2"*! — 1, respectively.

2. Explain briefly why the array with values [23; 17; 14; 6; 13; 10; 1; 5; 7; 12] is (is not)
a max-heap?

If we write down the max-heap for the above array, we see that the node with key
7 1s a child of the node with key 6, violating the max-heap priority. Therefore,
the array is not a valid max-heap.

3. The tree below contains 8 items, where each stored item is an integer which is its
own key.



Suppose the tree drawn above is the implicit tree of a binary max-heap H. State
the array representation of H, first before and then after performing the operation
H.delete_max ().

We initially write down the operations required to delete the maximum.

a) We swap 93 with 17 and pop 93, the root node now is 17. The tree violates
the max-heap property. We perform H.heapify.

b) In the first step, 17 needs to be swapped with 85, as 85 is the maximum
of the keys in consideration [17, 38, 85]. The new tree still violates the
max-heap priority.

¢) In the second step, 17 needs to be swapped with 85, as 63 is the maximum
of the keys in consideration [17,38,63]. The new tree now fulfills the
max-heap priority.

d) We now deduce the array representation of the new tree, reading the
elements in left-to-right by level top-to-bottom from the binary tree.

The new array representation is [85; 63; 38;23; 17; 11; 13].

4. Implement a MinHeap (Queue) in the exercise03.ipynb notebook as per
the requirements laid out in the notebook.

2 Hashing

1. Insert integer keys A = [67, 13,49, 24,40, 33, 58] in order into a hash table of size
9 using the hash function h(k) = (11k + 4) mod 9. Collisions should be resolved
via chaining, where collisions are stored at the end of a chain. Elaborate how the
resulting hash table looks like.

A = [ s s s s s s s ]
hash_fn = lambda k: ( * k +9) %



hash_table = {}
a A:
hash = hash_fn(a)
not hash in hash_table:
hash_table[hash] = []
hash_table[hash]. append(a)

>> hash_table
>> # form of {hash: chain}, where has is int and chain is list
>>  {3: [67, 13, 49, 40, 58], 7: [24, 33]}

2. Explain why the use of the following functions f; and f5 as hashing functions for a
hash table of size m of whole numbers (ganze Zahlen) is problematic. m is prime.

fi(z) = & where z is the digit sum (Quersumme) of x
f2(z) = | %] mod m where |y] denotes the floor or y, e.g. [4.3] = 4

a) The digit sum of whole numbers is unbounded and therefore grows for
abritrarily large numbers indefinitely. Thus, values larger than m cannot
be used for hashing. Furthermore, the hash of many nearby numbers is
identical, e.g. 12 and 21 which both have a digit sum of 3.

b) The floor division causes many neighboring numbers to have identical
hashes, causing frequent collisions. Even more so, the mod operation now
causes even more conflicts.

3. The following two Python functions correctly solve the problem: given an array
X of n positive integers, where the maximum integer in X is k, return the integer
that appears the most times in X. Assume: a Python 11 st is implemented using a
dynamic array; a Python dict is implemented using a hash table which randomly
chooses hash functions from a universal hash family; and max (X) returns the
maximum integer in array X in worst-case O(|X|) time. For each function, state
its worst-case and expected running times in terms of n and k.

frequenttest (X):
H = {}
best = X[0]
x in X:
if not x in H:
H[x] = 0
H(x] += 1
if H[x] > H[best]:



best = x
best

Consider the inner workings of this function.
x in X:
H[x] = 0
We initially build a dictionary of (zero) counts, by assigning each unique number in our
array (keys) an initial value of 0 (values).
best = X[O0]

The above line sets the initially maximum value to the first element in X. This may or
may not be true, but we will have to check all unique elements anyways.

X in X:

Hix] += 1

if H[x] > H[best]:
best = X

We now iterate over our array. For each value z in X, we increment the value of the
key x in H by 1. Should the counts of = now exceed the counts of our current best,
we set best to x. This algorithm works, as we keep track of the current best and only
the counts of = can exceed the counts of best in the current loop.

The dictionary (i.e. has table) implementation has worst case O(n?) and expected
runtimes O(n). The worst case stems from the fact that in the very worst scenario, for
every access of a key there is a hash collision, which is why we’d have to iterate over
the chain which at most could be of length n. Each H [key ] denotes an access into the
hash table. Even more so, for each access, in the worst case we’d have to iterate on
average to half the length of the chain, resulting in quadratic complexity. In practice,
the length of the chain of course matters, though in the worst case, we’d always have
hash collisions with n unique numbers, resulting in iterating n times over chains of
lenght 12/2, on average. The expected case would be not to have hash collisions. In this
scenario, the runtime is linear in n and thus O(n).

frequenttest (X):
k = max(X)
A =[]
1 in (k + 1):
A.append (0)
best = X[0]
x in X:
Alx] += 1



if A[x] > A[best]:
best = x
best

The dynamic array implementation has expected and worst case runtime of
0(n+ k).

A =[]
i in (k + 1):
A.append (0)

k cost stems from building the initial dynamic array where the offset corresponds
to a unique number and its value reflects the count in X. Note that we may
construct unnecessarily long arrays as the length solely depends on the maximum
value. For instance, X may only comprise 3 values, e.g. [1,10° 10'2]. The
algorithm however builds a dynamic array of length |101?|

best = X][0]
x in X:
A[x] += 1
if A[x] > A[best]:
best = x

Identifying the maximum now mirrors the dictionary implementation, but each
access into A is always O(1). As we do that n times, these comparisions are

O(n).
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