
Hashing
Prof. Dr. Goran Glavaš

13.11.2023

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• ADS: Associative Array

• Hash Table

• Hash Functions

Dynamic sets

• We go back to our dynamic sets
• We need to store a set of data points (simple data types or complex ones)

• We’ve already seen several ADS that can store dynamic sets
• List

• Stack

• Queue

• Priority Queue (Heap)

• From these, only list has no constraints on insertion into and removal
of elements from the dynamic set

Dynamic sets

• In many applications/algorothms we need only three basic operations
for manipulating the content of dynamic sets

1. INSERT – add new element to the dynamic set
• In general, in no particular order

• Constraints on positioning of elements: stacks, queues, heaps, search trees...

2. SEARCH – answer the question „is element X in the set”?

3. DELETE – remove an element from the set
• In general, any element from the set can be removed

• Constraints on (order of) element removal – stacks, queues, heaps, search trees...

Recap – Lists: Arrays vs. Linked Lists

• ADT: List – a linear sequence of elements
• When we design algorithms, we typically think in terms of ADTs

• Linked List
• Consists of nodes: nodes contain both the data (values) and a pointer to the

next node in the list

• Nodes can contain values of different types

• Dynamic data structure: „resizable” at run time
• Non-contiguous memory allocation possible, space for new nodes can be allocated

dynamically (on „per-need” basis)

address 1

(instance of)
class Rectangle

address 2

address 1

string

„Berlin”
address 3

address 2

int

223
address 4

address 3

(instance of)
class Circle

address 5

tuple (int, string)
(1,„Glasgow”)

null

address 4 address 5

Dynamic Set with List

• Dynamic set operations: INSERT, DELETE, SEARCH

• List implemented as a (bidirectional) linked list:

• Runtimes (in Big-O notation):
• INSERT (assuming no constraints on where the element is to be inserted)?

• SEARCH?

• DELETE (assuming no constraints on where the element is to be inserted)?

null

data
next

prev
data
next

prev
data 1
null

prev
data
next

start
...

end

Abstract Data Types

Abstract Data Type Other Common Names Commonly implemented as

List Sequence Array, Linked List

Queue Array, Linked List

Double-ended Queue Dequeue, Deque Array, Doubly-linked List

Stack Array, Linked List

Associative Array Dictionary, Hash Map, Map Hash Table

Set Red-black Tree or Hash Table

Priority Queue Heap Heap

Associative Array

An ADS for representing dynamic sets containing (key, value) pairs such that each key is
unique in the array. Associative array, also known as Dictionary or Map, supports direct

addressing: computation of memory location of value directly from the key.

Associative array

• Isn’t a regular array associative by default?
• key = index of the array at which we find the element

• Given the key (i.e., index), we can compute the memory address of the value

primes[4] = 32

int x = primes[0]

Associative Array

An ADS for representing dynamic sets containing (key, value) pairs such that each key is
unique in the array. Associative array, also known as Dictionary or Map, supports direct

addressing: computation of memory location of value directly from the key.

Associative array

• Isn’t a regular array (aka direct-access table) associative by default?
• key = index of the array at which I find the element

• What if we need to store a very large number of elements?
• Memory reservation for every possible key→ large memory occupance

• What if the the space/universe of keys is virtually unlimited?
• E.g., any string?

Associative Array

An ADS for representing dynamic sets containing (key, value) pairs such that each key is
unique in the array. Associative array, also known as Dictionary or Map, supports direct

addressing: computation of memory location of value directly from the key.

Associative array

• Let S be the set (possibly infinite) of all allowed keys
• Defined commonly with some primitive data type: int, string, float

• This basically means that key can be any value of the primitive type

• Let K be the set of keys we would have in any concrete dynamic set
• In most practical problems, K << |S|

• If we would implement the dynamic set as the direct-access table (i.e., array),
we’d have to allocate |S| slots in the memory and only K would be „used”
• Waste of memory

Content

• ADS: Associative Array

• Hash Table

• Hash Functions

Hash table

• Direct-access tables store the element with key k at index k

• Hash tables store the element with key k at index h(k)

• h(k) is the hash(ing) function that computes the array index at which to
store/find the element’s value v directly from its key k

• Assuming a table (array) T of size m elements, h maps the universe of keys S to
indices of the array

Hash table is a data structure (tightly coupled with a corresponding hash function) used
for implementing runtime and memory efficient associative arrays.

Hash table

h: S→ {0, 1, ..., m-1}

Hash table

Image source: Cormen et al.

• Direct-access tables would need |S|
elements

• Because of the hashing (i.e., mapping)
function h, Hash table T can have m
<< |S| elements

• Hashing reduces the range of the
indices, i.e., the size of the array
• Memory (space saving)

• Caveat: what if two keys „hash” to the
same value? h(k2) = h(k5)
• Q: How likely is that to happen? What

does it depend on?

Collisions and hash functions

• Collision: when two (or more) keys get the same hash, h(k1) = h(k2)

• The frequency of collisions depends on
(1) The size m of the table (array) T

(2) The properties of the hashing function h

(3) The concrete set of keys to be hashed, K = {k1, k2, ..., kK}

• Obviously, we want to avoid or at least minimize collisions

• We typically have no control over (3), some control over (1), and only
full control over (2): the selection/design of the hash function

Collisions and hash functions

• Crucial: hash functions must be deterministic. What does that mean?

• We typically have no control over the set of keys K for which the
values need to be stored in the hash table
• Because of this, we cannot guarantee the absence of collisions

• We can reduce the probability of collisions. How?

• If m (size of T) ≥ |K| it is theoretically possible to store all allowed keys
without collision
• Problem: we don’t actually know K in advance, we know only S (the universe of all

possible/allowed keys)

Collisions and hash functions

• We typically have no control over the set of keys K for which the
values need to be stored in the hash table
• Because of this, we cannot guarantee the absence of collisions

• Q1: If m (size of T) < |K| what is the minimal possible number of collisions?

• Q2: If keys in K are integers {0, 1, 2, ..., |K|-1} and the size of the hash table T
is m < |K|, find a hash h that guarantees this minimal number of collisions?

• Since we cannot guarantee no collisions, how do we handle them?

Collision resolution by chaining

• At each hash slot (index in {0, ..., m-1}, aka bucket) we put a pointer
to the beginning of a linked list

• Slot/bucket i ∈ {0, ..., m-1} contains a pointer to the head of the
linked list of all stored elements whose keys hash to i
• If no keys have been hashed to i, the pointer is null

Image source: Cormen et al.

Collision resolution by chaining

• Let x be a set element with key x.key and
value x.value
• x.next the pointer to the next element in the

collision chain of the slot

• Let T be the hash table with collision
resolution by chaining

• INSERT: add to the beginning of the chain

Image source: Cormen et al.

Insert(T, x):

pointer = T[h(x.key)]

x.next = pointer

pointer = address(x)

Q1: Worst case running time?
Q2: What if x already in the list?

Collision resolution by chaining

• Let x be a set element with key x.key and
value x.value
• x.next the pointer to the next element in the

collision chain of the slot

• Let T be the hash table with chaining
resolution of collisions

• SEARCH: find in the linked list of the chain

Image source: Cormen et al.

Search(T, key):

pointer = T[h(key)]

while pointer != null

x = read_memory(pointer)

if x.key == key

return x # or x.value

else

pointer = x.next

return null

Q: Worst case running time?

Collision resolution by chaining

• Let x be a set element with key x.key and
value x.value
• x.next the pointer to the next element in the

collision chain of the slot

• Let T be the hash table with chaining
resolution of collisions

• DELETE: find in the linked list of the chain

Image source: Cormen et al.

Delete(T, key):

pointer = T[h(key)]

while pointer != null

x = read_memory(pointer)

if x.key == key
& - at the address where the pointer points

we set the value x.next

&pointer = x.next

return

else

pointer = x.next

Q: Worst case
running time?

Collision resolution by chaining

• Runtimes for hash tables with chaining

• Load factor: α = |K| / m
• The average number of elements chained in linked lists (chains)

• Runtime analysis in terms of α

• What is the worst case for hashing with chaining?
• A hash function h that would map all n = |K| keys into the same hash slot

• Search and Delete: O(n)

• Insert is always O(1)

Collision resolution by chaining

• Runtimes for hash tables with chaining

• Load factor: α = |K| / m
• The average number of elements chained in linked lists (chains)
• Runtime analysis in terms of α

• What is the average case for hashing with chaining?
• Depends on how well the hashing function h distributes keys across the m

hash slots/buckets

• Assumption: simple uniform hashing
• h equally likely to map a key to any of the m buckets

• Buckets will have roughly the same number of elements: α
• Runtime of Search (and Delete) is O(α)

Content

• ADS: Associative Array

• Hash Table

• Hash Functions

Hash functions

• What would be a good hash function h?
• One that creates the minimal number of collisions

• If it satisfies the assumption of simple uniform hashing (SUH), it will create
a small number of collisions
• Keys are equally likely to be hashed into any of the m buckets, independently of

where the other keys have been hashed
• As if you were randomly drawing a bucket for every key

• Though we cannot do that, as this is not deterministic

• If SUH, then we can always reduce the runtime (of Search) by increasing m: for
large enough m (trading space for time), O(1)

• Unfortunately, no easy way to prove/check if some h results with SUH
• It also depends on the actual keys being hashed

Designing hash functions

• Heuristic design
• Kind of „trial and error” – we create h that „makes intuitive sense”

• Then we test it on various key sets K to see whether it roughly exhibits the
SUH property – that all bucket chains are similarly long, roughly α =|K|/m

• Most hashing functions assume integer keys
• Other types (e.g., float, string) are converted to (natural) integers first

• For a string, let’s assume a charset of N characters (e.g., N = 128)
• Each character corresponds to one integer between 0 and 127

• „c1c2c3” -> 1282*c1 + 128*c2 + c3

Hash function: division method

• Hash is the remainder of the division of the key with the size of the
array m: h(key) = key % m

• It is common to avoid certain values of m, as this can violate the
assumption of simple uniform hashing
• Or make the violation more likely for arbitrary key sets
• For example, we avoid m = 2p because the value h(key) = key % 2p depends

only on the lowest p bits of the key
→ this puts all keys with the same lowest p bits into the same bucket

• Good choice for m: a prime number not too close to any power of 2
• Example: 3000 keys, and we’d be ok with average chains of length α = 4
→ Good m would be 751 or 757

Hash function: multiplication method

• Simple heuristic hashing like division, but choice of m less critical

1. We choose a multiplier real number M, 0 < M < 1

2. We multiply the key k with M and take the decimal remainder r
• We will denote the decimal remainder of a float f as f%1

3. We multiply r with the hash table size m and take the first integer
smaller than that number
• We denote the first integer smaller than a float f with ⌊f⌋ („floor” of f)

h(k) = ⌊(k * M % 1) * m⌋

• For multiplication hashing, it’s actually desirable that m = 2p. Q: Why?

Hashing functions: universal hashing

• Multiplication and division hashing lead to uniform hashing as long as the
input keys to be hashed are not „rigged” in a particular way

• Assume there’s an adversary who wants to slow down your program that
works with a hash table
• By making all/many keys hashed to the same value
• If they guess your hash function, they can easily do that
• E.g., if they know you use division method with m = 751, they can send keys that

leave the same remainder when divided with 751: {2, 753, 1504, ...}

• Universal hashing: no fixed hashing function
• In every execution, choosing h randomly from a set/family of carefully designed hash

functions H (but in a way independent of the keys)
• Algorithm behaves differently in every execution, so no single input will always cause

worst case running time

Re-Hashing

• Assume we set a hash table of size m in advance and then start
hashing incoming keys and store corresponding values

• Assume we receive |K|= n >> m to hash, so α = n/m becomes larger
• Search becomes slower

• Re-hashing
• If we could increase m, that would reduce α
• Creating a new hash table with larger m, re-hashing all existing keys
• Trading space for time

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и

тан
н

я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w

ọ
n

ib
e

er
e

?

ค ำถำม?

	Slide 1: Hashing Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Dynamic sets
	Slide 4: Dynamic sets
	Slide 5: Recap – Lists: Arrays vs. Linked Lists
	Slide 6: Dynamic Set with List
	Slide 7: Abstract Data Types
	Slide 8: Associative Array
	Slide 9: Associative Array
	Slide 10: Associative Array
	Slide 11: Content
	Slide 12: Hash table
	Slide 13: Hash table
	Slide 14: Collisions and hash functions
	Slide 15: Collisions and hash functions
	Slide 16: Collisions and hash functions
	Slide 17: Collision resolution by chaining
	Slide 18: Collision resolution by chaining
	Slide 19: Collision resolution by chaining
	Slide 20: Collision resolution by chaining
	Slide 21: Collision resolution by chaining
	Slide 22: Collision resolution by chaining
	Slide 23: Content
	Slide 24: Hash functions
	Slide 25: Designing hash functions
	Slide 26: Hash function: division method
	Slide 27: Hash function: multiplication method
	Slide 28: Hashing functions: universal hashing
	Slide 29: Re-Hashing
	Slide 30: Questions?

