

CAIDAS WÜNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Binary Search Tree Prof. Dr. Goran Glavaš

16.11.2023

- Recap & Analysis: Dynamic sets and operations
- Binary Search
- Binary Search Tree

Search

Search / find value

Given a dynamic set S and a query value x, SEARCH is the problem of finding out whether x ∈ S. It is among the most basic/fundamental problems in CS, and one that needs to be solved in almost all more complex problems. Solving it <u>efficiently</u> is thus paramount.

• Three basic operations for manipulating the content of dynamic sets

1. INSERT – add new element to the dynamic set

- In general, in no particular order
- Constraints on order or positioning of elements: stacks, queues, heaps, ...
- **2. SEARCH** answer the question "is element X in the set"?
- **3. DELETE –** remove an element from the set
 - In general, any element from the set can be removed
 - Constraints on order of element removal stacks, queues, heaps, ...

Search

Search / find value

Given a dynamic set S and a query value x, SEARCH is the problem of finding out whether x ∈ S. It is among the most basic/fundamental problems in CS, and one that needs to be solved in almost all more complex problems. Solving it efficiently is thus paramount.

- Let's add two more:
 - Finding a minimal or maximal value in the set (max/min)
 - Finding the closest smaller (predecessor) or larger (successor) value for some x (pred/succ)
- Data structures for dynamic sets that we've already examined
 - 1. (unsorted) array
 - 2. (unsorted) linked list
 - 3. hash table
- Some of these basic operations become much easier (faster :) for a sorted array

Insert, Delete, Search, Min/Max, Pred/Succ

	Runtime				
Data struct.	Search	Insert	Delete***	Min/Max	Pred/Succ
Array					
Linked List					
Hash Table					

- ***Delete here refers only to the actual deletion of the element once it is found (via Search), and the associated steps for maintaining the corresponding data structure
 - The complexity of the search operation needed to find the element in the data structure is not included
- **Assuming the elements of the array must always be contiguous in memory
- *Assuming simple uniform hashing and a fixed α =n/m ratio (i.e., re-hashing with a bigger table (bigger m) if n increases), maintaining constant average length of collision chains

Insert, Delete, Search, Min/Max, Pred/Succ

	Runtime				
Data struct.	Search	Insert	Delete	Min/Max	Pred/Succ*
Array	O(n)	O(1)	O(n)	O(n)	O(n)
Linked List	O(n)	O(1)	O(1)	O(n)	O(n)
Hash Table	O(1)	O(1)	O(1)	not possible	not possible
Sorted Array	?	?	?	O(1)	O(1)

What if we had a sorted array?

- What would then be the runtime for each of these operations?
- Assuming that after each operation, the array needs to remain sorted
- *Pred/Succ of some given value x is O(1) only if we assume that finding x (i.e., its position in the array, Search) is not part of the Pred/Succ operation
 - I.e., we know the position of x

- Recap & Analysis: Dynamic sets and operations
- Binary Search
- Binary Search Tree

Sorted array

- **Reminder**: initial sorting of an unsorted array is done in **O(n log n)**
- Operations in sorted array (must remain sorted afterwards):
 - Insert(A,x)
 - Put x to the end of the array and re-sort the array? → O(n log n)
 - We can do better than that: even if we assume (suboptimal) Search as part of Insert
 - **Q:** Running time of the algorithm on the right?

```
Insert(A, x):
  A.Length = A.Length + 1
  pos = -1
  for i = 0 to A.Length - 2
     if x < A[i] # Q: if \leq instead?
     pos = i
     break # exits from (stops) the loop
  if pos == -1
    A[A.Length - 1] = x
  else
    prev = A[position]
    A[pos] = x
    for j = pos+1 to A.Length-2
       tmp = prev
       prev = A[j]
       A[j] = tmp
```

Sorted array

- **Reminder**: initial sorting of an unsorted array is done in **O(n log n)**
- Operations in sorted array (must remain sorted afterwards):
 - Delete(A,x)
 - Deleting any element from the sorted array → the array remains sorted
 - But it becomes discontiguous \rightarrow fix for that
 - Q: Running time of the algorithm on the right?

```
Delete(A, x):
  position = -1
  for i = 0 to A.Length - 1
    if x == A[i] # q: if \leq instead?
    pos = i
    break # exits from (stops) the loop
  if pos >= 0
    next = A[A.Length - 1]
    for j = A.Length - 2 downto pos
       tmp = A[\dot{j}]
       A[\dagger] = next
       next = tmp
    A.Length = A.Length -1
```

Sorted Array: Binary Search

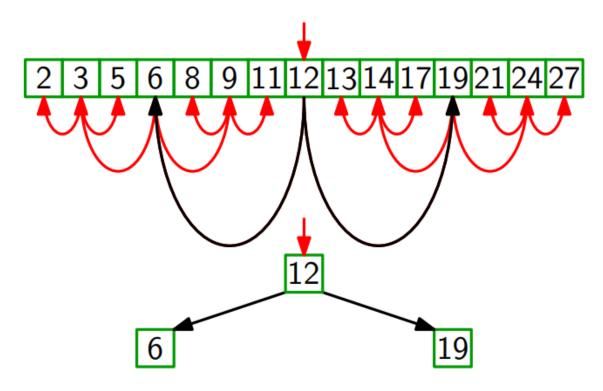
- If the array is **sorted**, we can Search for a value in **sublinear** time
 - Think of a divide-and-conquer algorithm that could do that?
 - Recursion: core principle the same as in merge sort
 - Divide the array into two and search in the subarrays
 - Sequentially, the second subarray only searched if the element not found in first

```
binary search(A, x, p, r):
   n = r - p + 1
   if n == 1 # recursion stopping condition
     if A[p] == x
       return p
     else
       return -1
   # Q: why don't we have "else" here?
   if n % 2 == 1 # odd number of elements
     q = p + n/2
   else # even number of elements
     q = p + n/2 - 1
   if x \ll A[q]
     return binary search(A, x, p, q)
   else
     return binary search(A, x, q+1, r)
```

- Let's *slightly* modify our binary search
 - We modify the "division" part to be more like the division from quick sort than the division in merge sort
 - Worst case runtime same, but "better constants"
 - The division in this version of the binary_search directly "builds" one path of a binary tree top to bottom

```
binary search (A, x, p, r):
   n = r - p + 1
   if n % 2 == 1 # odd number of elements
     q = p + n/2
   else # even number of elements
     q = p + n/2 - 1
   if A[q] == x
     return q
   else
     if n == 1 # recursion stopping condition
       return -1
     else
       if x < A[q]
         binary search(A, x, p, q-1)
       else \# x > A[q]
         return binary search(A, x, q+1, r)
```

• The division in this version of the binary_search effectively "operates" on a binary tree, top to bottom

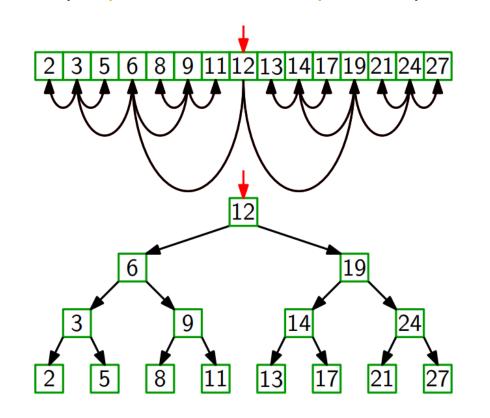


binary search(A, x, p, r): n = r - p + 1**if** n % 2 == 1 # odd number of elements q = p + n/2else # even number of elements q = p + n/2 - 1if A[q] == xreturn q else if n == 1 # recursion stopping condition return -1 else i = binary_search(A, x, p, q-1) if i >= 0return i else return binary_search(A, x, q+1, r)

• The division in this version of the binary search effectively "operates" on a binary tree, top to bottom 213141719212427 8 9 11 1 5 6 6 9 3

```
binary search(A, x, p, r):
   n = r - p + 1
   if n % 2 == 1 # odd number of elements
     q = p + n/2
   else # even number of elements
     q = p + n/2 - 1
   if A[q] == x
     return q
   else
     if n == 1 # recursion stopping condition
       return -1
     else
       i = binary_search(A, x, p, q-1)
       if i >= 0
         return i
       else
         return binary_search(A, x, q+1, r)
```

• The division in this version of the binary_search effectively "operates" on a binary tree, top to bottom



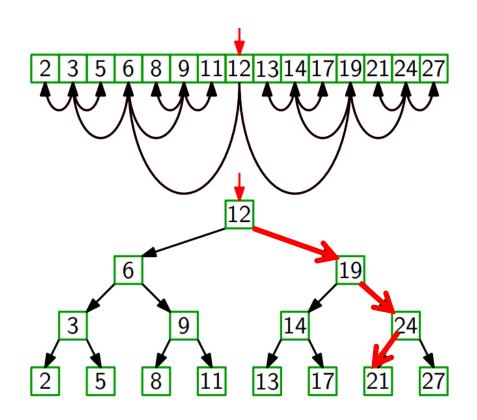
binary_search(A, x, p, r): n = r - p + 1 if n % 2 == 1 # odd number of elements q = p + n//2 else # even number of elements q = p + n/2 - 1

if A[q] == x
 return q
else if n == 1 # recursion stopping condition
 return -1
else if x < A[q]
 return binary_search(A, x, p, q-1)
else
 return binary_search(A, x, q+1, r)</pre>

Binary Search: Runtime

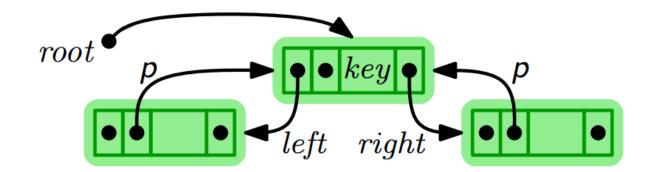
- Running time of Search implemented via binary search?
 - Array A with n elements
- Worst case scenario: x not in A
 - binary_search will proceed towards one complete path (root to leaf) of a binary tree with n nodes
 - What is the depth/height of the **balanced** binary tree with n nodes?
 - Worst case runtime of binary search is **O(log n)**

x = **23** in A?



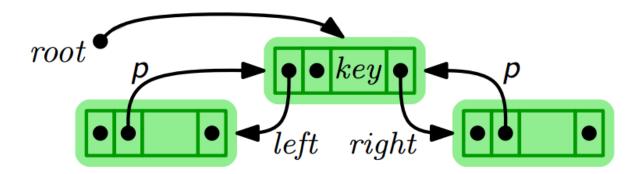
- Recap & Analysis: Dynamic sets and operations
- Binary Search
- Binary Search Tree

- Recap: static arrays not ideal for (very) dynamic sets
 - Frequent memory reallocations are expensive
- Implement flexible **binary tree** without any fixed-allocated memory
 - Something that is for the ADS "binary tree" what linked list is for ADS "list"
 - We need "nodes" with pointers



Structure/type (or in OOP, Class) Node:

- . key search/insert/delete node's identifier for all operations
- .data arbitrary "satellite" data (not used in any way for tree organization)
- .parent pointer to the parent node
- .left pointer to the left child
- .right pointer to the right node



 If we want efficient search – like with sorted array and binary search – then we have to maintain the **binary search property** of the tree

Binary search tree property

For each non-leaf node x of a binary tree the following **binary search tree property** has to be satisfied: (1) for every node y in the left subtree of x: y.key ≤ x.key; and (2) for every node y in the right subtree of x: y.key ≥ x.key;

• Q: How to process tree elements in sorted order (or create a sorted array) in a tree that satisfies the binary search tree property?

Binary Search Tree: Inorder Walk

- Q: How to process tree elements in sorted order (or create a sorted array) in a tree that satisfies the binary search tree property?
- With a recursive inorder tree walk
 - Variant 1: just prints the keys in sorted order

```
inorder_walk(x) # x is instance of type "node"
if x != null # a leaf node would have empty pointers
    inorder_walk(x.left)
    print(x.key)
    inorder_walk(x.right)
```

Calling it on the root inorder_walk(T.root)

• Q: What is the runtime of inorder_walk?

- Q: How to process tree elements in sorted order (or create a sorted array) in a tree that satisfies the binary search tree property?
- With a recursive inorder tree walk
 - Variant 2: create sorted array from the tree

```
inorder_walk(x, A) # x is instance of type "node"
if x != null # a leaf node would have empty pointers
inorder_walk(x.left, A)
A.Length = A.Length + 1
A[A.Length - 1] = x.key
inorder walk(x.right)
```

```
inorder_array(T)
A.Size = T.Size
A.Length = 0
inorder_walk(T.root, A)
return A
```

Querying a Binary Search Tree

• Let's revisit our operations

	Runtime				
Data struct.	Search	Insert	Delete	Min/Max	Pred/Succ*
Array	O(n)	O(1)	O(n)	O(n)	O(n)
Linked List	O(n)	O(1)	O(1)	O(n)	O(n)
Hash Table	O(1)	O(1)	O(1)	not possible	not possible
Sorted Array	O(log n)	O(n)	O(n)	O(1)	O(1)
Binary Search Tree	?	?	?	?	?

Binary Search Tree: Search and Min/Max

Search

tree_search(x, k)
if x == null or x.key == k
return x # if null is returned, not found

if k < x.key return tree_search(x.left, k) else return tree_search(x.right, k)</pre>

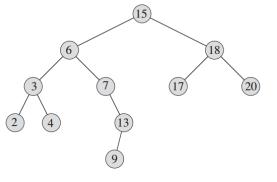
Q: Runtime of search?

Min / Max

tree_min(x)
while x.left != null
 x = x.left
return x

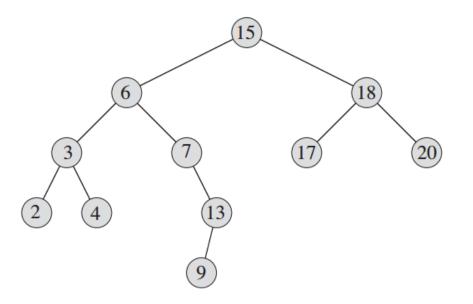
tree_max(x)
while x.right != null
x = x.right
return x

Q: Runtime of min/max?



Binary Search Tree: Successor

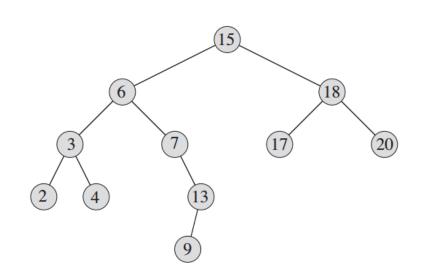
- Assumption: no duplicate values in the tree (i.e., in the dynamic set)
- Successor of x = smallest y (y.key) in T such that y.key > x.key
- Where is the **successor** of **x** in the tree
 - It is the **minimum of its right subtree**
 - What if **x**.**right** is **null**?



Binary Search Tree: Successor

• Where is the **successor** of **x** in the tree

- It is the **minimum of its right subtree**
 - successor(x) if x.key = 6?
- What if **x**.**right** is **null**?
 - successor(x) if x.key = 13?

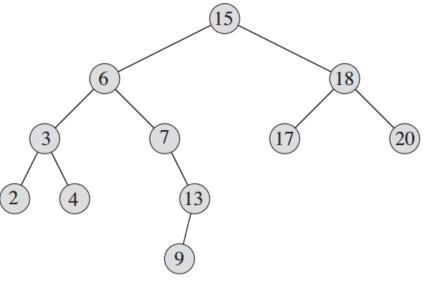


```
successor(x)
if x.right != null
    return tree_min(x.right)

par = x.parent
while par != null and x == par.right
    x = par
    par = x.parent
return par
```

Binary Search Tree: Predecessor

- Assumption: no duplicate values in the tree (i.e., in the dynamic set)
- Predecessor of x = largest y (y.key) in T such that y.key < x.key
- Where is the **predecessor** of **x** in the tree?
 - It is the **maximum** of its left subtree
 - What if x.left is null?
- Write the **pseudocode** for finding the predecessor of x



Binary Search Tree: Insertion

- Insert a new node x with key k into the Tree T; initially:
 - $x \cdot key = k$
 - x.left = x.right = **null**
 - x.parent = **null**
- x needs to be inserted into the correct place in the tree
 - After insertion, the tree must still satisfy the binary search tree property

```
tree_insert(T, x)
y = T.root
par = y.parent # null
```

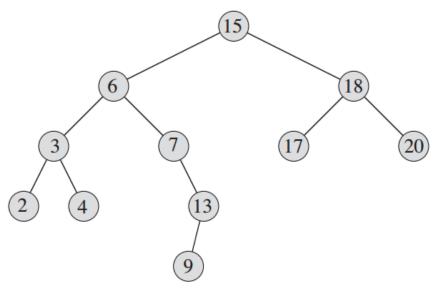
```
while y != null
  par = y
  if x.key < y.key</pre>
    y = y.left
  else
    y = y.right
if par == null # T was empty
 T.root = x
else
  x.parent = par
  if par.key < x.key</pre>
     par.right = x
  else
     par.left = x
```

- We want to delete a node x from a binary search tree T
- Three cases: two simple, one more complex
 - **1.** Node without children (i.e., leaf node)
 - Simply set it's corresponding parent's pointer (left or right) to **null**
 - 2. Node with one child (i.e., only one subtree, left or right)
 - "Bypass" the node x to be deleted set the corresponding parent's pointer (left or right, depending on which child x is) to point to x's only child

- We want to delete a node x from a binary search tree T
- Three cases: two simple, one more complex
 - **3.** Node with both children (the trickiest case)
 - Find x's successor y (in x's right subtree) and place y in x's place
 - y surely doesn't have left children (as it's the minimum of the x's right subtree), but it may have a right subtree
 - x's left child (subtree) becomes y's left child (subtree)
 - As for the x's right subtree (y's right subtree after switch) → two subcases, depending on whether y was directly the right child of x or not

• Case #1:

- Delete node with key 4
 - Right pointer of node with key 3 becomes **null**
- Delete node with key 9
 - Left pointer of node with key 13 becomes null



• Case #2:

- Delete node with key 13
 - Redirect the right ptr of node with key 7 to point to the node with key 9

• Case #1:

• Delete node with no children

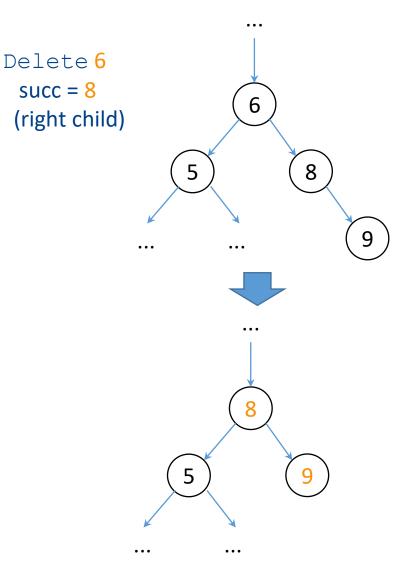
```
• Case #2:
```

• Delete node with one child

```
del_case_1(x)
  par = x.parent
  if par.left == x
    par.left = null
  else
    par.right = null
```

```
del_case_2(x)
# determining which child x has, left or right
child = null
if x.left != null
child = x.left
else
child = x.right
# placing the child of x where x was
par = x.parent
if par.left == x
par.left = child
else
par.right = child
```

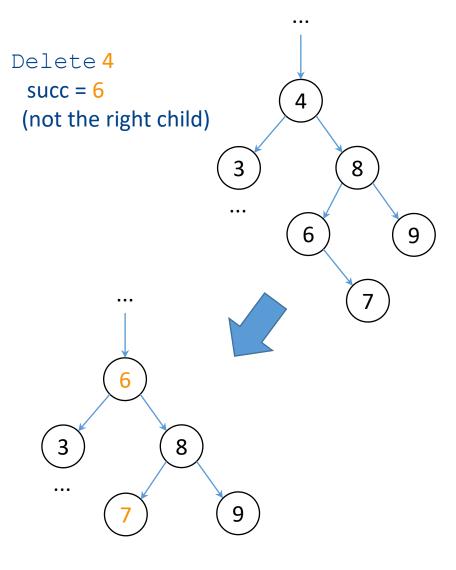
- Case #3: delete node with two children
 - x being removed, y the successor
- Subcase 3a: successor is the right child, y = x.right
 - y has no left child
 - y may or may not have the right child
 - **Solution**: y replaces x, nothing else



- Case #3: delete node with two children
 - x being removed, y the successor
- Subcase 3a: successor is the right child, y = x.right
 - y has no left child
 - y may or may not have the right child
 - **Solution**: y replaces x, nothing else

```
del_case_3a(x)
  par = x.parent
  if par.left == x
    par.left = x.right
  else
    par.right = x.right
```

- Case #3: delete node with two children
 - x being removed, y the successor
- Subcase 3b: successor is not the right child of x, y ≠ x.right
 - Regardless, y has no left child (being a succ of x)
 - y may or may not have the right child
 - Solution:
 - We replace y with its own right child
 - Then we replace **x** with **y**



- Case #3: delete node with two children
 - x being removed, y the successor
- Subcase 3b: successor is not the right child of x, y ≠ x.right
 - Regardless, y has no left child (being a succ of x)
 - y may or may not have the right child
 - Solution:
 - We replace y with its own right child
 - y has only one child → bypass it → del_case_2(y)
 - Then we replace x with y

```
del_case_3b(x,y)
    # first bypass y
    del_case_2(y)
```

```
par = x.parent
y.parent = par
if par.left == x
    par.left = y
else
    par.right = y
y.left = x.left
y.right = x.right
```

 Putting all cases together (modular algorithm design)

```
num_kids(x)
if x.left != null and x.right != null
return 2
elif x.left != null or x.right != null
return 1
else
return 0
```

```
delete(x):
    n = num_kids(x)
    if n == 0
        del_case_1(x)
    elif n == 1
        del_case_2(x)
    else
        y = successor(x)
        if y == x.right
        del_case_3a(x)
        else
        del_case_3b(x, y)
```

Querying a Binary Search Tree

• Let's revisit our operations

	Runtime				
Data struct.	Search	Insert	Delete	Min/Max	Pred/Succ*
Array	O(n)	O(1)	O(n)	O(n)	O(n)
Linked List	O(n)	O(1)	O(1)	O(n)	O(n)
Hash Table	O(1)	O(1)	O(1)	not possible	not possible
Sorted Array	O(log n)	O(n)	O(n)	O(1)	O(1)
Binary Search Tree	O(h) = O(log n)	O(h)	O(h)*	O(h)	O(h)

*Delete here assumes that we start from the T.root and first have to find the element x in order to delete it (it may not be in the tree at all). Deletion itself, if/when x is found, has time complexity O(1)

Dynamic set operations – discussion

- Q: The most appropriate ADS for handling dynamic sets?
- Depends for which algorithm and which operations on dynamic sets need to be supported
- Associate array:
 - Best: if we need only to store values and efficiently retrieve them
 - Not appropriate: if we need to capture relations between elements:
 - Compute aggregates (e.g., average, max, min)
 - Find elements "close to" other elements (e.g., successor)
 - Unless we resort to locality-sensitive hashing (LSH)

Dynamic set operations – discussion

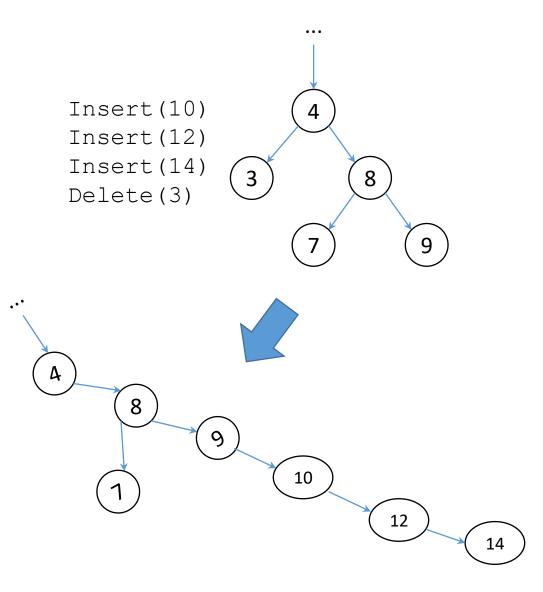
- Q: The most appropriate ADS for handling dynamic sets?
- Depends for which algorithm and which operations on dynamic sets need to be supported
- Binary search tree:
 - Best: if we need to actively maintain the dynamic set and search in it
 - We need fast search faster than with lists/arrays
 - But also support for operations that require capturing relations between elements
 - Which associative arrays cannot capture

Trees vs. HashMaps: Example

- In Information Retrieval (IR)
 - Work with large text collections
 - Need to store all words that appear in any of the documents in the collection
 - Retrieval: find documents in which words from the query appear
 - Large document collections: e.g., >10.000 differents words
- Adequate data structure?
 - Associative Array (dictionary, hash map): if we expect the words to appear in the same "form" in the query as in the documents
 - What if the query has a misspelled word, e.g., *"algoirthm"*?
 - Would like *"algoirthm"* to be stored somewhere close to *"algorithm"* → tree

Binary Search Tree: Height/Depth

- The complexity of all operations on the BST is O(h)
- If the BST is **balanced** $h \approx \log_2 n$
- Frequent insertions and deletions can disturb the balance of the tree
- The height/depth drastically increases
 - Extreme: BST reduced to a linked list
 - Search efficiency gains lost
 - Need to **re-balance** the tree. **Q:** How?



Binary Search Tree: Height/Depth

• How do we **balance out** an unbalanced **binary search tree**?

- 1. Construct the sorted array from the BST **O(n)**
- 2. Build a new BST from the sorted array (recursively) O(n)

If n is large, re-balancing this way is expensive and cannot be done frequently

- How to maintain balanced BSTs?
 - AVL trees
 - Red-black trees

Questions?

