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From Sets to Sets with Relations

• In many real-world problems and applications, it is important not just to model 
the elements in a set, but also relations/connections between the elements

• Graphs: an ADS for modeling relational data
• Social (and other) networks
• Maps and geography
• Chemistry
• ...
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Graphs

Graph is an abstract data structure for representing dynamic sets with relations: graphs 
consist of a (finite number of) nodes (also called vertices) representing set elements and 

(a finite number of) edges capturing relations between the elements. 

Graphs

• Graph is a more general data structure than list and tree
• Lists and Trees can be seen as special, reduced graphs

• In the same manner in which lists can be seen as a special reduced type of tree

• List: a directed graph in which each node (except the last one) has exactly one 
outgoing edge and exactly one incoming edge (except the first one)

• Binary tree: a graph in which each node (except the root) has exactly one 
incoming edge and at most two outgoing edges   



Graph: definition, types

• Directed (gerichteter) graph – edges have directions: (u, v) ≠ (v, u)

• Undirected (ungerichteter) graph – edges don’t have directions: {u, v} = {v, u} 

A graph G = (V, E) is a pair of sets, with V as a set of vertices, and E a set of edges
between the vertices E ⊆ { (u,v) | u, v ∈ V}. If the graph is undirected, the relation

defined by an edges is symmetric, or E ⊆ {{u,v} | u, v ∈ V}, that is, edges are sets of two 
vertices rather than ordered pairs. 

Graph: formal definition

Images from ADS course of Andreas Hotho



Graphs: types

• Reflexive graphs: nodes allowed to 
have an edge to itself

GD = (VD, ED)

VD = {1, 2, 3, 4, 5, 6}

ED = { (1, 2), (1,3), (3, 1), (3, 4), (3, 6) 

(4, 1), (5, 3), (5, 5), (6, 2), (6, 4)  

(6, 5) }

reflexive edge



Graphs: types

• Weighted (gewichtete) edges additionally have numeric weights on the edges

• Example: distance between two cities

A weighted graph G = (V, E, γ) is a triple with V as vertices, E as edges and γ as a function 
γ: E→ ℝ that assigns weights/scores to every edge (u, v) ∈ E. 

Weighted graph



Graphs: connectivity

• Undirected graphs
• Vertices u and v connected if there exist a path (i.e., a 

sequence of edges) in G from u to v

• Graph G is connected if any two vertices from V are 
connected

• Directed graphs
• Strongly connected: if for every two nodes u, v both path 

from u to v and path from v to u exist

• Weakly connected: if the corresponding undirected graph
(make directed edges with undirected) is connected 

Image from Wikipedia



Graphs: cycles

• Cycle is a trail (a path without repeating edges) that starts and 
ends in the same vertex
• No other repetition of the vertices on the trail (otherwise it’s a circuit

and not a cycle = simple circuit) 

• Examples
• 1-5-6-4-2-5-1 → circuit

• 5-2-3-5-6-4-2-5 → circuit

• 1-5-6-1 → cycle

• 2-5-6-4-2 → cycle

• 3-5-2-3 → cycle
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Graphs as dynamic sets

• Graphs represent a dynamic set with relations between elements

• Three most common operations apply:
• INSERT: add a node to a graph

• DELETE: remove a node from a graph

• SEARCH: find a node in a list

• Runtime complexity of algorithms on graphs
• Runtime no longer dependent just on number of elements/ vertices (n = |V|), but also 

on the number of edges in the graph (|E|)
• For simplicity, in O-notation, we’ll write V for |V| and E for|E|

• Pseudocode: G – graph, G.V – set of graph vertices, G.E – set of graph edges  



Graph representations

• Two common ways to represent graph 
• Adjacency list
• Adjacency matrix

• Decision on which one to use is usually linked to the density of the graphs 
we’re expected to represent
• Density of a graph: |E| / |V|2

• Max. number of edges in a (reflexive directed) graph with |V| nodes is |V|2

• Q: What is the maximal number of edges in a directed graph with |V| vertices?

• Adj. list – more suitable for sparse graphs (most graphs are sparse)

• Adj. matrix – more suitable for dense graphs 
• Also convenient for graph operations that can be expressed as mathematical 

operations on the adjacency matrix of the graph, e.g., to compute Gk



Graph representations: adjacency list

• G(V, E) represented as an array/list of size |V|, each element of which 
corresponds to one vertex u ∈ V and is a pointer (head) to the list containing its 
neighbouring nodes {v ∈ V : (u, v) ∈ E}

• In pseudocode, we will indicate the adjacency list as G.Adj 
• Q1: if G is an (un)directed graph, what is the sum of lengths of all adj. lists? 

• Q2: what is the space (O notation) needed for storing G as adj. list?

Image from Cormen et al. 

Adjacency list representation of an undirected (unweighted) graph



Graph representations: adjacency list

• Q: How to represent weighted graphs as adjacency lists?
• We just add the weight next to target node in each list element

• Search: is edge (u, v) in E? 
• Runtime? What’s the average length of an adjacency list?    

Image from Cormen et al. 

Adjacency list representation of a directed (unweighted) graph



Graph representations: adjacency matrix

• G(V, E) represented as a matrix (2D-array) of size |V|2, each element of which 
corresponds to one potential edge (u, v).

• G.A – the adjacency matrix (in pseudocode and algorithms)
• aij – the element at the i-th row and j-th column of A – the value of that matrix element 

indicates if  an edge between i-th and j-th vertex in V

• Q1: if G is an (un)directed graph, what is the number of non-zero elements in A? 

• Q2: what is the space (O notation) needed for storing G as adj.matrix?

Image from Cormen et al. 

Adjacency matrix representation of an undirected (unweighted) graph



Graph representations: adjacency matrix

• Q: How to represent a weighted graph as an adjacency matrix?
• We just replace binary values in the matrix with weights

• Search: is edge (u, v) in E? 
• Runtime? Assuming we know the indices of u and v in V

Image from Cormen et al. 

Adjacency matrix representation of a directed (unweighted) graph



Graph representations

• Adjacency lists vs. adjacency matrix

• Many applications deal with very large and very sparse graphs 
• |E| << |V|2

• For example, social networks

• Storing a matrix with |V|2 elements not feasible

• Example: Facebook graph has 2.797 billion (Miliarden) nodes (users)

• Adj. matrix would have ca 8*1018 elements → need exabytes of memory

• If graphs are reasonably small (memory not an issue), we prefer adj. matrix
• Not just for faster edge search, it is also a conceptually simpler graph representation

Space Edge search (runtime)

Adj. list O(V + E) O(E/V)

Adj. matrix O(V2) O(1)
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Graph traversals

• Breadth-first search (BFS): traverses the graph in a First-In-First-Out order –
the vertex reached last is placed at the end of the exploration list
• Q: what data structure is suitable for this?

• Depth-first search (DFS): traverses the graph in Last-In-First-Out order – the 
vertex reached last is the first to be explored next
• Q: what data structure is suitable for this?

• Topological sorting: linearizes an (acyclic directed) graph via DFS
• Kind of like creating a sorted array from (in-order traversal of) binary search tree   

Given a graph G = (V, E) and a source/starting vertex s ∈ V, discover all vertices that can be 
reached from s.  

Graph traversal



Graph traversals: breadth-first search

• Arguably the simplest algorithm for searching/traversing a graph
• Its principle is also used in many more complex graph algorithms
• Same algorithm applicable to both directed and undirected graphs

• For graph G and source vertex s, return all nodes reachable from s
• Additionally, computes the (minimal) distance of each node from s

• BFS also creates a „breadth first search tree” of the node s
• Shortest path from each node v is the path from v to the root (s) in that tree
• Uniform expansion of the „search frontier” – all vertices at distance k from 

source s will be visited before any of the vertices at distance k+1



Graph traversals: breadth-first search

• Vertices of the node can be in three different 
„states” (for vertex u, u.state)
• undiscovered (value 0; initially all except source s)
• discovered (value 1): reached but not expanded
• expanded (value 2): all vertices directly reachable 

from that vertex have been discovered

• We use the Queue data structure 
• to make sure that the vertices are expanded in the 

same order in which they are discovered

• We will assume the adjacency list
implementation of the graph

bfs(G, s) 

for each vertex u in G.V-{s}  

u.state = 0

u.dist = inf # big int

u.parent = null

qd = [] # empty queue

s.state = 1 # discovered 

enqueue(qd, s)

while not is_empty(qd)

u = dequeue(qd)

for vertex v in G.Adj[u]

if v.state == 0 # so far undiscovered

v.state == 1 # discovered

v.dist == u.dist + 1

v.parent = u

enqueue(qd, v)

u.state = 2



Graph traversals: breadth-first search

• Illustration: colors indicate states
• undiscovered

• discovered

• expanded

• Initially, only s is discovered

• Step 1: 
• s is expanded

• all vertices directly reachable from s are discovered (and queued)
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Graph traversals: breadth-first search

bfs(G, s) 

for each vertex u in G.V-{s}  

u.state = 0

u.dist = inf

u.parent = null

qd = [] 

s.state = 1

enqueue(qd, s)

while not is_empty(qd)

u = dequeue(qd)

for vertex v in G.Adj[u]

if v.state == 0

v.state == 1

v.dist == u.dist + 1

v.parent = u

enqueue(qd, v)

u.state = 2
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After 1. iteration (of while loop)

d = ∞ 

d = ∞ 

d = ∞ 

d = 0
d = 1

d = 1

1

2

3

4

5

6

qd = [6, 3, 5]

After 2. iteration

d = 0
d = 1 

d = 1 

d = 2 

d = 2 

d = ∞ 1

2

3

4

5

6

qd = [3, 5, 1]
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Graph traversals: breadth-first search

bfs(G, s) 

for each vertex u in G.V-{s}  

u.state = 0

u.dist = inf

u.parent = null

qd = [] 

s.state = 1

enqueue(qd, s)

while not is_empty(qd)

u = dequeue(qd)

for vertex v in G.Adj[u]

if v.state == 0

v.state == 1

v.dist == u.dist + 1

v.parent = u

enqueue(qd, v)

u.state = 2

qd = [5, 1]
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qd = [] → end
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Graph traversals: breadth-first search

• How is BFS building a tree?

• Going from each node v to the root s
• Gives the shortest path in the graph from v to s

• Q: what is the runtime of BFS? 
• Each vertex is (en/de)queued at most once

• Q: can a vertex not be queued at all?

• O(V+E): why?
• How many iterations of the for loop will you have in 

total (summed across all iterations of the while loop)?

bfs(G, s) 

for each vertex u in G.V-{s}  

u.state = 0

u.dist = inf

u.parent = null

qd = [] 

s.state = 1

enqueue(qd, s)

while not is_empty(qd)

u = dequeue(qd)

for vertex v in G.Adj[u]

if v.state == 0

v.state == 1

v.dist == u.dist + 1

v.parent = u

enqueue(qd, v)

u.state = 2
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Graph traversals: depth-first search

• Together with BFS, depth-first search is the most basic/common 
algorithm for searching/traversing a graph
• Its principle is also used in many more complex graph algorithms
• Same algorithm applicable to both directed and undirected graphs

• For graph G and source vertex s, return all nodes reachable from s
• Additionally, can compute the (minimal) distance of each node from s
• Though less suitable for „shortest paths” than BFS 

• DFS deepens the search by always expanding the first newly 
discovered vertex (last in, first out :))
• In contrast to BFS, distance at discovery is not necessarily the shortest 

distance from the source s



Graph traversals: depth-first search

• Vertices of the node can be in three different 
„states” (for vertex u, u.state)
• not visited (value 0; initially all except source s)
• visited (value 1): reached (and then immediately 

expanded)
• If we want shortest distances, then nodes may be 

revisited

• We use the Stack data structure 
• to make sure that the most recently discovered vertix 

is expanded first

• We assume the adjacency list implementation of 
the graph

dfs(G, s) # non-recursive

for each vertex u in G.V-{s}  

u.state = 0

u.dist = 0

u.parent = null

stack = [] # empty stack

s.state = 1 # visited

push(stack, (s, 0)) 

while not is_empty(stack)

u, time = pop(stack)

for vertex v in G.Adj[u] 

if v.state == 0 or time+1 < v.dist

v.state = 1 # visited 

v.dist = time + 1

v.parent = u

push(stack, (v, time+1)) 



Graph traversals: depth-first search

• The pseudocode of the DFS is iterative

• But DFS naturally lends itself to recursion 
• Why?

• Exercise 
• Write the recursive DFS algorithm

• Recursive DFS doesn’t require (an explicit) stack

• Where is the stack hidden in that case?



Graph traversals: depth-first search

• Illustration: colors indicate states
• unvisited

• visited

• revisited

• Initially, only s is visited

• Step 1: 
• s is visited

• All vertices directly reachable from s are pushed to the stack
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Graph traversals: depth-first search
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After initialization (time 0)
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After 2. iteration
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After 3. iteration stack = [(5,t=2),(6,t=1)]

dfs(G, s) # non-recursive

for each vertex u in G.V-{s}  

u.state = 0

u.dist = 0

u.parent = null

stack = [] # empty stack

s.state = 1 # visited

push(stack, (s, 0)) 

while not is_empty(stack)

u, time = pop(stack)

for vertex v in G.Adj[u] 

if v.state == 0 or time+1 < v.dist

v.state = 1 # visited 

v.parent = u

v.dist = time + 1

push(stack, (v, time+1)) 



Graph traversals: depth-first search

dfs(G, s) # non-recursive

for each vertex u in G.V-{s}  

u.state = 0

u.dist = 0

u.parent = null

stack = [] # empty stack

s.state = 1 # visited

push(stack, (s, 0)) 

while not is_empty(stack)

u, time = pop(stack)

for vertex v in G.Adj[u] 

if v.state == 0 or time+1 < v.dist

v.state = 1 # visited 

v.parent = u

v.dist = time + 1

push(stack, (v, time+1)) 
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After 6. iteration

d = 0

d = 2

d = 1 

d = 2 

d = 2

d = 1 

stack = [(1,t=2)]

After 7. iteration
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Graph traversals: depth-first search

• DFS is, however, not really used for computing 
shortest distances
• To get shortest distances correctly, DFS may 

revisit the vertices→ slower
• If we need shortest distances, use BFS

• No distances → the DFS algorithm is simpler
• Exercise: write the recursive version of this 

simplified DFS too

• Q: Runtime of DFS (without shortest 
distances)? Compare the execution to BFS

dfs(G, s) # non-recursive

for each vertex u in G.V-{s}  

u.state = 0

stack = [] # empty stack

s.state = 1 # visited

push(stack, s) 

while not is_empty(stack)

u = pop(stack)

# print(u)

for vertex v in G.Adj[u] 

if v.state == 0

v.state = 1 # visited 

push(stack, v) 
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DFS for Topological Sort

• Q: How do we sort/linearize a graph?
• Something analogous to inorder_walk for binary search trees

• Is sorting even a meaningful operation for graphs?

• Linear ordering for directed acyclic graphs (DAGs)
• Graphs „closest” to a tree

• Edges are directed and there are no cycles 

• But each node can have multiple „parents”

• Topological sorting: linearization of DAGs with DFS



DFS for Topological Sort

• Applications with precedencies between events 
• Edges in a directed graph naturally specify a precedence relation
• Problem: find an order in which to execute all tasks (vertices in the graph) 

such that it is consistent with the expressed precedencies (edges)

• Example: dressing up 

the „confused” professor

• Solution:
• Iteratively run DFSs from

vertices that have no incoming
edges 



DFS for Topological Sort

• We’re working with single-source DFS (DFS that 
starts from a given source node)

• For topological sort, we add two more properties 
to the nodes
• v.num_in – number of unvisited incoming edges

• v.has_in – indicates whether the vertex has any 
incoming edges

• We slightly modify DFS to adjust the counter of 
unvisited incoming edges when we reach the node

dfs(G, s) # non-recursive

for each vertex u in G.V-{s}  

u.state = 0

stack = [] # empty stack

s.state = 1 # visited

push(stack, s) 

while not is_empty(stack)

u = pop(stack)

if u.num_in == 0

print(u)

for vertex v in G.Adj[u] 

if v.state == 0

v.state = 1 # visited

v.num_in = v.num_in - 1 

if v.num_in == 0

push(stack, v) 



DFS for Topological Sort

topological_sort(G) 

for each vertex u in G.V

u.num_in = 0

for each edge (u, v) in G.E

v.num_in = v.num_in + 1

for each vertex u in G.V

if u.num_in == 0

u.has_in = 0

else 

u.has_in = 1

for each vertex u in G.V

if u.has_in == 0

dfs(G, u)

dfs(G, s) # non-recursive

for each vertex u in G.V-{s}  

u.state = 0

stack = [] # empty stack

s.state = 1 # visited

push(stack, s) 

while not is_empty(stack)

u = pop(stack)

if u.num_in == 0

print(u)

for vertex v in G.Adj[u] 

if v.state == 0

v.state = 1 # visited

v.num_in = v.num_in - 1 

if v.num_in == 0

push(stack, v) 



DFS for Topological Sort

• V = [Hose, Socken, Unterhose, Gürtel, Schuhe, Jackett, Krawatte, Uhr, Hemd]

• Q: On which „source“ vertices will DFS be called?

• DFS #1 (Socken): prints Socken

• Why not Schuhe?

• DFS #2 (Unterhose): prints Unterhose -> Hose -> Schuhe

• Why not Gürtel?

• DFS #3 (Uhr): prints Uhr

• DFS #4 (Hemd): prints Hemd -> Gürtel -> Krawatte -> Jackett 

topological_sort(G) 

for each vertex u in G.V

u.num_in = 0

for each edge (u, v) in G.E

v.num_in = v.num_in + 1

for each vertex u in G.V

if u.num_in == 0

u.has_in = 0

else 

u.has_in = 1

for each vertex u in G.V

if u.has_in == 0

dfs(G, u)
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