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Recap: Insert(ion) sort

insert_sort(L) 

for i = 1 to L.length – 1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key   

Algorithm design: incremental
Image from Cormen et al. 



Recap: Merge sort

Algorithm design: 

divide and conquer

merge(A, p, q, r)

n_left = q - p + 1

n_right = r – q

L = array[n_left]

R = array[n_right]

for i = 0 to n_left - 1: 

L[i] = A[p + i] 

for j = 0 to n_right – 1:

R[j] = A[q + 1 + j]    

ind_l = 0

ind_r = 0

for k = p to r

if ind_r > n_right – 1 or L[ind_l] ≤ R[ind_r]

A[k] = L[ind_l]

ind_l = ind_l + 1

else

A[k] = R[ind_r]

ind_r = ind_r + 1

merge_sort(A, p, r)

n = r – p + 1

if n % 2 == 1

q = p + n//2

else

q = p + n/2 - 1

merge_sort(A, p, q)

merge_sort(A, q + 1, r)   

merge(A, p, q, r)



Recap: Quicksort

Algorithm design: divide and conquer

partition(A, p, r)

pivot = A[r]

s = p – 1

for i = p to r - 1: 

if A[i] ≤ pivot
s = s + 1

exchange(A[i], A[s])   

exchange(A[s+1], A[r])

return s + 1

quick_sort(A, p, r)

q = partition(A, p, r)

quick_sort(A, p, q - 1)

quick_sort(A, q + 1, r)   



Sorting thus far...

• Insert(ion) sort: O(n2) and in place

• Merge sort: O(n log n) and not in place

• Quick sort: worst O(n2), average O(n log n) and in place

• On average, quick sort the best solution so far

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that       

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem



Heap and Heapsort

• New algorithm design „technique”: usage of a special data structure 
to manage information  

• Data structure being used typically has properties that allow for the 
reduction of runtime complexity of the algorithm
• The additional data structure requires memory (and maintenance)

• Trading space for time („no free lunch”)

• Heapsort: sorting algorithm that relies on a data structure called 
heap – an array that represents a binary tree 



Heap

• Heap is technically just an array

• But elements stored so that it reflects a structure of a binary tree

• Each element of the array is one node of the tree

• The tree is completely filled (on all levels except the last)
• Cannot add next level of the tree without filling the previous

• A: an array we use to implement the heap
• A.Length: the size of the array, i.e., the maximal possible size of the heap

• A.HeapSize: the actual size of the heap (no. elements on the heap)

• A[0..A.Length-1] – memory allocated for the heap

• A[0..A.HeapSize-1] – memory actually occupied by the heap



Binary Tree in the Array

• The order in which we manipulate the order 
of the elements is crucial 

• Binary tree
• Every node („parent”) has two „child” nodes

• First array element is the root of the tree

• Second array element = root’s left child

• Third array element = root’s right child
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Binary Tree in the Array

• Consider the i-th index of the array

• At which indices would we find
• A PARENT of the node at index i?

• A SIBLING of the node at index i?

• CHILDREN of the node at index i?

• How many nodes would we find at the j-th 
level of the tree (root is at level 0)
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Binary Tree in the Array

• How many nodes would we find at the j-th 
level of the tree (root is at level 0)?

• If at the j-th level we have m elements, how 
many elements are at the (j+1)-th level? 

• What is the „height” (or „depth”) of the full
binary tree that has n elements?

• Level 0: 1 element
• Level 1: 2 elements
• Level 2: 4 elements
• ...
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Binary Tree in the Array

• Consider the i-th index of the array

• At which indices would we find
• A PARENT of the node at index i?

• A SIBLING of the node at index i?

• CHILDREN of the node at index i?
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parent(i)

if i % 2 == 0

return i/2 – 1

else

return i//2

# or just (i-1)//2

sibling(i)

if i % 2 == 0

return i – 1

else

return i + 1

left_child(i)

return 2*i + 1

right_child(i)

return 2*i + 2



Heap

• This is just a binary tree implemented in 
an array

• In order for it to be a heap, it has to
satisfy the heap property (for all nodes 
except the root)

• Max-heap (max-heap property):
• A[parent(i)] ≥ A[i]

• Min-heap (min-heap property):
• A[parent(i)] ≤ A[i]
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Heap

• The height of the tree that has between 
n/2+1 and n elements is log2n

• Heaps are used for two things
• To implement an abstract data structure 

called priority queue
• To allow for an efficient sorting algorithm

• Both applications demand the 
maintenance of the max-heap/min-heap
property 
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Heap: Maintaining the Heap Property

• HEAPIFY procedure (assume max-heap)
• Recursive (algorithms operating on trees 

are often recursive)

• Assumes subtrees rooted in each of the 
children nodes are already max-heaps

• Takes the array and the index of a node
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Heap: Maintaining the Heap Property

• HEAPIFY procedure 
(assume max-heap)
• Recursive (many algorithms 

operating on trees are)

• Assumes subtrees rooted in 
each of the children nodes 
are already max-heaps

• Takes the array and the 
index of a node as input

• Q: how to modify heapify
to maintain min-heap? 

heapify(A, i)

l = left_child(i) # 2*i + 1

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest)



Maintaining the heap property

heapify(A, i)

l = left_child(i)

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest) 

heapify(A, 1)
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i = 1, A[i] = 4

l = 3, r = 4

A[l] (14) > A[i] (4) → True

largest = l = 3

A[r] (7) > A[largest] (14) → False

largest (3) ≠ i (1) → True

exchange(A[1](4), A[3](14))

--

heapify(A, 3) # recursive call



Maintaining the heap property

heapify(A, i)

l = left_child(i)

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest) 

heapify(A, 3)
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i = 3, A[i] = 4

l = 7, r = 8

A[l] (2) > A[i] (4) → False

A[r] (8) > A[largest] (4) → True

largest = r = 8

largest (8) ≠ i (3) → True

exchange(A[3](4), A[8](8))

--

heapify(A, 8) # recursive call



Maintaining the heap property

heapify(A, i)

l = left_child(i)

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest) 

heapify(A, 8)
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i = 8, A[i] = 4

l = 17, r = 18

l (17) < A.HeapSize (10) → False

largest = i = 8

l (17) < A.HeapSize (10) → False

largest (8) ≠ i (8) → False

# end of execution  



Heapify – running time

heapify(A, i)

l = left_child(i)

r = right_child(i)

if l < A.HeapSize and A[l] > A[i]

largest = l

else

largest = i

if r < A.HeapSize and A[r] > A[largest]

largest = r

if largest ≠ i

exchange(A[i], A[largest])

heapify(A, largest) 
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(1) Finding the lagest amont i, l, and r
constant time → O(1)

(2) Exchange of the elements → O(1)

• If n is the size of (number of elements in) 
subtree of i, what is the worst case number
of executions of (1) and (2)? 

• It is the height of the subtree at i
• Height of the binary tree with n elements?

• O(log n)

T(n) = O(log n) * (O(1) + O(1)) 
= O(log n)



Heapify

• heapify(A, i) for an index i (in a max-heap) effectively pushes 
the element down the subtree given by that index 
• So long as the element is smaller than at least one of its children

• Does heapify(A, i) turn the subtree of i into a heap?
• If no, why not? Provide a counter example

• How many times and for which indices (nodes) of the array do we 
need to call heapify in order to transform an array into a heap?



Building a heap

• Does heapify(A, i) turn the subtree of i into a heap? No!

• If parent element larger than both its children, heapify stops; but each child 
could be smaller than its children, violating the heap property

• If parent smaller than both children, it is „exchanged” only with larger child

• Recursive call follows only on the subtree of the larger child

• Smaller child’s subtree won’t be „heapified”



Building a heap

• How many times and for which 
indices (nodes) of the array do we 
need to call heapify in order to
transform an array into a heap?

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)

• heapify propagates the „smaller values down”
We actually want to propagate the „larger values up”

• To convert an array into a heap, we will call heapify in a bottom-up 
manner, for each non-leaf node

Binary tree has n elements: 
• how many non-leaf nodes (nln) does it have?



Building a heap – illustration 

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5 

(indices 0, 1, 2, 3, 4)

• Iteration #1: 

i = 4

heapify(A, 4)

A[4] (16) > A[9] (7) (its child), nothing happens

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)
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Building a heap – illustration 

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5 

(indices 0, 1, 2, 3, 4)

• Iteration #2: 

i = 3

heapify(A, 3)

A[3] (2) < A[7] (14)

(its child), exchange

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)
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Building a heap – illustration 

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5 

(indices 0, 1, 2, 3, 4)

• Iteration #3: 

i = 2

heapify(A, 2)

A[2] (3) < A[6] (10)

(its child), exchange

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)
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Building a heap – illustration 

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5 

(indices 0, 1, 2, 3, 4)

• Iteration #4: 

i = 1

heapify(A, 1)

A[1] (1) < A[4] (16)
exchange

A[4] (1) < A[9] (7)
exchange

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)
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Building a heap – illustration 

• A.length = A.HeapSize = n = 10

• Number of non-leaf nodes (nln) = 5 

(indices 0, 1, 2, 3, 4)

• Iteration #5: 

i = 0

heapify(A, 0)

A[0] (4) < A[1] (16)
Exchange

A[1] (4) < A[3] (14)
exchange

A[3] (4) < A[8] (8)
exchange

build_heap(A)

A.HeapSize = A.length

nln = n//2

for i in nln – 1 downto 0

heapify(A, i)
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Build heap – runtime

• We established that heapify(A, i) has runtime of O(log n)

• And we call heapify once for every non-leaf node, so n/2 times

• Obvious upper bound: T(n) = O(log n) * n/2 = O(n log n)
• Q: is it a tight bound?

• For „deeper” nodes, heapify will on average run much faster
• For a node in the penultimate level, its subtree will have n’ = 2 or 3 nodes

• For such nodes, runtime of heapify O(log n’) is much lower than O(log n), 
where n is the size of the whole tree 



Build heap – runtime

• Let H be the height of the tree, H = └log2n┘
• Let h be the height of a node/index

• Let d be the depth of a node/index, d = H – h 

• For leaf nodes, h = 0, for root h = H

• Q: How many nodes (at most) do we have at some height h?
• h = H (d = 0)→ 1 node

• h = H – 1 (d = 1) → 2 nodes

• ...

• h = 0 (d = H) → 2d (= 2H) nodes

• Runtime of heapify for a node at height h is O(h)



Build heap – runtime

• Let H be the height of the tree, H = └log2n┘
• Let h be the height of a node/index

• Let d be the depth of a node/index, d = H – h 

• T(n) = σℎ=0
𝐻 2𝑑 ∗ 𝑂(ℎ)

= σℎ=0
𝐻 2

(𝐻 − ℎ) ∗ 𝑂(ℎ)

= σℎ=0
𝐻 2𝐻/2ℎ ∗ 𝑂(ℎ)

≤ σℎ=0
𝐻 𝑛/2ℎ ∗ 𝑂(ℎ)

= 𝑂(𝑛σℎ=0
𝐻 𝑂 ℎ

2ℎ
)

= 𝑶 𝒏

H = └log2n┘means that

2H ≤ n < 2H+1

O(h) means T(h) = c*h
When H is large (approx. infinity)



ℎ=0

∞
𝑐 ∗ ℎ

2ℎ
= 𝑐 ∗ 𝟐
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Heapsort

• Given an array, heapsort first builds a heap from it, then relies on it’s
heap property to ensure a sorted array

4 1 3 2 16 9 10 14

0 1      2     3      4      5      6      7      8      9

8 7

Input: array A

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)



Heapsort

• Given an array, heapsort first builds a heap from it, then relies on it’s
heap property to ensure a sorted array

16 14 10 8 7 9 3 2

0 1      2     3      4      5      6      7      8      9

4 1

A.HeapSize = 10

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)



Heapsort

• Given an array, heapsort first builds a heap from it, then relies on it’s
heap property to ensure a sorted array

1 14 10 8 7 9 3 2

0 1      2     3      4      5      6      7      8      9

4 16

A.HeapSize = 9

1

16

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)



Heapsort

• Given an array, heapsort first builds a heap from it, then relies on it’s
heap property to ensure a sorted array

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)

14 8 10 4 7 9 3 2

0 1      2     3      4      5      6      7      8      9

1 16

A.HeapSize = 9

1



Heapsort

Heap built After iteration 1 (i = 9) After iteration 2 (i = 8)

After iteration 3 (i = 7) After iteration 4 (i = 6) After iteration 5 (i = 5)



Heapsort

After iteration 7 (i = 3) After iteration 8 (i = 2)

After iteration 9 (i = 1) After iteration 5 (i = 5)

After iteration 6 (i = 4)

1 2 3 4 7 8 9 10

0 1      2     3      4      5      6      7      8      9

14 16

End of heapsort



Heapsort

After iteration 7 (i = 3) After iteration 8 (i = 2)

After iteration 9 (i = 1) After iteration 5 (i = 5)

After iteration 6 (i = 4)

1 2 3 4 7 8 9 10

0 1      2     3      4      5      6      7      8      9

14 16

End of heapsort



Heapsort – running time

• build heap: O(n)

• heapify: O(log n)

• For loop iterates n-1 times
• heapify called n-1 times

• T(n) = O(n) + (n-1) * O(log n)

= O(n * log n)

• Q: Does heapsort sort in place?

Heapsort(A)

build_heap(A)

len = A.HeapSize

for i = len – 1 downto 1

exchange(A[0], A[i])

A.HeapSize = A.HeapSize – 1

heapify(A, 0)



Content

• Heap

• Heapsort

• Priority Queue



Priority Queue

• We’ve used heap as a data structure that supports heapsort
• In most practical sorting applications, quicksort faster than heapsort

• But heap is useful for more than just sorting, as an actual 
implementation of an ADS called priority queue

• Example: scheduling execution of jobs (programs) on a shared 
computer server

A set of elements S, each s ∈ S has a corresponding priority number (key) assigned to it. 
Elements with higher priority should be processed before elements of lower priority. 

Elements with the same priority should be processed in the order of insertion (queue).  

Priority queuing



Priority queue

• Max-Priority queue has the following operations
• Insert(S,x) – inserts the element x into S (equivalent to S = S ∪{x})

• Maximum(S) – returns s ∈ S with the highest priority (key)

• Extract-Max(S) – removes and returns s ∈ S with the highest priority

• Increase-Prio(S, x, k) – increase the priority of the element x to 
the new priotity value k

• For max-PQ, we assume we never reduce priorioty, only increase it

• Min-Priority queue has: 
• Insert, Minimum, Extract-Min, Decrease-Prio



Priority queue with heap

• Elements of the set S stored in an array A

• We assume that every element of S the heap’s array is a structure 
with two values
• key (A[i].key): this is the priority indicator – in max-PQ, larger key means 

higher priority

• value (A[i].value): the actual data of the element (not used for heap 
organization)

Maximum(A)

return A[0]

Extract-Max(A)

if A.HeapSize < 1

error „underflow”

max = A[0]

A[0] = A[A.HeapSize - 1]

A.HeapSize = A.HeapSize – 1

heapify(A, 0)

return max    

O(1)

O(log n)



Priority queue with heap

Increase-Prio(A, i, key)

if key < A[i]

error „new key smaller than current”

A[i].key = key 

# restore heap property by pushing A[i] up

while i > 0 and A[i].key > A[parent(i)].key 

exchange(A[i], A[parent(i)])

i = parent(i) 

Insert(A, key)

if A.HeapSize = A.Length

error „overflow”

A.HeapSize = A.HeapSize + 1 

A[A.HeapSize – 1].key = -inf # some big negative value

Increase-Prio(A, A.HeapSize – 1, key)

O(log n)

O(log n)
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