
Balanced Trees (AVL)
Prof. Dr. Goran Glavaš

20.11.2023

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Balanced Binary Search Trees

• AVL Trees

Dynamic Sets – Operations

Runtime

Data struct. Search Insert Delete Min/Max Pred/Succ

Array O(n) O(1) O(n) O(n) O(n)

Linked List O(n) O(1) O(1) O(n) O(n)

Hash Table O(1) O(1) O(1) not possible not possible

Sorted Array O(log n) O(n) O(n) O(1) O(1)

Binary Search Tree O(h) = O(log n) O(h) O(h) O(h) O(h)

• Insert & Delete – change the dynamic set (by adding or
removing values)

• Search, Min/Max, and Pred/Succ – query (anfragen) the
dynamic set, but do not change it

Binary Search Tree: Height/Depth

• The complexity of all operations on the
BST is O(h)

• If the BST is balanced h ≈ log2n

• Frequent insertions and deletions can
disturb the balance of the tree

• The height/depth drastically increases
• Extreme: BST reduced to a linked list

• Search efficiency gains lost

• Need to re-balance the tree. Q: How?

4

83

...

97

Insert(10)

Insert(12)

Insert(14)

Delete(3)

8

10

12
14

Re-Balancing the Binary Search Tree

• The standard binary search tree and its insert and deletion operations
provide no guarantee that the tree will remain balanced

• If BST becomes too unbalanced,

h can become much larger than log n
• Consequently T(n) > O(log n) for all operations

• Working with tree becomes much slower

• Solution #1: re-balance the tree
1. Create a sorted array via inorder_walk → O(n)

inorder_array(T)

A.Size = T.Size

A.Length = 0

inorder_walk(T.root, A)

return A

inorder_walk(x, A)

if x != null

inorder_walk(x.left, A)

A.Length = A.Length + 1

A[A.Length - 1] = x.key

inorder_walk(x.right)

Re-Balancing the Binary Search Tree

tree_from_array(A)

T.root = null

array_to_tree(A, 0, A.Length – 1, T.root)

return T

array_to_tree(A, p, r, x)

n = r – p + 1

if n % 2 == 1

q = p + n//2

else

q = p + n/2 – 1

x = new node

x.key = A[q]

x.left = null

x.right = null

if n > 1

l = array_to_tree(A, p, q-1, x.left)

l.parent = x

r = array_to_tree(A, q+1, r, x.right)

r.parent = x

return x

• The standard binary search tree and its insert
and deletion operations provide no guarantee
that the tree will remain balanced

• If BST becomes too unbalanced,

h can become much larger than log n
• Consequently T(n) > O(log n) for all operations
• Working with tree becomes much slower

• Solution #1: re-balance the tree
1. Create a sorted array via inorder_walk → O(n)
2. Create a binary tree recursively from a sorted array
→ O(n)

Binary Search Tree: Height/Depth

• How do we balance out an unbalanced binary search tree?

1. Construct the sorted array from the BST – O(n)

2. Build a new BST from the sorted array (recursively) – O(n)

If n is large, re-balancing this way is expensive and cannot be done frequently

• How to maintain balanced BSTs?
• Make sure that after every insert / delete, the tree is (more or less) balanced

Self-balancing BSTs

• We want to have a guarantee that query operations cost O(log n)
• Search, Min/Max, Pre/Succ

• Self-balancing binary search trees
• Number of variants, we’ll see one of the two most commonly used

• AVL trees

• Red-black trees

Image from slides of Andreas Hotho

Content

• Balanced Binary Search Trees

• AVL Trees
• Insertion

• Deletion

AVL Trees

• First self-balancing binary search tree
• Named after the inventors: Georgy Adelson-Velsky and Evgenii Landis

• Put differently, for each of the non-leaf nodes, the difference in height
between its left and right subtree must be at most 1.

Core property (guiding/operatring principle) of AVL trees is given as follows:

for any two sibling nodes x and y, the difference in their respective tree height (i.e., tree
heights at which x and y appear), must not be more than 1, |height(x) - height(y)| ≤ 1.

AVL tree property

AVL Trees

Is this an AVL tree
(satisfies the AVL property)?

Is this an AVL tree
(satisfies the AVL property)?

Images from slides of Andreas Hotho

AVL Trees

• It’s still a binary search tree – just a balanced one

• Query operations: Search, Max/Min, Pred/Succ
• Nothing changes in the algorithms for these operations

• Insert and Delete need to be modified
• As they can violate the AVL property of the tree

• Formalization
• Balance factor – difference between the heights of the left and right subtree

bf(x) = height(x.right) – height(x.left),

• For any x, bf(x) must be in the set {-1, 0, 1}

AVL Trees: Insertion

• Balance factor – difference between the heights of the left and right subtree
bf(x) = height(x.left) – height(x.right), for any x, bf(x) must be in the set {-1, 0, 1}

• Insertion in AVL trees:
1. Insert the new node x as you normally would in regular BST

2. Fix the AVL property of the nodes for which it has been violated

• AVL Violation: if bf(y) becomes -2 or 2 for some node y

• Note: when we add a new node x, bf(y) may change only for the nodes y that
are the ancestors of x – nodes on the path from x to the root

AVL Trees: Insertion

• Let’s take a look at all possible
cases that could violate the AVL
balancing property

• Q: when can a violation occur?
• New level x added in the path of a

node y for which bf(y) ∈ {-1, 1}

10

2

4

6

9

15

7

11

13

20

18

bf=0

bf=0 bf=0

bf=-1 bf=1 bf=-1 bf=1

AVL Trees: Left-left case (right rotation)

• Let’s take a look at all possible cases
that could violate the AVL balancing
property

• Case #1: left-left

insert(T, 1)

• Node 4 (grandparent of the inserted node)
violates the AVL property

• How to restore it?

• Right Rotation
• Rotation root (rr): node with bf -2 (node 4)
• Rotation pivot: child of rr with bf -1 (node 2)
• rr becomes the right child of the pivot, and

pivot goes where rr was

10

2

4

6

9

15

7

11

13

20

18

bf=-1

bf=-1 bf=0

bf=-2 bf=1 bf=-1 bf=1

1

bf=-1

AVL Trees: Left-left case (right rotation)

10

1

2

6

9

15

7

11

13

20

18

bf=0

bf=0 bf=0

bf=0 bf=1 bf=-1 bf=1

4

• Let’s take a look at all possible cases
that could violate the AVL balancing
property

• Case #1: left-left

insert(T, 1)

• Right Rotation
• Rotation root (rr): node with bf -2 (node 4)

• Rotation pivot: child of rr with bf -1 (node 2)

• rr becomes the right child of the pivot, and
pivot goes where rr was

AVL Trees: Right-right case (left rotation)

• Let’s take a look at all possible cases that
could violate the AVL balancing property

• Case #2: right-right

insert(T, 22)

• Node 18 (grandparent) violates AVL property

• How to restore it?

• Left Rotation
• Rotation root (rr): node with bf 2 (node 22)

• Rotation pivot: child of rr with bf -1 (node 20)

• rr becomes the left child of the pivot, and pivot
goes where rr was

10

2

4

6

9

15

7

11

13

20

18

bf=1

bf=-1 bf=1

bf=-1 bf=1 bf=-1 bf=2

22

bf=1

AVL Trees: Right-right case (left rotation)

• Let’s take a look at all possible cases
that could violate the AVL balancing
property

• Case #2: right-right

insert(T, 22)

• Left Rotation
• Rotation root (rr): node with bf 2 (node 22)

• Rotation pivot: child of rr with bf -1 (node 20)

• rr becomes the left child of the pivot, and
pivot goes where rr was

10

2

4

6

9

15

7

11

13

18

20

bf=0

bf=-1 bf=0

bf=-1 bf=1 bf=-1 bf=0

22

AVL Trees: Right-left case (double rotation)

• Let’s take a look at all possible cases that
could violate the AVL balancing property

• Case #3: right-left

insert(T, 8)

• Node 7 (grandparent) violates AVL property
• How to restore it?

• Double rotation: right then left
• Rotation root (rr): node with bf 2 (node 7)
• Rotation pivot: grandchild of rr (node 8)
• Rotation #1: right rotation

• Pivot’s parent becomes its right child
• Converts this to the right-right case

10

2

4

6

9

15

7

11

13

20

18

bf=-1

bf=-1 bf=0

bf=-1 bf=2 bf=-1 bf=1

8

bf=-1

AVL Trees: Right-left case (double rotation)

10

2

4

6

9

15

7

11

12

20

18

bf=-1

bf=-1 bf=0

bf=-1 bf=2 bf=-1 bf=1

8

bf=-1 bf=-1

10

2

4

6

9

15

7

11

13

20

18

bf=-1

bf=-1 bf=0

bf=-1 bf=2 bf=-1 bf=1

8

bf=-1

This is now the familiar right-right case (Case 2)!
Solution: left rotation around the pivot

AVL Trees: Right-left case (double rotation)

10

2

4

6

9

15

7

11

12

20

18

bf=-1

bf=-1 bf=0

bf=-1 bf=2 bf=-1 bf=1

8
bf=-1 bf=-1

10

2

4

6

7

15

8

11

13

20

18

bf=0

bf=0 bf=0

bf=-1 bf=0 bf=-1 bf=1

9

AVL Trees: Left-right case (double rotation)

• Let’s take a look at all possible cases that
could violate the AVL balancing property

• Case #4: left-right

insert(T, 12)

• Node 13 (grandparent) violates AVL property
• How to restore it?

• Double rotation: left then right
• Rotation root (rr): node with bf 2 (node 13)
• Pivot: grandchild of rr (node 12)
• Rotation #1: left rotation

• Pivots parent becomes its left child
• Converts this to the left-left case

10

2

4

6

9

15

7

11

13

20

18

bf=-1

bf=-1 bf=-1

bf=-1 bf=1 bf=-2 bf=1

12

AVL Trees: Left-right case (double rotation)

10

2

4

6

9

15

7

11

13

20

18

bf=-1

bf=-1 bf=-1

bf=-1 bf=1 bf=-2 bf=1

12

10

2

4

6

9

15

7

11

13

20

18

bf=1

bf=-1 bf=1

bf=-1 bf=1 bf=-2 bf=1

12

This is now the familiar left-left case (Case 1)!
Solution: right rotation around the pivot

AVL Trees: Left-right case (double rotation)

10

2

4

6

9

15

7

11

13

20

18

bf=1

bf=-1 bf=1

bf=-1 bf=1 bf=-2 bf=1

12

10

2

4

6

9

15

7

13

12

20

18

bf=0

bf=-1 bf=0

bf=-1 bf=1 bf=0 bf=1

11

AVL Trees: Overview of All Four Rotations

Image from https://upload.wikimedia.org/wikipedia/commons/c/c4/Tree_Rebalancing.gif

https://upload.wikimedia.org/wikipedia/commons/c/c4/Tree_Rebalancing.gif

Content

• Balanced Binary Search Trees

• AVL Trees
• Insertion

• Deletion

AVL Tree: Deletion

• We want to delete a node x from a binary search tree T
• Three cases: two simple, one more complex

1. Node without children (i.e., leaf node)
• Simply set it’s corresponding parent’s pointer (left or right) to null

2. Node with one child (i.e., only one subtree, left or right)
• „Bypass” the node x to be deleted – set the corresponding parent’s pointer (left or right,

depending on which child x is) to point to x’s only child

• Violation of AVL property ? Only if
(1) x was the left child and its parent y had bf(y) = 1 (before x’s deletion) or
(2) x was the right child and its parent y had bf(y) = -1 (before x’s deletion)

• Solution:
• After deletion of x, its former parent y will have bf either -2 or 2 → y is the rotation root
• Recognize which of 4 cases it is – apply the rotation or double rotation as with insertion

Binary Search Tree: Deletion

• We want to delete a node x from a binary search tree T
• Three cases: two simple, one more complex

3. Node with both children (the trickiest case)

• Find x’s successor y (in x’s right subtree) and place y in
x’s place

• Two subcases, depending on whether y was direct right
child of x or not

• AVL violation in deletion case 3a
• Problem and solution for restoring AVL property the same as for

deletion cases 1 and 2

6

85

...

... ... 9

8

95

...

... ...

Delete 6

Binary Search Tree: Deletion

• Deletion case #3: delete node with two children
• x – being removed, y – the successor

• Subcase 3b: successor is not the right child of x, y ≠ x.right
• y has no left child (being a successor of x)

• y may or may not have the right child

• Solution:
• We replace y with its own right child

• Then we replace x with y

• AVL violation and solution?
• Violation possible for parent of successor of x (or any of

its ancestors)
• We’re effectively deleting the node of the successor(x)

and not the node of x
• If violation → rotation root is the parent of successor of

x (before deletion of x)

Delete 4
succ = 6

(not the right child)

6

4

83

...

...

9

7

7

6

83

...

...

9

...

Exercise

• Write the pseudocode for AVL-insert and AVL-delete

• Do it in a modular fashion
• First implement each of the „rotation cases”

• Single rotation: left-left, right-right,

• Double rotation: right-left, left-right

• Then think of how to recognize each case
• So that you can „call” the correct (single or double) rotation function

• After adjusting the closest node with bf 2 or -2
• Do you need to adjust any other nodes?

Exercise

• After adjusting the closest node with bf 2 or -2
• Do you need to fix the bf of any other nodes (i.e., more than one)?

• Delete 26?

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и

тан
н

я
?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w

ọ
n

ib
e

e
re

?

ค ำถำม?

	Slide 1: Balanced Trees (AVL) Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Dynamic Sets – Operations
	Slide 4: Binary Search Tree: Height/Depth
	Slide 5: Re-Balancing the Binary Search Tree
	Slide 6: Re-Balancing the Binary Search Tree
	Slide 7: Binary Search Tree: Height/Depth
	Slide 8: Self-balancing BSTs
	Slide 9: Content
	Slide 10: AVL Trees
	Slide 11: AVL Trees
	Slide 12: AVL Trees
	Slide 13: AVL Trees: Insertion
	Slide 14: AVL Trees: Insertion
	Slide 15: AVL Trees: Left-left case (right rotation)
	Slide 16: AVL Trees: Left-left case (right rotation)
	Slide 17: AVL Trees: Right-right case (left rotation)
	Slide 18: AVL Trees: Right-right case (left rotation)
	Slide 19: AVL Trees: Right-left case (double rotation)
	Slide 20: AVL Trees: Right-left case (double rotation)
	Slide 21: AVL Trees: Right-left case (double rotation)
	Slide 22: AVL Trees: Left-right case (double rotation)
	Slide 23: AVL Trees: Left-right case (double rotation)
	Slide 24: AVL Trees: Left-right case (double rotation)
	Slide 25: AVL Trees: Overview of All Four Rotations
	Slide 26: Content
	Slide 27: AVL Tree: Deletion
	Slide 28: Binary Search Tree: Deletion
	Slide 29: Binary Search Tree: Deletion
	Slide 30: Exercise
	Slide 31: Exercise
	Slide 32: Questions?

