ALGORITHMS IN AI \& DATA SCIENCE 1 (AKIDS 1)

Graphs
Prof. Dr. Goran Glavaš

Content

- ADS: Graph
- Graph traversals
- Breadth-First-Search
- Depth-First-Search
- Topologic sorting

From Sets to Sets with Relations

Image from: https://tinyurl.com/2an89h3m

Image from: https://tinyurl.com/dk8hxy95

Image from: https://tinyurl.com/mxs38hpx

- In many real-world problems and applications, it is important not just to model the elements in a set, but also relations/connections between the elements
- Graphs: an ADS for modeling relational data
- Social (and other) networks
- Maps and geography
- Chemistry
- ...

Graphs

Graphs

Graph is an abstract data structure for representing dynamic sets with relations: graphs consist of a (finite number of) nodes (also called vertices) representing set elements and (a finite number of) edges capturing relations between the elements.

- Graph is a more general data structure than list and tree
- Lists and Trees can be seen as special, reduced graphs
- In the same manner in which lists can be seen as a special reduced type of tree
- List: a directed graph in which each node (except the last one) has exactly one outgoing edge and exactly one incoming edge (except the first one)
- Binary tree: a graph in which each node (except the root) has exactly one incoming edge and at most two outgoing edges

Graph: definition, types

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a pair of sets, with V as a set of vertices, and E a set of edges between the vertices $\mathbf{E} \subseteq\{(u, v) \mid u, v \in \mathbf{V}\}$. If the graph is undirected, the relation defined by an edges is symmetric, or $E \subseteq\{\{u, v\} \mid u, v \in V\}$, that is, edges are sets of two vertices rather than ordered pairs.

- Directed (gerichteter) graph - edges have directions: $(u, v) \neq(\mathrm{v}, \mathrm{u})$
- Undirected (ungerichteter) graph - edges don't have directions: $\{u, v\}=\{v, u\}$

Graphs: types

- Reflexive graphs: nodes allowed to have an edge to itself

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{D}}=\left(\mathrm{V}_{\mathrm{D}}, \mathrm{E}_{\mathrm{D}}\right) \\
& \mathrm{V}_{\mathrm{D}}=\{1,2,3,4,5,6\} \\
& \mathrm{E}_{\mathrm{D}}=\{(1,2),(1,3),(3,1),(3,4),(3,6) \\
&(4,1),(5,3),(5,5),(6,2),(6,4) \\
&(6,5)\}
\end{aligned}
$$

Graphs: types

- Weighted (gewichtete) edges additionally have numeric weights on the edges
- Example: distance between two cities

A weighted graph $G=(V, E, \gamma)$ is a triple with V as vertices, E as edges and γ as a function
$\gamma: E \rightarrow \mathbb{R}$ that assigns weights/scores to every edge $(u, v) \in E$.

Graphs: connectivity

- Undirected graphs

- Vertices u and v connected if there exist a path (i.e., a sequence of edges) in G from u to v
- Graph G is connected if any two vertices from V are connected
- Directed graphs

Image from Wikipedia

- Strongly connected: if for every two nodes u, v both path from u to v and path from v to u exist
- Weakly connected: if the corresponding undirected graph (make directed edges with undirected) is connected

Graphs: cycles

- Cycle is a trail (a path without repeating edges) that starts and ends in the same vertex
- No other repetition of the vertices on the trail (otherwise it's a circuit and not a cycle = simple circuit)
- Examples
- 1-5-6-4-2-5-1 \rightarrow circuit
- 5-2-3-5-6-4-2-5 \rightarrow circuit
- 1-5-6-1 \rightarrow cycle
- 2-5-6-4-2 \rightarrow cycle
- 3-5-2-3 \rightarrow cycle

Graphs as dynamic sets

- Graphs represent a dynamic set with relations between elements
- Three most common operations apply:
- INSERT: add a node to a graph
- DELETE: remove a node from a graph
- SEARCH: find a node in a list
- Runtime complexity of algorithms on graphs
- Runtime no longer dependent just on number of elements/ vertices ($\mathrm{n}=|\mathrm{V}|$), but also on the number of edges in the graph (|E|)
- For simplicity, in O-notation, we'll write V for $|V|$ and E for $|E|$
- Pseudocode: G - graph, G.V - set of graph vertices, G.E - set of graph edges

Graph representations

- Two common ways to represent graph
- Adjacency list
- Adjacency matrix
- Decision on which one to use is usually linked to the density of the graphs we're expected to represent
- Density of a graph: |E| / |V| ${ }^{2}$
- Max. number of edges in a (reflexive directed) graph with $|\mathrm{V}|$ nodes is $|\mathrm{V}|^{2}$
- Q: What is the maximal number of edges in a directed graph with |V| vertices?
- Adj. list - more suitable for sparse graphs (most graphs are sparse)
- Adj. matrix - more suitable for dense graphs
- Also convenient for graph operations that can be expressed as mathematical operations on the adjacency matrix of the graph, e.g., to compute G^{k}

Graph representations: adjacency list

- $\mathrm{G}(\mathrm{V}, \mathrm{E})$ represented as an array/list of size |V|, each element of which corresponds to one vertex $u \in V$ and is a pointer (head) to the list containing its neighbouring nodes $\{v \in V:(u, v) \in E\}$
- In pseudocode, we will indicate the adjacency list as G.Adj
- Q1: if G is an (un)directed graph, what is the sum of lengths of all adj. lists?
- Q2: what is the space (O notation) needed for storing G as adj. list?

Adjacency list representation of an undirected (unweighted) graph

Graph representations: adjacency list

- Q: How to represent weighted graphs as adjacency lists?
- We just add the weight next to target node in each list element
- Search: is edge (u, v) in E?
- Runtime? What's the average length of an adjacency list?

Image from Cormen et al.

Adjacency list representation of a directed (unweighted) graph

Graph representations: adjacency matrix

- $G(V, E)$ represented as a matrix (2D-array) of size $|V|^{2}$, each element of which corresponds to one potential edge (u, v).
- G.A - the adjacency matrix (in pseudocode and algorithms)
- $a_{i j}$ - the element at the i-th row and j-th column of A - the value of that matrix element indicates if an edge between i-th and j-th vertex in \mathbf{V}
- Q1: if G is an (un)directed graph, what is the number of non-zero elements in \mathbf{A} ?
- Q2: what is the space (O notation) needed for storing G as adj.matrix?

	$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$				
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Graph representations: adjacency matrix

- Q: How to represent a weighted graph as an adjacency matrix?
- We just replace binary values in the matrix with weights
- Search: is edge (u, v) in E ?
- Runtime? Assuming we know the indices of u and v in V

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Image from Cormen et al.

Adjacency matrix representation of a directed (unweighted) graph

Graph representations

- Adjacency lists vs. adjacency matrix

	Space	Edge search (runtime)
Adj. list	$\mathbf{O}(\mathrm{V}+\mathrm{E})$	$\mathbf{O}(\mathrm{E} / \mathrm{V})$
Adj. matrix	$\mathbf{O}\left(\mathrm{V}^{2}\right)$	$\mathbf{O}(1)$

- Many applications deal with very large and very sparse graphs
- $|E| \ll|V|^{2}$
- For example, social networks
- Storing a matrix with $|\mathrm{V}|^{2}$ elements not feasible
- Example: Facebook graph has $\mathbf{2 . 7 9 7}$ billion (Miliarden) nodes (users)
- Adj. matrix would have ca $8^{*} 10^{18}$ elements \rightarrow need exabytes of memory
- If graphs are reasonably small (memory not an issue), we prefer adj. matrix
- Not just for faster edge search, it is also a conceptually simpler graph representation

Content

- ADS: Graph
- Graph traversals
- Breadth-First-Search
- Depth-First-Search
- Topologic sorting

Graph traversals

Given a graph $G=(\mathbb{V}, E)$ and a source/starting vertex $s \in \mathrm{~V}$, discover all vertices that can be reached from s.

- Breadth-first search (BFS): traverses the graph in a First-In-First-Out order the vertex reached last is placed at the end of the exploration list
- Q : what data structure is suitable for this?
- Depth-first search (DFS): traverses the graph in Last-In-First-Out order - the vertex reached last is the first to be explored next
- Q : what data structure is suitable for this?
- Topological sorting: linearizes an (acyclic directed) graph via DFS
- Kind of like creating a sorted array from (in-order traversal of) binary search tree

Graph traversals: breadth-first search

- Arguably the simplest algorithm for searching/traversing a graph
- Its principle is also used in many more complex graph algorithms
- Same algorithm applicable to both directed and undirected graphs
- For graph G and source vertex s, return all nodes reachable from s
- Additionally, computes the (minimal) distance of each node from s
- BFS also creates a „breadth first search tree" of the node s
- Shortest path from each node v is the path from v to the root (s) in that tree
- Uniform expansion of the „search frontier" - all vertices at distance k from source s will be visited before any of the vertices at distance $k+1$

Graph traversals: breadth-first search

- Vertices of the node can be in three different "states" (for vertex u, u. state)
- undiscovered (value 0; initially all except source s)
- discovered (value 1): reached but not expanded
- expanded (value 2): all vertices directly reachable from that vertex have been discovered
- We use the Queue data structure
- to make sure that the vertices are expanded in the same order in which they are discovered
- We will assume the adjacency list implementation of the graph

```
bfs(G, S)
    for each vertex u in G.V-{s}
        u.state = 0
        u.dist = inf # big int
        u.parent = null
    qd = [] # empty queue
    s.state = 1 # discovered
    enqueue(qd, s)
    while not is_empty(qd)
        u = dequeue(qd)
        for vertex v in G.Adj[u]
            if v.state == O # so far undiscovered
        v.state == 1 # discovered
        v.dist == u.dist + 1
        v.parent = u
        enqueue (qd, v)
    u.state = 2
```


Graph traversals: breadth-first search

- Illustration: colors indicate states

source
- Initially, only s is discovered
- Step 1:
- s is expanded
- all vertices directly reachable from s are discovered (and queued)

Graph traversals: breadth-first search

After initialization

$q d=[6,3,5]$

After 2. iteration
$q d=[2,6]$

After 1. iteration (of while loop)

$$
q d=[3,5,1]
$$

After 3. iteration

```
bfs(G, s)
```

bfs(G, s)
for each vertex u in G.V-{s}
for each vertex u in G.V-{s}
u.state = 0
u.state = 0
u.dist = inf
u.dist = inf
u.parent = null
u.parent = null
qd = []
qd = []
s.state = 1
s.state = 1
enqueue(qd, s)
enqueue(qd, s)
while not is_empty(qd)
while not is_empty(qd)
u = dequeue(qd)
u = dequeue(qd)
for vertex v in G.Adj[u]
for vertex v in G.Adj[u]
if v.state == 0
if v.state == 0
v.state == 1
v.state == 1
v.dist == u.dist + 1
v.dist == u.dist + 1
v.parent = u
v.parent = u
enqueue (qd, v)
enqueue (qd, v)
u.state = 2

```
    u.state = 2
```


Graph traversals: breadth-first search

After 4. iteration

After 5. iteration

```
bfs(G, S)
    for each vertex u in G.V-{s}
        u.state = 0
        u.dist = inf
        u.parent = null
    qd = []
    s.state = 1
    enqueue (qd, s)
    while not is empty(qd)
        u = dequeue(qd)
        for vertex v in G.Adj[u]
        if v.state == 0
            v.state == 1
            v.dist == u.dist + 1
            v.parent = u
            enqueue(qd, v)
        u.state = 2
```


After 6. iteration

Graph traversals: breadth-first search

- How is BFS building a tree?

After 1. iteration

After 2. iteration

After 3. iteration

- Going from each node v to the root s
- Gives the shortest path in the graph from v to s
- Q: what is the runtime of BFS?
- Each vertex is (en/de)queued at most once
- Q: can a vertex not be queued at all?
- $\mathbf{O}(\mathrm{V}+\mathrm{E})$: why?
- How many iterations of the for loop will you have in total (summed across all iterations of the while loop)?

```
bfs(G, S)
```

bfs(G, S)
for each vertex u in G.V-{s}
for each vertex u in G.V-{s}
u.state = 0
u.state = 0
u.dist = inf
u.dist = inf
u.parent = null
u.parent = null
qd = []
qd = []
s.state = 1
s.state = 1
enqueue(qd, s)
enqueue(qd, s)
while not is_empty(qd)
while not is_empty(qd)
u = dequeue(qd)
u = dequeue(qd)
for vertex v in G.Adj[u]
for vertex v in G.Adj[u]
if v.state == 0
if v.state == 0
v.state == 1
v.state == 1
v.dist == u.dist + 1
v.dist == u.dist + 1
v.parent = u
v.parent = u
enqueue (qd, v)
enqueue (qd, v)
u.state = 2

```
        u.state = 2
```


Content

- ADS: Graph
- Graph traversals
- Breadth-First-Search
- Depth-First-Search
- Topologic sorting

Graph traversals: depth-first search

- Together with BFS, depth-first search is the most basic/common algorithm for searching/traversing a graph
- Its principle is also used in many more complex graph algorithms
- Same algorithm applicable to both directed and undirected graphs
- For graph G and source vertex s, return all nodes reachable from s
- Additionally, can compute the (minimal) distance of each node from s
- Though less suitable for „shortest paths" than BFS
- DFS deepens the search by always expanding the first newly discovered vertex (last in, first out :))
- In contrast to BFS, distance at discovery is not necessarily the shortest distance from the source s

Graph traversals: depth-first search

- Vertices of the node can be in three different "states" (for vertex u, u. state)
- not visited (value 0; initially all except source s)
- visited (value 1): reached (and then immediately expanded)
- If we want shortest distances, then nodes may be revisited
- We use the Stack data structure
- to make sure that the most recently discovered vertix is expanded first
- We assume the adjacency list implementation of the graph

```
dfs(G, s) # non-recursive
    for each vertex u in G.V-{s}
        u.state = 0
        u.dist = 0
        u.parent = null
    stack = [] # empty stack
    s.state = 1 # visited
    push(stack, (s, 0))
    while not is_empty(stack)
        u, time = pop(stack)
        for vertex v in G.Adj[u]
            if v.state == O or time+1 < v.dist
                v.state = 1 # visited
                v.dist = time + 1
                v.parent = u
                push(stack, (v, time+1))
```


Graph traversals: depth-first search

- The pseudocode of the DFS is iterative
- But DFS naturally lends itself to recursion
- Why?
- Exercise
- Write the recursive DFS algorithm
- Recursive DFS doesn't require (an explicit) stack
- Where is the stack hidden in that case?

Graph traversals: depth-first search

- Illustration: colors indicate states

- s is visited
- All vertices directly reachable from s are pushed to the stack

Graph traversals: depth-first search

stack $=[(4, t=0)]$

After initialization (time 0)
stack $=[(2, t=1),(6, t=1)]$

After 1. iteration (while loop)
dfs(G, s) \# non-recursive

```
    for each vertex u in G.V-{s}
```

 u.state \(=0\)
 u.dist \(=0\)
 u.parent \(=\) null
 stack \(=\) [] \# empty stack
 s.state \(=1\) \# visited
 push(stack, (s, 0))
 while not is_empty (stack)
 u, time = pop(stack)
 for vertex \(v\) in \(G . A d j[u]\)
 if \(v\).state \(=\mathbf{0}\) or time \(+1<\mathrm{v}\).dist
 v.state \(=1\) \# visited
 v.parent = u
 v. dist \(=\) time +1
 push(stack, (v, time+1))
 After 3. iteration \(\operatorname{stack}=[(5, t=2),(6, t=1)]\)

Graph traversals: depth-first search

stack $=[(1, t=3),(6, t=1)]$ stack $=[(6, t=1)]$

After 4. iteration
stack $=[(1, t=2)]$

After 6. iteration

After 5. iteration
stack $=[] \rightarrow$ end

After 7. iteration

```
dfs(G, s) # non-recursive
    for each vertex u in G.V-{s}
        u.state = 0
        u.dist = 0
        u.parent = null
    stack = [] # empty stack
    s.state = 1 # visited
    push(stack, (s, 0))
    while not is_empty(stack)
        u, time = pop(stack)
        for vertex v in G.Adj[u]
            if v.state == 0 or time+1 < v.dist
                v.state = 1 # visited
                v.parent = u
                v.dist = time + 1
                push(stack, (v, time+1))
```


Graph traversals: depth-first search

- DFS is, however, not really used for computing shortest distances
- To get shortest distances correctly, DFS may revisit the vertices \rightarrow slower
- If we need shortest distances, use BFS
- No distances \rightarrow the DFS algorithm is simpler
dfs(G, $s)$ \# non-recursive
for each vertex u in $G \cdot V-\{s\}$
u.state $=0$
stack $=$ [] \# empty stack
s.state $=1$ \# visited
push(stack, s)
while not is_empty(stack)
$u=\operatorname{pop}(s t a c k)$
\# print(u)
for vertex v in G.Adj[u]
if v.state $=\mathbf{0}$
v.state $=1$ \# visited
push(stack, v)
- Q: Runtime of DFS (without shortest distances)? Compare the execution to BFS

Content

- ADS: Graph
- Graph traversals
- Breadth-First-Search
- Depth-First-Search
- Topologic sorting

DFS for Topological Sort

- Q: How do we sort/linearize a graph?
- Something analogous to inorder_walk for binary search trees
- Is sorting even a meaningful operation for graphs?
- Linear ordering for directed acyclic graphs (DAGs)
- Graphs „closest" to a tree
- Edges are directed and there are no cycles
- But each node can have multiple „parents"
- Topological sorting: linearization of DAGs with DFS

DFS for Topological Sort

- Applications with precedencies between events
- Edges in a directed graph naturally specify a precedence relation
- Problem: find an order in which to execute all tasks (vertices in the graph) such that it is consistent with the expressed precedencies (edges)
- Example: dressing up the „confused" professor
- Solution:
- Iteratively run DFSs from vertices that have no incoming edges

DFS for Topological Sort

- We're working with single-source DFS (DFS that starts from a given source node)
dfs(G, s) \# non-recursive
for each vertex u in $G \cdot V-\{s\}$ u.state $=0$
- For topological sort, we add two more properties to the nodes
- v.num_in - number of unvisited incoming edges
- v.has_in - indicates whether the vertex has any incoming edges
- We slightly modify DFS to adjust the counter of unvisited incoming edges when we reach the node
stack = [] \# empty stack
s.state $=1$ \# visited
push (stack, s)
while not is empty (stack) $u=\operatorname{pop}($ stack $)$

```
if u.num_in == 0
    print(u)
    for vertex v in G.Adj[u]
        if v.state == 0
        v.state = 1 # visited
        v.num_in = v.num_in - 1
```

 if \(v\).num_in \(=0\)
 push(stack, v)

DFS for Topological Sort


```
dfs( \(G, ~ s) ~ \# ~ n o n-r e c u r s i v e\)
    for each vertex \(u\) in \(G \cdot V-\{s\}\)
        u. state \(=0\)
    stack \(=\) [] \# empty stack
    s.state \(=1\) \# visited
    push(stack, s)
    while not is_empty (stack)
    \(u=p o p(s t a c k)\)
    if u.num in \(==0\)
        print(u)
    for vertex \(v\) in G.Adj[u]
        if \(v\).state \(=\mathbf{0}\)
            v.state \(=1\) \# visited
            \(v . n u m\) in \(=v . n u m\) in -1
                if \(v\).num in \(==0\)
                        push(stack, v)
```

Uhr

DFS for Topological Sort

```
topological_sort(G)
    for each vertex u in G.V
        u.num_in = 0
    for each edge (u, v) in G.E
        v.num_in = v.num_in + 1
    for each vertex u in G.V
        if u.num in == 0
            u.has_in = 0
        else
            u.has in = 1
for each vertex u in G.V if u.has in \(==0\) dfs (G, u)
```


Uhr

- V = [Hose, Socken, Unterhose, Gürtel, Schuhe, Jackett, Krawatte, Uhr, Hemd]
- Q: On which „source" vertices will DFS be called?
- DFS \#1 (Socken): prints Socken
- Why not Schuhe?
- DFS \#2 (Unterhose): prints Unterhose -> Hose -> Schuhe
- Why not Gürtel?
- DFS \#3 (Uhr): prints Uhr
- DFS \#4 (Hemd): prints Hemd -> Gürtel -> Krawatte -> Jackett

Questions?

