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Search

Given a dynamic set S and a query value x, SEARCH is the problem of finding out whether 
x ∈ S. It is among the most basic/fundamental problems in CS, and one that needs to be 

solved in almost all more complex problems. Solving it efficiently is thus paramount.  

Search / find value

• Three basic operations for manipulating the content of dynamic sets

1. INSERT – add new element to the dynamic set 
• In general, in no particular order

• Constraints on order or positioning of elements: stacks, queues, heaps, ... 

2. SEARCH – answer the question „is element X in the set”? 

3. DELETE – remove an element from the set
• In general, any element from the set can be removed

• Constraints on order of element removal – stacks, queues, heaps, ...   



Search

Given a dynamic set S and a query value x, SEARCH is the problem of finding out whether 
x ∈ S. It is among the most basic/fundamental problems in CS, and one that needs to be 

solved in almost all more complex problems. Solving it efficiently is thus paramount.  

Search / find value

• Let’s add two more:
• Finding a minimal or maximal value in the set (max/min)

• Finding the closest smaller (predecessor) or larger (successor) value for some x (pred/succ)

• Data structures for dynamic sets that we’ve already examined

1. (unsorted) array

2. (unsorted) linked list

3. hash table

• Some of these basic operations become much easier (faster :) for a sorted array



Insert, Delete, Search, Min/Max, Pred/Succ

Runtime

Data struct. Search Insert Delete*** Min/Max Pred/Succ

Array O(n) O(1) O(n**) O(n) O(n)

Linked List O(n) O(1) O(1) O(n) O(n)

Hash Table O(1*) O(1*) O(1*) not possible not possible

• ***Delete here refers only to the actual deletion of the element once it is found (via Search), 
and the associated steps for maintaining the corresponding data structure

• The complexity of the search operation needed to find the element in the data structure is not included

• **Assuming the elements of the array must always be contiguous in memory

• *Assuming simple uniform hashing and a fixed α =n/m ratio (i.e., re-hashing with a bigger table 
(bigger m) if n increases), maintaining constant average length of collision chains



Insert, Delete, Search, Min/Max, Pred/Succ

Runtime

Data struct. Search Insert Delete Min/Max Pred/Succ*

Array O(n) O(1) O(n) O(n) O(n)

Linked List O(n) O(1) O(1) O(n) O(n)

Hash Table O(1) O(1) O(1) not possible not possible

Sorted Array ? ? ? O(1) O(1)

• What if we had a sorted array?
• What would then be the runtime for each of these operations?

• Assuming that after each operation, the array needs to remain sorted

• *Pred/Succ of some given value x is O(1) only if we assume that finding x (i.e., its 
position in the array, Search) is not part of the Pred/Succ operation
• I.e., we know the position of x
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Sorted array

• Reminder: initial sorting of an unsorted 
array is done in O(n log n) 

• Operations in sorted array (must remain 
sorted afterwards): 
• Insert(A,x)

• Put x to the end of the array and re-sort the 
array? → O(n log n)

• We can do better than that: even if we assume 
(suboptimal) Search as part of Insert

• Q: Running time of the algorithm on the right?

Insert(A, x):

A.Length = A.Length + 1

pos = -1 

for i = 0 to A.Length – 2

if x < A[i] # Q: if ≤ instead?

pos = i

break # exits from (stops) the loop

if pos == -1

A[A.Length - 1] = x

else

prev = A[position]

A[pos] = x

for j = pos+1 to A.Length-2

tmp = prev

prev = A[j]

A[j] = tmp 



Sorted array

• Reminder: initial sorting of an unsorted 
array is done in O(n log n) 

• Operations in sorted array (must remain 
sorted afterwards): 
• Delete(A,x)

• Deleting any element from the sorted array →
the array remains sorted

• But it becomes discontiguous → fix for that

• Q: Running time of the algorithm on the right?

Delete(A, x):

position = -1

for i = 0 to A.Length – 1

if x == A[i] # Q: if ≤ instead?

pos = i

break # exits from (stops) the loop

if pos >= 0

next = A[A.Length – 1]

for j = A.Length – 2 downto pos

tmp = A[j]

A[j] = next

next = tmp

A.Length = A.Length - 1 



Sorted Array: Binary Search

• If the array is sorted, we can Search
for a value in sublinear time
• Think of a divide-and-conquer algorithm 

that could do that?

• Recursion: core principle the same as in 
merge sort

• Divide the array into two and search in 
the subarrays
• Sequentially, the second subarray only 

searched if the element not found in first

binary_search(A, x, p, r):

n = r – p + 1

if n == 1 # recursion stopping condition

if A[p]== x

return p

else

return -1

# Q: why don’t we have „else” here?

if n % 2 == 1 # odd number of elements

q = p + n//2

else # even number of elements

q = p + n/2 – 1

if x <= A[q]

return binary_search(A, x, p, q)

else

return binary_search(A, x, q+1, r)



Binary Search

• Let’s slightly modify our binary search
• We modify the „division” part to be more 

like the division from quick sort than the 
division in merge sort

• Worst case runtime same, but „better 
constants”

• The division in this version of the 
binary_search directly „builds” one 
path of a binary tree top to bottom

binary_search(A, x, p, r):

n = r – p + 1

if n % 2 == 1 # odd number of elements

q = p + n//2

else # even number of elements

q = p + n/2 – 1

if A[q] == x

return q

else 

if n == 1 # recursion stopping condition

return -1

else

if x < A[q]

binary_search(A, x, p, q-1)

else # x > A[q]

return binary_search(A, x, q+1, r)



Binary Search

• The division in this version of the binary_search
effectively „operates” on a binary tree, top to bottom

binary_search(A, x, p, r):

n = r – p + 1

if n % 2 == 1 # odd number of elements

q = p + n//2

else # even number of elements

q = p + n/2 – 1

if A[q] == x

return q

else 

if n == 1 # recursion stopping condition

return -1

else

i = binary_search(A, x, p, q-1)

if i >= 0

return i

else

return binary_search(A, x, q+1, r)

Image taken from ADS slides of Prof. Alexander Wolff



Binary Search

• The division in this version of the binary_search
effectively „operates” on a binary tree, top to bottom

binary_search(A, x, p, r):

n = r – p + 1

if n % 2 == 1 # odd number of elements

q = p + n//2

else # even number of elements

q = p + n/2 – 1

if A[q] == x

return q

else 

if n == 1 # recursion stopping condition

return -1

else

i = binary_search(A, x, p, q-1)

if i >= 0

return i

else

return binary_search(A, x, q+1, r)



Binary Search

• The division in this version of the binary_search
effectively „operates” on a binary tree, top to bottom

binary_search(A, x, p, r):

n = r – p + 1

if n % 2 == 1 # odd number of elements

q = p + n//2

else # even number of elements

q = p + n/2 – 1

if A[q] == x

return q

else if n == 1 # recursion stopping condition

return -1

else if x < A[q]

return binary_search(A, x, p, q-1)

else 

return binary_search(A, x, q+1, r)



Binary Search: Runtime

• Running time of Search implemented via 
binary_search?

• Array A with n elements

• Worst case scenario: x not in A
• binary_searchwill proceed towards one complete 

path (root to leaf) of a binary tree with n nodes

• What is the depth/height of the balanced binary tree 
with n nodes? 

• Worst case runtime of binary search is O(log n)

x = 23 in A?
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Binary Tree

• Recap: static arrays not ideal for (very) dynamic sets
• Frequent memory reallocations are expensive

• Implement flexible binary tree without any fixed-allocated memory
• Something that is for the ADS „binary tree” what linked list is for ADS „list” 

• We need „nodes” with pointers



Binary Tree

Structure/type (or in OOP, Class)
Node:

.key – search/insert/delete – node’s identifier for all operations

.data – arbitrary „satellite” data (not used in any way for tree organization)

.parent – pointer to the parent node

.left – pointer to the left child 

.right – pointer to the right node 



Binary Search Tree

• If we want efficient search – like with sorted array and binary search –
then we have to maintain the binary search property of the tree

• Q: How to process tree elements in sorted order (or create a sorted 
array) in a tree that satisfies the binary search tree property?

For each non-leaf node x of a binary tree the following binary search tree property has to 
be satisfied: (1) for every node y in the left subtree of x: y.key ≤ x.key; and (2) for every 

node y in the right subtree of x: y.key ≥ x.key;

Binary search tree property



Binary Search Tree: Inorder Walk

• Q: How to process tree elements in sorted order (or create a sorted 
array) in a tree that satisfies the binary search tree property?

• With a recursive inorder tree walk
• Variant 1: just prints the keys in sorted order

• Q: What is the runtime of inorder_walk?

inorder_walk(x) # x is instance of type „node”

if x != null # a leaf node would have empty pointers

inorder_walk(x.left)

print(x.key)

inorder_walk(x.right) inorder_walk(T.root)

Calling it on the root



Binary Tree: Inorder Walk

• Q: How to process tree elements in sorted order (or create a sorted 
array) in a tree that satisfies the binary search tree property?

• With a recursive inorder tree walk
• Variant 2: create sorted array from the tree

inorder_walk(x, A) # x is instance of type „node”

if x != null # a leaf node would have empty pointers

inorder_walk(x.left, A)

A.Length = A.Length + 1

A[A.Length - 1] = x.key

inorder_walk(x.right)

inorder_array(T)

A.Size = T.Size

A.Length = 0

inorder_walk(T.root, A)

return A 



Querying a Binary Search Tree

• Let’s revisit our operations

Runtime

Data struct. Search Insert Delete Min/Max Pred/Succ*

Array O(n) O(1) O(n) O(n) O(n)

Linked List O(n) O(1) O(1) O(n) O(n)

Hash Table O(1) O(1) O(1) not possible not possible

Sorted Array O(log n) O(n) O(n) O(1) O(1)

Binary Search Tree ? ? ? ? ?



Binary Search Tree: Search and Min/Max

tree_search(x, k)

if x == null or x.key == k

return x # if null is returned, not found

if k < x.key

return tree_search(x.left, k)

else

return tree_search(x.right, k)

Q: Runtime of search?

Search Min / Max

tree_min(x)

while x.left != null

x = x.left

return x

tree_max(x)

while x.right != null

x = x.right

return x

Q: Runtime of min/max?



Binary Search Tree: Successor

• Assumption: no duplicate values in the 
tree (i.e., in the dynamic set)

• Successor of x = smallest y (y.key) in T
such that y.key > x.key

• Where is the successor of x in the tree
• It is the minimum of its right subtree

• What if x.right is null?



Binary Search Tree: Successor

• Where is the successor of x in the tree
• It is the minimum of its right subtree

• successor(x) if x.key = 6?

• What if x.right is null?
• successor(x) if x.key = 13?

successor(x)

if x.right != null

return tree_min(x.right)

par = x.parent

while par != null and x == par.right

x = par

par = x.parent

return par



Binary Search Tree: Predecessor

• Assumption: no duplicate values in the tree 
(i.e., in the dynamic set)

• Predecessor of x = largest y (y.key) in T such 
that y.key < x.key

• Where is the predecessor of x in the tree?
• It is the maximum of its left subtree
• What if x.left is null?

• Write the pseudocode for finding the 
predecessor of x



Binary Search Tree: Insertion

• Insert a new node x with key k into 
the Tree T; initially:
• x.key = k

• x.left = x.right = null

• x.parent = null

• x needs to be inserted into the 
correct place in the tree
• After insertion, the tree must still 

satisfy the binary search tree property

tree_insert(T, x)

y = T.root

par = y.parent # null

while y != null

par = y

if x.key < y.key

y = y.left

else

y = y.right

if par == null # T was empty

T.root = x

else

x.parent = par

if par.key < x.key

par.right = x

else

par.left = x



Binary Search Tree: Deletion

• We want to delete a node x from a binary search tree T

• Three cases: two simple, one more complex

1. Node without children (i.e., leaf node)
• Simply set it’s corresponding parent’s pointer (left or right) to null

2. Node with one child (i.e., only one subtree, left or right)
• „Bypass” the node x to be deleted – set the corresponding parent’s pointer (left or right, 

depending on which child x is) to point to x’s only child



Binary Search Tree: Deletion

• We want to delete a node x from a binary search tree T

• Three cases: two simple, one more complex

3.   Node with both children (the trickiest case)

• Find x’s successor y (in x’s right subtree) and place y in x’s place

• y surely doesn’t have left children (as it’s the minimum of the x’s right 
subtree), but it may have a right subtree

• x’s left child (subtree) becomes y’s left child (subtree)

• As for the x’s right subtree (y’s right subtree after switch) → two 
subcases, depending on whether y was directly the right child of x or not



Binary Search Tree: Deletion

• Case #1: 
• Delete node with key 4

• Right pointer of node with key 3 becomes null

• Delete node with key 9
• Left pointer of node with key 13 becomes null

• Case #2: 
• Delete node with key 13

• Redirect the right ptr of node with key 7 to point to 
the node with key 9



Binary Search Tree: Deletion

• Case #1: 
• Delete node with no children

• Case #2: 
• Delete node with one child

del_case_1(x)

par = x.parent

if par.left == x

par.left = null

else

par.right = null

del_case_2(x)
# determining which child x has, left or right

child = null

if x.left != null

child = x.left

else

child = x.right 
# placing the child of x where x was

par = x.parent

if par.left == x

par.left = child

else

par.right = child



Binary Search Tree: Deletion

• Case #3: delete node with two children 
• x – being removed, y – the successor

• Subcase 3a:  successor is the right child,      
y = x.right
• y has no left child

• y may or may not have the right child

• Solution: y replaces x, nothing else

6
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Binary Search Tree: Deletion

• Case #3: delete node with two children 
• x – being removed, y – the successor

• Subcase 3a:  successor is the right child,      
y = x.right
• y has no left child

• y may or may not have the right child

• Solution: y replaces x, nothing else

del_case_3a(x)

par = x.parent

if par.left == x

par.left = x.right

else

par.right = x.right



Binary Search Tree: Deletion

• Case #3: delete node with two children 
• x – being removed, y – the successor

• Subcase 3b:  successor is not the right child 
of x, y ≠ x.right
• Regardless, y has no left child (being a succ of x)
• y may or may not have the right child

• Solution: 
• We replace y with its own right child
• Then we replace x with y

Delete 4
succ = 6

(not the right child)

6

4
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Binary Search Tree: Deletion

• Case #3: delete node with two children 
• x – being removed, y – the successor

• Subcase 3b:  successor is not the right child 
of x, y ≠ x.right
• Regardless, y has no left child (being a succ of x)
• y may or may not have the right child

• Solution: 
• We replace y with its own right child
• y has only one child → bypass it → del_case_2(y)

• Then we replace x with y

del_case_3b(x,y)

# first bypass y 

del_case_2(y)

par = x.parent

y.parent = par

if par.left == x

par.left = y

else

par.right = y

y.left = x.left 

y.right = x.right 



Binary Search Tree: Deletion

• Putting all cases together 
(modular algorithm design)

num_kids(x)

if x.left != null and x.right != null

return 2

elif x.left != null or x.right != null

return 1

else

return 0

delete(x):

n = num_kids(x)

if n == 0

del_case_1(x)

elif n == 1

del_case_2(x)

else 

y = successor(x)

if y == x.right

del_case_3a(x)

else

del_case_3b(x, y)



Querying a Binary Search Tree

• Let’s revisit our operations

Runtime

Data struct. Search Insert Delete Min/Max Pred/Succ*

Array O(n) O(1) O(n) O(n) O(n)

Linked List O(n) O(1) O(1) O(n) O(n)

Hash Table O(1) O(1) O(1) not possible not possible

Sorted Array O(log n) O(n) O(n) O(1) O(1)

Binary Search Tree O(h) = O(log n) O(h) O(h)* O(h) O(h)

*Delete here assumes that we start from the T.root and first have to find the element x in order to 
delete it (it may not be in the tree at all). Deletion itself, if/when x is found, has time complexity O(1)



Dynamic set operations – discussion

• Q: The most appropriate ADS for handling dynamic sets?

• Depends for which algorithm and which operations on dynamic sets 
need to be supported

• Associate array: 
• Best: if we need only to store values and efficiently retrieve them

• Not appropriate: if we need to capture relations between elements:
• Compute aggregates (e.g., average, max, min)

• Find elements „close to” other elements (e.g., successor)

• Unless we resort to locality-sensitive hashing (LSH)



Dynamic set operations – discussion

• Q: The most appropriate ADS for handling dynamic sets?

• Depends for which algorithm and which operations on dynamic sets 
need to be supported

• Binary search tree: 
• Best: if we need to actively maintain the dynamic set and search in it

• We need fast search – faster than with lists/arrays  

• But also support for operations that require capturing relations between elements
• Which associative arrays cannot capture



Trees vs. HashMaps: Example

• In Information Retrieval (IR)
• Work with large text collections

• Need to store all words that appear in any of the documents in the collection

• Retrieval: find documents in which words from the query appear

• Large document collections: e.g., >10.000 differents words

• Adequate data structure?
• Associative Array (dictionary, hash map): if we expect the words to appear in 

the same „form” in the query as in the documents

• What if the query has a misspelled word, e.g., „algoirthm”?
• Would like „algoirthm” to be stored somewhere close to „algorithm” → tree



Binary Search Tree: Height/Depth

• The complexity of all operations on the 
BST is O(h)

• If the BST is balanced h ≈ log2n 

• Frequent insertions and deletions can 
disturb the balance of the tree 

• The height/depth drastically increases
• Extreme: BST reduced to a linked list

• Search efficiency gains lost

• Need to re-balance the tree. Q: How?

4
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Insert(10)

Insert(12)

Insert(14)

Delete(3)

8

10

12
14



Binary Search Tree: Height/Depth

• How do we balance out an unbalanced binary search tree?

1. Construct the sorted array from the BST – O(n)

2. Build a new BST from the sorted array (recursively) – O(n)

If n is large, re-balancing this way is expensive and cannot be done frequently

• How to maintain balanced BSTs?
• AVL trees

• Red-black trees
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