ALGORITHMS IN AI \& DATA SCIENCE 1 (AKIDS 1)

Balanced Trees (AVL)

Prof. Dr. Goran Glavaš

Content

- Balanced Binary Search Trees
- AVL Trees

Dynamic Sets - Operations

	Runtime				
Data struct.	Search	Insert	Delete	Min/Max	Pred/Succ
Array	O(n)	O(1)	O(n)	O(n)	O(n)
Linked List	O(n)	O(1)	O(1)	O(n)	O(n)
Hash Table	O(1)	O(1)	O(1)	not possible	not possible
Sorted Array	O($\log \mathrm{n})$	O(n)	O(n)	O(1)	O(1)
Binary Search Tree	$\mathbf{O}(\mathrm{h})=\mathbf{O}(\log \mathrm{n})$	O(h)	O(h)	O(h)	O(h)

- Insert \& Delete - change the dynamic set (by adding or removing values)
- Search, Min/Max, and Pred/Succ - query (anfragen) the dynamic set, but do not change it

Binary Search Tree: Height/Depth

- The complexity of all operations on the BST is $\mathrm{O}(\mathrm{h})$
- If the BST is balanced $h \approx \log _{2} n$
- Frequent insertions and deletions can

Insert(10)
Insert(12)
Insert(14)
Delete(3) disturb the balance of the tree

- The height/depth drastically increases
- Extreme: BST reduced to a linked list
- Search efficiency gains lost
- Need to re-balance the tree. Q: How?

Re-Balancing the Binary Search Tree

- The standard binary search tree and its insert and deletion operations provide no guarantee that the tree will remain balanced
- If BST becomes too unbalanced,
h can become much larger than log n

```
inorder_array(T)
    A.Size = T.Size
    A.Length = 0
    inorder_walk(T.root, A)
    return A
```

- Consequently $\mathbf{T}(\mathrm{n})>\mathbf{O}(\log \mathrm{n})$ for all operations
- Working with tree becomes much slower
- Solution \#1: re-balance the tree

1. Create a sorted array via inorder_walk $\rightarrow \mathbf{O}(\mathrm{n})$
```
inorder_walk(x, A)
    if x != null
        inorder_walk(x.left, A)
        A.Length = A.Length + 1
        A[A.Length - 1] = x.key
        inorder_walk(x.right)
```


Re-Balancing the Binary Search Tree

- The standard binary search tree and its insert and deletion operations provide no guarantee that the tree will remain balanced

```
tree_from_array(A)
    T.root = null
    array_to_tree(A, 0, A.Length - 1, T.root)
    return
array_to_tree(A, p, r, x)
    n =r - p + 1
    if }n%2==
        q = p + n//2
    else
        q=p+n/2 - 1
    x = new node
    x.key = A[q]
    x.left = null
    x.right = null
    if n > 1
        l = array_to_tree(A, p, q-1, x.left)
        l.parent = x
        r = array_to_tree(A, q+1, r, x.right)
        r.parent = x
    return x
```


Binary Search Tree: Height/Depth

- How do we balance out an unbalanced binary search tree?

1. Construct the sorted array from the BST - O(n)
2. Build a new BST from the sorted array (recursively) - O(n)

If n is large, re-balancing this way is expensive and cannot be done frequently

- How to maintain balanced BSTs?
- Make sure that after every insert / delete, the tree is (more or less) balanced

Self-balancing BSTs

- We want to have a guarantee that query operations cost $\mathbf{O}(\log n)$
- Search, Min/Max, Pre/Succ
- Self-balancing binary search trees
- Number of variants, we'll see one of the two most commonly used
- AVL trees
- Red-black trees

Image from slides of Andreas Hotho

Content

- Balanced Binary Search Trees
- AVL Trees
- Insertion
- Deletion

AVL Trees

- First self-balancing binary search tree
- Named after the inventors: Georgy Adelson-Velsky and Evgenii Landis

```
AVL tree property
```

Core property (guiding/operatring principle) of AVL trees is given as follows:
for any two sibling nodes x and y, the difference in their respective tree height (i.e., tree heights at which x and y appear), must not be more than 1 , \mid height (x) - height(y) $\mid \leq 1$.

- Put differently, for each of the non-leaf nodes, the difference in height between its left and right subtree must be at most 1 .

AVL Trees

AVL Trees

- It's still a binary search tree - just a balanced one
- Query operations: Search, Max/Min, Pred/Succ
- Nothing changes in the algorithms for these operations
- Insert and Delete need to be modified
- As they can violate the AVL property of the tree
- Formalization
- Balance factor - difference between the heights of the left and right subtree
bf(x) = height(x.right) - height(x.left),
- For any x, $\mathbf{b f}(\mathrm{x})$ must be in the set $\{\mathbf{- 1}, \mathbf{0}, \mathbf{1}\}$

AVL Trees: Insertion

- Balance factor - difference between the heights of the left and right subtree $\operatorname{bf}(x)=$ height(x.left) - height(x.right), for any $x, b f(x)$ must be in the set $\{\mathbf{- 1 , 0 , 1 \}}$
- Insertion in AVL trees:

1. Insert the new node x as you normally would in regular BST
2. Fix the AVL property of the nodes for which it has been violated

- AVL Violation: if bf(y) becomes -2 or 2 for some node y
- Note: when we add a new node x, bf(y) may change only for the nodes y that are the ancestors of x - nodes on the path from x to the root

AVL Trees: Insertion

- Let's take a look at all possible cases that could violate the AVL balancing property
- Q: when can a violation occur?
- New level x added in the path of a node y for which $\mathbf{b f}(\mathrm{y}) \in\{-1,1\}$

AVL Trees: Left-left case (right rotation)

- Let's take a look at all possible cases that could violate the AVL balancing property
- Case \#1: left-left
insert(T, 1)
- Node 4 (grandparent of the inserted node) violates the AVL property
- How to restore it?

- Right Rotation

- Rotation root (rr): node with bf -2 (node 4)
- Rotation pivot: child of rr with bf -1 (node 2)
- rr becomes the right child of the pivot, and
 pivot goes where rr was

AVL Trees: Left-left case (right rotation)

- Let's take a look at all possible cases that could violate the AVL balancing property
- Case \#1: left-left
insert (T, 1)
- Right Rotation
- Rotation root (rr): node with bf -2 (node 4)

- Rotation pivot: child of rr with bf -1 (node 2)
- rr becomes the right child of the pivot, and pivot goes where rr was

AVL Trees: Right-right case (left rotation)

- Let's take a look at all possible cases that could violate the AVL balancing property
- Case \#2: right-right
insert (T, 22)
- Node 18 (grandparent) violates AVL property
- How to restore it?
- Left Rotation
- Rotation root (rr): node with bf 2 (node 22)

AVL Trees: Right-right case (left rotation)

- Let's take a look at all possible cases that could violate the AVL balancing property
- Case \#2: right-right

```
insert(T, 22)
```

- Left Rotation
- Rotation root (rr): node with bf 2 (node 22)

- Rotation pivot: child of rr with bf -1 (node 20)
- rr becomes the left child of the pivot, and pivot goes where rr was

AVL Trees: Right-left case (double rotation)

- Let's take a look at all possible cases that could violate the AVL balancing property
- Case \#3: right-left
insert(T, 8)
- Node 7 (grandparent) violates AVL property
- How to restore it?
- Double rotation: right then left
- Rotation root (rr): node with bf 2 (node 7)
- Rotation pivot: grandchild of rr (node 8)
- Rotation \#1: right rotation
- Pivot's parent becomes its right child
- Converts this to the right-right case

AVL Trees: Right-left case (double rotation)

This is now the familiar right-right case (Case 2)!
Solution: left rotation around the pivot

AVL Trees: Right-left case (double rotation)

AVL Trees: Left-right case (double rotation)

- Let's take a look at all possible cases that could violate the AVL balancing property
- Case \#4: left-right
insert(T, 12)
- Node 13 (grandparent) violates AVL property
- How to restore it?
- Double rotation: left then right
- Rotation root (rr): node with bf 2 (node 13)
- Pivot: grandchild of rr (node 12)
- Rotation \#1: left rotation
- Pivots parent becomes its left child
- Converts this to the left-left case

AVL Trees: Left-right case (double rotation)

This is now the familiar left-left case (Case 1)!
Solution: right rotation around the pivot

AVL Trees: Left-right case (double rotation)

AVL Trees: Overview of All Four Rotations

Image from https://upload.wikimedia.org/wikipedia/commons/c/c4/Tree Rebalancing.gif

Content

- Balanced Binary Search Trees
- AVL Trees
- Insertion
- Deletion

AVL Tree: Deletion

- We want to delete a node x from a binary search tree T
- Three cases: two simple, one more complex

1. Node without children (i.e., leaf node)

- Simply set it's corresponding parent's pointer (left or right) to null

2. Node with one child (i.e., only one subtree, left or right)

- „Bypass" the node x to be deleted - set the corresponding parent's pointer (left or right, depending on which child x is) to point to x 's only child
- Violation of AVL property ? Only if
(1) \times was the left child and its parent y had $b f(y)=1$ (before \times 's deletion) or
(2) \times was the right child and its parent y had $b f(y)=-1$ (before x 's deletion)

- Solution:

- After deletion of x, its former parent y will have bf either -2 or $2 \rightarrow y$ is the rotation root
- Recognize which of 4 cases it is - apply the rotation or double rotation as with insertion

Binary Search Tree: Deletion

- We want to delete a node \times from a binary search tree T
- Three cases: two simple, one more complex

3. Node with both children (the trickiest case)

- Find x 's successor y (in x 's right subtree) and place y in x's place

Binary Search Tree: Deletion

- Deletion case \#3: delete node with two children
- x - being removed, y - the successor
- Subcase 3b: successor is not the right child of $x, y \neq x$.right
- y has no left child (being a successor of x)
- y may or may not have the right child
- Solution:
- We replace y with its own right child

$$
\begin{gathered}
\text { Delete } 4 \\
\text { succ }=6
\end{gathered}
$$

(not the right child)

Exercise

- Write the pseudocode for AVL-insert and AVL-delete
- Do it in a modular fashion
- First implement each of the „rotation cases"
- Single rotation: left-left, right-right,
- Double rotation: right-left, left-right
- Then think of how to recognize each case
- So that you can „call" the correct (single or double) rotation function
- After adjusting the closest node with bf 2 or -2
- Do you need to adjust any other nodes?

Exercise

- After adjusting the closest node with bf 2 or -2
- Do you need to fix the bf of any other nodes (i.e., more than one)?
- Delete 26?

Questions?

