
Heap(sort) & Priority Queue
Prof. Dr. Goran Glavaš

9.11.2023

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Heap

• Heapsort

• Priority Queue

Recap: Insert(ion) sort

insert_sort(L)

for i = 1 to L.length – 1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key

Algorithm design: incremental
Image from Cormen et al.

Recap: Merge sort

Algorithm design:

divide and conquer

merge(A, p, q, r)

n_left = q - p + 1

n_right = r – q

L = array[n_left]

R = array[n_right]

for i = 0 to n_left - 1:

L[i] = A[p + i]

for j = 0 to n_right – 1:

R[j] = A[q + 1 + j]

ind_l = 0

ind_r = 0

for k = p to r

if ind_r > n_right – 1 or L[ind_l] ≤ R[ind_r]

A[k] = L[ind_l]

ind_l = ind_l + 1

else

A[k] = R[ind_r]

ind_r = ind_r + 1

merge_sort(A, p, r)

n = r – p + 1

if n % 2 == 1

q = p + n//2

else

q = p + n/2 - 1

merge_sort(A, p, q)

merge_sort(A, q + 1, r)

merge(A, p, q, r)

Recap: Quicksort

Algorithm design: divide and conquer

partition(A, p, r)

pivot = A[r]

s = p – 1

for i = p to r - 1:

if A[i] ≤ pivot
s = s + 1

exchange(A[i], A[s])

exchange(A[s+1], A[r])

return s + 1

quick_sort(A, p, r)

q = partition(A, p, r)

quick_sort(A, p, q - 1)

quick_sort(A, q + 1, r)

Sorting thus far...

• Insert(ion) sort: O(n2) and in place

• Merge sort: O(n log n) and not in place

• Quick sort: worst O(n2), average O(n log n) and in place

• On average, quick sort the best solution so far

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Heap and Heapsort

• New algorithm design „technique”: usage of a special data structure
to manage information

• Data structure being used typically has properties that allow for the
reduction of runtime complexity of the algorithm
• The additional data structure requires memory (and maintenance)

• Trading space for time („no free lunch”)

• Heapsort: sorting algorithm that relies on a data structure called
heap – an array that represents a binary tree

Heap

• Heap is technically just an array

• But elements stored so that it reflects a structure of a binary tree

• Each element of the array is one node of the tree

• The tree is completely filled (on all levels except the last)
• Cannot add next level of the tree without filling the previous

• A: an array we use to implement the heap
• A.Length: the size of the array, i.e., the maximal possible size of the heap

• A.HeapSize: the actual size of the heap (no. elements on the heap)

• A[0..A.Length-1] – memory allocated for the heap

• A[0..A.HeapSize-1] – memory actually occupied by the heap

Binary Tree in the Array

• The order in which we manipulate the order
of the elements is crucial

• Binary tree
• Every node („parent”) has two „child” nodes

• First array element is the root of the tree

• Second array element = root’s left child

• Third array element = root’s right child

0

1 2

3 4 5 6

8 97

0 1 2 3 4 5 6 7 8 9

Binary Tree in the Array

• Consider the i-th index of the array

• At which indices would we find
• A PARENT of the node at index i?

• A SIBLING of the node at index i?

• CHILDREN of the node at index i?

• How many nodes would we find at the j-th
level of the tree (root is at level 0)

0

1 2

3 4 5 6

7 8 9

0 1 2 3 4 5 6 7 8 9

Binary Tree in the Array

• How many nodes would we find at the j-th
level of the tree (root is at level 0)?

• If at the j-th level we have m elements, how
many elements are at the (j+1)-th level?

• What is the „height” (or „depth”) of the full
binary tree that has n elements?

• Level 0: 1 element
• Level 1: 2 elements
• Level 2: 4 elements
• ...

0

1 2

3 4 5 6

7 8 9

0 1 2 3 4 5 6 7 8 9

Binary Tree in the Array

• Consider the i-th index of the array

• At which indices would we find
• A PARENT of the node at index i?

• A SIBLING of the node at index i?

• CHILDREN of the node at index i?

0

1 2

3 4 5 6

7 8 9

0 1 2 3 4 5 6 7 8 9

parent(i)

if i % 2 == 0

return i/2 – 1

else

return i//2

or just (i-1)//2

sibling(i)

if i % 2 == 0

return i – 1

else

return i + 1

left_child(i)

return 2*i + 1

right_child(i)

return 2*i + 2

Heap

• This is just a binary tree implemented in
an array

• In order for it to be a heap, it has to
satisfy the heap property (for all nodes
except the root)

• Max-heap (max-heap property):
• A[parent(i)] ≥ A[i]

• Min-heap (min-heap property):
• A[parent(i)] ≤ A[i]

0 1 2 3 4 5 6 7 8 9

0

1 2

3 4 5 6

7 8 9

Heap

• The height of the tree that has between
n/2+1 and n elements is log2n

• Heaps are used for two things
• To implement an abstract data structure

called priority queue
• To allow for an efficient sorting algorithm

• Both applications demand the
maintenance of the max-heap/min-heap
property

0 1 2 3 4 5 6 7 8 9

0

1 2

3 4 5 6

7 8 9

Heap: Maintaining the Heap Property

• HEAPIFY procedure (assume max-heap)
• Recursive (algorithms operating on trees

are often recursive)

• Assumes subtrees rooted in each of the
children nodes are already max-heaps

• Takes the array and the index of a node
0 1 2 3 4 5 6 7 8 9

0

1 2

3 4 5 6

7 8 9

Heap: Maintaining the Heap Property

• HEAPIFY procedure
(assume max-heap)
• Recursive (many algorithms

operating on trees are)

• Assumes subtrees rooted in
each of the children nodes
are already max-heaps

• Takes the array and the
index of a node as input

• Q: how to modify heapify
to maintain min-heap?

heapify(A, i)

l = left_child(i) # 2*i + 1

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest)

Maintaining the heap property

heapify(A, i)

l = left_child(i)

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest)

heapify(A, 1)

0

1 2

3 4 5 6

7 8 9

i = 1, A[i] = 4

l = 3, r = 4

A[l] (14) > A[i] (4) → True

largest = l = 3

A[r] (7) > A[largest] (14) → False

largest (3) ≠ i (1) → True

exchange(A[1](4), A[3](14))

--

heapify(A, 3) # recursive call

Maintaining the heap property

heapify(A, i)

l = left_child(i)

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest)

heapify(A, 3)

0

1 2

3 4 5 6

7 8 9

i = 3, A[i] = 4

l = 7, r = 8

A[l] (2) > A[i] (4) → False

A[r] (8) > A[largest] (4) → True

largest = r = 8

largest (8) ≠ i (3) → True

exchange(A[3](4), A8)

--

heapify(A, 8) # recursive call

Maintaining the heap property

heapify(A, i)

l = left_child(i)

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest)

heapify(A, 8)

0

1 2

3 4 5 6

7 8 9

i = 8, A[i] = 4

l = 17, r = 18

l (17) < A.HeapSize (10) → False

largest = i = 8

l (17) < A.HeapSize (10) → False

largest (8) ≠ i (8) → False

end of execution

Heapify – running time

heapify(A, i)

l = left_child(i)

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest)

0

1 2

3 4 5 6

7 8 9

(1) Finding the lagest amont i, l, and r
constant time → O(1)

(2) Exchange of the elements → O(1)

• If n is the size of (number of elements in)
subtree of i, what is the worst case number
of executions of (1) and (2)?

• It is the height of the subtree at i
• Height of the binary tree with n elements?

• O(log n)

T(n) = O(log n) * (O(1) + O(1))
= O(log n)

Heapify

• heapify(A, i) for an index i (in a max-heap) effectively pushes
the element down the subtree given by that index
• So long as the element is smaller than at least one of its children

• Does heapify(A, i) turn the subtree of i into a heap?
• If no, why not? Provide a counter example

• How many times and for which indices (nodes) of the array do we
need to call heapify in order to transform an array into a heap?

Building a heap

• Does heapify(A, i) turn the subtree of i into a heap? No!

• If parent element larger than both its children, heapify stops; but each child
could be smaller than its children, violating the heap property

• If parent smaller than both children, it is „exchanged” only with larger child

• Recursive call follows only on the subtree of the larger child

• Smaller child’s subtree won’t be „heapified”

Building a heap

• How many times and for which
indices (nodes) of the array do we
need to call heapify in order to
transform an array into a heap?

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)

• heapify propagates the „smaller values down”
We actually want to propagate the „larger values up”

• To convert an array into a heap, we will call heapify in a bottom-up
manner, for each non-leaf node

Binary tree has n elements:
• how many non-leaf nodes (nln) does it have?

Building a heap – illustration

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5

(indices 0, 1, 2, 3, 4)

• Iteration #1:

i = 4

heapify(A, 4)

A[4] (16) > A[9] (7) (its child), nothing happens

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)

0

1 2

3 4 5 6

7 8 9

Building a heap – illustration

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5

(indices 0, 1, 2, 3, 4)

• Iteration #2:

i = 3

heapify(A, 3)

A[3] (2) < A[7] (14)

(its child), exchange

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)

0

1 2

3 4 5 6

7 8 9

0

1 2

3 4 5 6

7 8 9

Building a heap – illustration

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5

(indices 0, 1, 2, 3, 4)

• Iteration #3:

i = 2

heapify(A, 2)

A[2] (3) < A[6] (10)

(its child), exchange

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)

0

1 2

3 4 5 6

7 8 9

0

1 2

3 4 5 6

7 8 9

Building a heap – illustration

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5

(indices 0, 1, 2, 3, 4)

• Iteration #4:

i = 1

heapify(A, 1)

A[1] (1) < A[4] (16)
exchange

A[4] (1) < A[9] (7)
exchange

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)

0

1 2

3 4 5 6

7 8 9

0

1 2

3 4 5 6

7 8 9

Building a heap – illustration

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5

(indices 0, 1, 2, 3, 4)

• Iteration #5:

i = 0

heapify(A, 0)

A[0] (4) < A[1] (16)
Exchange

A[1] (4) < A[3] (14)
exchange

A[3] (4) < A[8] (8)
exchange

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)

0

1 2

3 4 5 6

7 8 9

0

1 2

3 4 5 6

7 8 9

Build heap – runtime

• We established that heapify(A, i) has runtime of O(log n)

• And we call heapify once for every non-leaf node, so n/2 times

• Obvious upper bound: T(n) = O(log n) * n/2 = O(n log n)
• Q: is it a tight bound?

• For „deeper” nodes, heapify will on average run much faster
• For a node in the penultimate level, its subtree will have n’ = 2 or 3 nodes

• For such nodes, runtime of heapify O(log n’) is much lower than O(log n),
where n is the size of the whole tree

Build heap – runtime

• Let H be the height of the tree, H = └log2n┘
• Let h be the height of a node/index

• Let d be the depth of a node/index, d = H – h

• For leaf nodes, h = 0, for root h = H

• Q: How many nodes (at most) do we have at some height h?
• h = H (d = 0)→ 1 node

• h = H – 1 (d = 1) → 2 nodes

• ...

• h = 0 (d = H) → 2d (= 2H) nodes

• Runtime of heapify for a node at height h is O(h)

Build heap – runtime

• Let H be the height of the tree, H = └log2n┘
• Let h be the height of a node/index

• Let d be the depth of a node/index, d = H – h

• T(n) = σℎ=0
𝐻 2𝑑 ∗ 𝑂(ℎ)

= σℎ=0
𝐻 2

(𝐻 − ℎ) ∗ 𝑂(ℎ)

= σℎ=0
𝐻 2𝐻/2ℎ ∗ 𝑂(ℎ)

≤ σℎ=0
𝐻 𝑛/2ℎ ∗ 𝑂(ℎ)

= 𝑂(𝑛σℎ=0
𝐻 𝑂 ℎ

2ℎ
)

= 𝑶 𝒏

H = └log2n┘means that

2H ≤ n < 2H+1

O(h) means T(h) = c*h
When H is large (approx. infinity)

ℎ=0

∞
𝑐 ∗ ℎ

2ℎ
= 𝑐 ∗ 𝟐

Content

• Heap

• Heapsort

• Priority Queue

Heapsort

• Given an array, heapsort first builds a heap from it, then relies on it’s
heap property to ensure a sorted array

4 1 3 2 16 9 10 14

0 1 2 3 4 5 6 7 8 9

8 7

Input: array A

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)

Heapsort

• Given an array, heapsort first builds a heap from it, then relies on it’s
heap property to ensure a sorted array

16 14 10 8 7 9 3 2

0 1 2 3 4 5 6 7 8 9

4 1

A.HeapSize = 10

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)

Heapsort

• Given an array, heapsort first builds a heap from it, then relies on it’s
heap property to ensure a sorted array

1 14 10 8 7 9 3 2

0 1 2 3 4 5 6 7 8 9

4 16

A.HeapSize = 9

1

16

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)

Heapsort

• Given an array, heapsort first builds a heap from it, then relies on it’s
heap property to ensure a sorted array

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)

14 8 10 4 7 9 3 2

0 1 2 3 4 5 6 7 8 9

1 16

A.HeapSize = 9

1

Heapsort

Heap built After iteration 1 (i = 9) After iteration 2 (i = 8)

After iteration 3 (i = 7) After iteration 4 (i = 6) After iteration 5 (i = 5)

Heapsort

After iteration 7 (i = 3) After iteration 8 (i = 2)

After iteration 9 (i = 1) After iteration 5 (i = 5)

After iteration 6 (i = 4)

1 2 3 4 7 8 9 10

0 1 2 3 4 5 6 7 8 9

14 16

End of heapsort

Heapsort

After iteration 7 (i = 3) After iteration 8 (i = 2)

After iteration 9 (i = 1) After iteration 5 (i = 5)

After iteration 6 (i = 4)

1 2 3 4 7 8 9 10

0 1 2 3 4 5 6 7 8 9

14 16

End of heapsort

Heapsort – running time

• build heap: O(n)

• heapify: O(log n)

• For loop iterates n-1 times
• heapify called n-1 times

• T(n) = O(n) + (n-1) * O(log n)

= O(n * log n)

• Q: Does heapsort sort in place?

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)

Content

• Heap

• Heapsort

• Priority Queue

Priority Queue

• We’ve used heap as a data structure that supports heapsort
• In most practical sorting applications, quicksort faster than heapsort

• But heap is useful for more than just sorting, as an actual
implementation of an ADS called priority queue

• Example: scheduling execution of jobs (programs) on a shared
computer server

A set of elements S, each s ∈ S has a corresponding priority number (key) assigned to it.
Elements with higher priority should be processed before elements of lower priority.

Elements with the same priority should be processed in the order of insertion (queue).

Priority queuing

Priority queue

• Max-Priority queue has the following operations
• Insert(S,x) – inserts the element x into S (equivalent to S = S ∪{x})

• Maximum(S) – returns s ∈ S with the highest priority (key)

• Extract-Max(S) – removes and returns s ∈ S with the highest priority

• Increase-Prio(S, x, k) – increase the priority of the element x to
the new priotity value k

• For max-PQ, we assume we never reduce priorioty, only increase it

• Min-Priority queue has:
• Insert, Minimum, Extract-Min, Decrease-Prio

Priority queue with heap

• Elements of the set S stored in an array A

• We assume that every element of S the heap’s array is a structure
with two values
• key (A[i].key): this is the priority indicator – in max-PQ, larger key means

higher priority

• value (A[i].value): the actual data of the element (not used for heap
organization)

Maximum(A)

return A[0]

Extract-Max(A)

if A.HeapSize < 1

error „underflow”

max = A[0]

A[0] = A[A.HeapSize - 1]

A.HeapSize = A.HeapSize – 1

heapify(A, 0)

return max

O(1)

O(log n)

Priority queue with heap

Increase-Prio(A, i, key)

if key < A[i]

error „new key smaller than current”

A[i].key = key

restore heap property by pushing A[i] up

while i > 0 and A[i].key > A[parent(i)].key

exchange(A[i], A[parent(i)])

i = parent(i)

Insert(A, key)

if A.HeapSize = A.Length

error „overflow”

A.HeapSize = A.HeapSize + 1

A[A.HeapSize – 1].key = -inf # some big negative value

Increase-Prio(A, A.HeapSize – 1, key)

O(log n)

O(log n)

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и

тан
н

я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w

ọ
n

ib
e

er
e

?

ค ำถำม?

	Slide 1: Heap(sort) & Priority Queue Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Recap: Insert(ion) sort
	Slide 4: Recap: Merge sort
	Slide 5: Recap: Quicksort
	Slide 6: Sorting thus far...
	Slide 7: Heap and Heapsort
	Slide 8: Heap
	Slide 9: Binary Tree in the Array
	Slide 10: Binary Tree in the Array
	Slide 11: Binary Tree in the Array
	Slide 12: Binary Tree in the Array
	Slide 13: Heap
	Slide 14: Heap
	Slide 15: Heap: Maintaining the Heap Property
	Slide 16: Heap: Maintaining the Heap Property
	Slide 17: Maintaining the heap property
	Slide 18: Maintaining the heap property
	Slide 19: Maintaining the heap property
	Slide 20: Heapify – running time
	Slide 21: Heapify
	Slide 22: Building a heap
	Slide 23: Building a heap
	Slide 24: Building a heap – illustration
	Slide 25: Building a heap – illustration
	Slide 26: Building a heap – illustration
	Slide 27: Building a heap – illustration
	Slide 28: Building a heap – illustration
	Slide 29: Build heap – runtime
	Slide 30: Build heap – runtime
	Slide 31: Build heap – runtime
	Slide 32: Content
	Slide 33: Heapsort
	Slide 34: Heapsort
	Slide 35: Heapsort
	Slide 36: Heapsort
	Slide 37: Heapsort
	Slide 38: Heapsort
	Slide 39: Heapsort
	Slide 40: Heapsort – running time
	Slide 41: Content
	Slide 42: Priority Queue
	Slide 43: Priority queue
	Slide 44: Priority queue with heap
	Slide 45: Priority queue with heap
	Slide 46: Questions?

