[l CAIDAS WiNLP

ALGORITHMS IN Al & DATA SCIENCE 1 (AKIDS 1)

Hashing

Prof. Dr. Goran Glavas

13.11.2023

Content

* ADS: Associative Array
* Hash Table
* Hash Functions

Dynamic sets

* We go back to our dynamic sets
* We need to store a set of data points (simple data types or complex ones)

* We've already seen several ADS that can store dynamic sets
* List
* Stack
* Queue
* Priority Queue (Heap)

* From these, only list has no constraints on insertion into and removal
of elements from the dynamic set

Dynamic sets

* In many applications/algorothms we need only three basic operations
for manipulating the content of dynamic sets

1. INSERT — add new element to the dynamic set
* In general, in no particular order
* Constraints on positioning of elements: stacks, queues, heaps, search trees...

2. SEARCH = answer the question ,,is element X in the set”?

3. DELETE = remove an element from the set
* In general, any element from the set can be removed
e Constraints on (order of) element removal — stacks, queues, heaps, search trees...

Recap — Lists: Arrays vs. Linked Lists

* ADT: List — a linear sequence of elements

 When we design algorithms, we typically think in terms of ADTs

e Linked List

* Consists of nodes: nodes contain both the data (values) and a pointer to the
next node in the list

* Nodes can contain values of different types

* Dynamic data structure: ,resizable” at run time

* Non-contiguous memory allocation possible, space for new nodes can be allocated
dynamically (on ,per-need” basis)

ad\d ress 1

(instance of) string int (instance of) tuple (int, string)
class Rectangle ,Berlin” 223 class Circle (1,,Glasgow”)
address K addre% 3 addre§4 address\S null
dd 1 address 2 ddress 3 dd 4
\/ya ress edd address \a/rsss \ﬁdress 5

Dynamic Set with List

* Dynamic set operations: INSERT, DELETE, SEARCH

* List implemented as a (bidirectional) linked list:

R))

null //prev //prev

data ‘o data o data
nex nex next—"]
___/ ___/ ___/

e Runtimes (in Big-O notation):

e INSERT (assuming no constraints on where the element is to be inserted)?

* SEARCH?

* DELETE (assuming no constraints on where the element is to be inserted)?

L—"prev

/

data 1

null

end

Abstract Data Types

Abstract Data Type Other Common Names Commonly implemented as

List Sequence Array, Linked List

Queue Array, Linked List
Double-ended Queue Dequeue, Deque Array, Doubly-linked List
Stack Array, Linked List
Associative Array Dictionary, Hash Map, Map Hash Table

Set Red-black Tree or Hash Table

Priority Queue Heap Heap

Associative Array

p

An ADS for representing dynamic sets containing (key, value) pairs such that each key is
unigue in the array. Associative array, also known as Dictionary or Map, supports direct
addressing: computation of memory location of value directly from the key.

_ J

* Isn’t a regular array associative by default?
* key = index of the array at which we find the element
e Given the key (i.e., index), we can compute the memory address of the value

~*primes[4] = 32————————”’///’ﬂ_————_—*

int x = primes|[0]

Associative Array

p

An ADS for representing dynamic sets containing (key, value) pairs such that each key is
unigue in the array. Associative array, also known as Dictionary or Map, supports direct
addressing: computation of memory location of value directly from the key.

_ J

* Isn’t a regular array (aka direct-access table) associative by default?
* key = index of the array at which | find the element

 What if we need to store a very large number of elements?
 Memory reservation for every possible key = large memory occupance

* What if the the space/universe of keys is virtually unlimited?
* E.g., any string?

Associative Array

r

_

An ADS for representing dynamic sets containing (key, value) pairs such that each key is
unigue in the array. Associative array, also known as Dictionary or Map, supports direct
addressing: computation of memory location of value directly from the key.

J

Let S be the set (possibly infinite) of all allowed keys
e Defined commonly with some primitive data type: int, string, float
* This basically means that key can be any value of the primitive type

Let K be the set of keys we would have in any concrete dynamic set
* In most practical problems, K << | S|

 If we would implement the dynamic set as the direct-access table (i.e., array),

we’d have to allocate |S| slots in the memory and only K would be ,used”
* Waste of memory

Content

* ADS: Associative Array
e Hash Table
e Hash Functions

Hash table

r

\

Hash table is a data structure (tightly coupled with a corresponding hash function) used
for implementing runtime and memory efficient associative arrays.

Hash table

J

Direct-access tables store the element with key k at index k

Hash tables store the element with key k at index h(k)

h(k) is the hash(ing) function that computes the array index at which to
store/find the element’s value v directly from its key k

Assuming a table (array) T of size m elements, 1 maps the universe of keys S to

indices of the array
h:S—->{0, 1, ..., m-1}

Hash table

 Direct-access tables would need |S|
elements

0

* Because of the hashing (i.e., mapping)
function h, Hash table T can have m ZE?;
4

<< |S| elements

. h(ky) = h(ks)
e Hashing reduces the range of the v

indices, i.e., the size of the array
* Memory (space saving)

h(ks)

m—1

* Caveat: what if two keys , hash” to the Image source: Cormen et al.
same value? h(k,) = h(k:)

* Q: How likely is that to happen? What
does it depend on?

Collisions and hash functions

* Collision: when two (or more) keys get the same hash, h(k,) = h(k,)

* The frequency of collisions depends on
(1) The size m of the table (array) T
(2) The properties of the hashing function h
(3) The concrete set of keys to be hashed, K= {k,, k,, ..., k.}

* Obviously, we want to avoid or at least minimize collisions

* We typically have no control over (3), some control over (1), and only
full control over (2): the selection/design of the hash function

Collisions and hash functions

e Crucial: hash functions must be deterministic. What does that mean?

* We typically have no control over the set of keys K for which the
values need to be stored in the hash table
* Because of this, we cannot guarantee the absence of collisions
* We can reduce the probability of collisions. How?

o If m (size of T) 2 |K]| it is theoretically possible to store all allowed keys
without collision

* Problem: we don’t actually know K in advance, we know only S (the universe of all
possible/allowed keys)

Collisions and hash functions

* We typically have no control over the set of keys K for which the
values need to be stored in the hash table

e Because of this, we cannot guarantee the absence of collisions

* Q1:If m (size of T) < |K| what is the minimal possible number of collisions?

* Q2: If keys in K are integers {0, 1, 2, ..., |K|-1} and the size of the hash table T
is m < |K|, find a hash h that guarantees this minimal number of collisions?

e Since we cannot guarantee no collisions, how do we handle them?

Collision resolution by chaining

e At each hash slot (index in {0, ..., m-1}, aka bucket) we put a pointer
to the beginning of a linked list

* Slot/bucket / € {0, ..., m-1} contains a pointer to the head of the
linked list of all stored elements whose keys hash to i
* |f no keys have been hashed to /, the pointer is null

Y

.
F o

/ k5 - kZ

—/ k| /|
Tl S C TRl

Image source: Cormen et al.

Y

A
e
AN

Collision resolution by chaining

Image source: Cormen et al.

k| T k7]

k| T | T2 |/

k| T K|/

e Let x be a set element with key x.key and
value x.value

* x.next the pointer to the next element in the
collision chain of the slot

 Let T be the hash table with collision
resolution by chaining

* INSERT: add to the beginning of the chain

Insert (T, x):
pointer = T[h(x.key)]
x.next = polnter
pointer = address (x)

Q1: Worst case running time?
02: What if x already in the list?

Collision resolution by chaining

Image source: Cormen et al.

k| T k7]

k| T | T2 |/

k| T K|/

e Let x be a set element with key x.key and
value x.value

* x.next the pointer to the next element in the
collision chain of the slot

* Let T be the hash table with chaining
resolution of collisions

* SEARCH: find in the linked list of the chain

Search (T, key):
pointer = T[h(key)]
while pointer != null
x = read memory (pointer)
if x.key == key
return x # or x.value
else

pointer = x.next
return null

Q: Worst case running time?

Collision resolution by chaining

Image source: Cormen et al.

k| T k7]

k| T | T2 |/

k| T K|/

Delete (T, kevy):
e Let x be a set element with key x.key and pointer = T[h(key)]
value x.value while pointer != null
* x.next the pointer to the next element in the x = read_memory (pointer)
collision chain of the slot if x.key == key
e Let T be the hash table with chaining G e
resolution of collisions spointer = x.next
return Q: Worst case
else running time?

* DELETE: find in the linked list of the chain pointer = x.next

Collision resolution by chaining

* Runtimes for hash tables with chaining

* Load factor: 0. = |K| / m
* The average number of elements chained in linked lists (chains)
* Runtime analysis in terms of O

* What is the worst case for hashing with chaining?

* A hash function h that would map all n = | K| keys into the same hash slot
e Searchand Delete: O(n)
e ITnsert isalways O(1)

Collision resolution by chaining

* Runtimes for hash tables with chaining

* Load factor: o = |K| / m
* The average number of elements chained in linked lists (chains)
* Runtime analysis in terms of o

* What is the average case for hashing with chaining?
* Depends on how well the hashing function h distributes keys across the m
hash slots/buckets

* Assumption: simple uniform hashing
* h equally likely to map a key to any of the m buckets
e Buckets will have roughly the same number of elements: «
 Runtime of Search (and Delete)is O(a)

Content

* ADS: Associative Array
e Hash Table
 Hash Functions

Hash functions

 What would be a good hash function h?
 One that creates the minimal number of collisions

* |f it satisfies the assumption of simple uniform hashing (SUH), it will create
a small number of collisions

* Keys are equally likely to be hashed into any of the m buckets, independently of
where the other keys have been hashed

* As if you were randomly drawing a bucket for every key
* Though we cannot do that, as this is not deterministic

 If SUH, then we can always reduce the runtime (of Search) by increasing m: for
large enough m (trading space for time), O(1)

* Unfortunately, no easy way to prove/check if some h results with SUH
* |t also depends on the actual keys being hashed

Designing hash functions

* Heuristic design
e Kind of ,trial and error” — we create h that ,makes intuitive sense”

* Then we test it on various key sets K to see whether it roughly exhibits the
SUH property — that all bucket chains are similarly long, roughly o =|K|/m

* Most hashing functions assume integer keys
e Other types (e.g., f1oat, st ring) are converted to (natural) integers first

 Fora string, let’sassume a charset of N characters (e.g., N = 128)
e Each character corresponds to one integer between 0 and 127
¢ ,C,C,C" ->128%*c, + 128%*c, + ¢,

Hash function: division method

* Hash is the remainder of the division of the key with the size of the
array m: h(key) = key % m

* |t is common to avoid certain values of m, as this can violate the
assumption of simple uniform hashing
* Or make the violation more likely for arbitrary key sets

* For example, we avoid m = 2P because the value h(key) = key % 2P depends
only on the lowest p bits of the key

-2 this puts all keys with the same lowest p bits into the same bucket

* Good choice for m: a prime number not too close to any power of 2

* Example: 3000 keys, and we’d be ok with average chains of length o = 4
—> Good m would be 751 or 757

Hash function: multiplication method

* Simple heuristic hashing like division, but choice of m less critical
1. We choose a multiplier real number M, 0 <M < 1

2. We multiply the key k with M and take the decimal remainder r
 We will denote the decimal remainder of a float f as %1

3. We multiply r with the hash table size m and take the first integer
smaller than that number

* We denote the first integer smaller than a float f with |f]| (,,floor” of f)
h(k) = [(k* M % 1) * m]

* For multiplication hashing, it’s actually desirable that m = 2°. Q: Why?

Hashing functions: universal hashing

* Multiplication and division hashing lead to uniform hashing as long as the
input keys to be hashed are not ,rigged” in a particular way

* Assume there’s an adversary who wants to slow down your program that

works with a hash table
* By making all/many keys hashed to the same value
* If they guess your hash function, they can easily do that

* E.g., if they know you use division method with m = 751, they can send keys that
leave the same remainder when divided with 751: {2, 753, 1504, ...}

* Universal hashing: no fixed hashing function
* |In every execution, choosing h randomly from a set/family of carefully designed hash
functions H (but in a way independent of the keys)
* Algorithm behaves differently in every execution, so no single input will always cause

worst case running time

Re-Hashing

e Assume we set a hash table of size m in advance and then start
hashing incoming keys and store corresponding values

e Assume we receive |K|=n >>m to hash, so a = n/m becomes larger
e Search becomes slower

* Re-hashing
* |If we could increase m, that would reduce o
* Creating a new hash table with larger m, re-hashing all existing keys
* Trading space for time

Questions?

Pitanja?

é¢Preguntas?
Fragor?

BHHE1M|]

Porandukuéra?

Questlons?

Vragen? Epwtl’]GElg,

eali

c

! HET pwusimusi?
o =
Z Sorusu olan? g BREX? é
3 Fragen'-’

Pytan a?
¢opuU Blu0(]

Y

	Slide 1: Hashing Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Dynamic sets
	Slide 4: Dynamic sets
	Slide 5: Recap – Lists: Arrays vs. Linked Lists
	Slide 6: Dynamic Set with List
	Slide 7: Abstract Data Types
	Slide 8: Associative Array
	Slide 9: Associative Array
	Slide 10: Associative Array
	Slide 11: Content
	Slide 12: Hash table
	Slide 13: Hash table
	Slide 14: Collisions and hash functions
	Slide 15: Collisions and hash functions
	Slide 16: Collisions and hash functions
	Slide 17: Collision resolution by chaining
	Slide 18: Collision resolution by chaining
	Slide 19: Collision resolution by chaining
	Slide 20: Collision resolution by chaining
	Slide 21: Collision resolution by chaining
	Slide 22: Collision resolution by chaining
	Slide 23: Content
	Slide 24: Hash functions
	Slide 25: Designing hash functions
	Slide 26: Hash function: division method
	Slide 27: Hash function: multiplication method
	Slide 28: Hashing functions: universal hashing
	Slide 29: Re-Hashing
	Slide 30: Questions?

