ALGORITHMS IN AI \& DATA SCIENCE 1 (AKIDS 1)

Sorting
Prof. Dr. Goran Glavaš

Content

- Sorting
- Merge Sort
- Quick Sort

Sorting problem

- How do we measure time complexity?
- In terms of number of elementary operations executed
- How does that number depend on the input? What is the size of the problem?
- What about the operations that do not depend on the size of the input?
- Let us go back to the sorting problem...

Sorting Problem

Input: A sequence of n numbers $<a_{1}, a_{2}, \ldots, a_{n}>$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}>$ such that

$$
a^{\prime}{ }_{1} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}
$$

Why Sorting?

- Sorting is considered to be the most fundamental problem in the study of algorithms
- Some applications are basically directly expressible as sorting problems
- E.g., Banks are legally obliged to issue checks in sorted order

Companies must issue invoices in some order

- Many algorithms use sorting as a component, i.e., a subroutine
- There's a wide variety of sorting algorithms: they use techniques and data structures used in more complex algorithms too
- Good starting point for „algorithmic thinking"
- We can prove a nontrivial lower-bound complexity for sorting, and also know that the best sorting algorithms reach this bound asymptotically
- This can be used to prove lower-bound complexity for more complex problems

Keys and Records

comparison central elementary operation in all sorting algorithms

- All examples will sort numbers

- How do we sort items of other data types?
- We just need to define a comparison operator for other primitive types
- E.g., strings can be converted into integers. Q: how?
- We typically sort more complex items („records"), with key being the numeric field of the record based on which we sort
- The rest of the record is just moved together with the key

Lower-bound complexity

- A lower bound for a problem is the worst-case running time of the best (most efficient) possible algorithm that solves the problem
- Lower-bound for sorting?
- So far, we've seen only one sorting algorithm: Insert(ion) sort
- Insert sort has the quadratic complexity, it's running time is in $\mathbf{O}\left(\mathrm{n}^{2}\right)$
- A sorting algorithm with lower/better worst-case running time?
- A sorting algorithm of linear complexity: in $\mathbf{O}(\mathrm{n})$?

Insert sort

Sorting Problem

Input: A sequence of n numbers $\left.<a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}>$ such that

$$
a^{\prime}{ }_{1} \leq a^{\prime}{ }_{2} \leq \ldots \leq a_{n}^{\prime}
$$

Algorithm: insert(ion) sort

```
insert_sort(L) # L is a list of numbers
    for i = 1 to L.length - 1 # 0-indexing, first element is at index 0, last at len-1
        key = L[i]
        j = i-1
        while j > -1 and L[j] > key
            L[j+1] = L[j]
            j = j - 1
        L[j+1] = key
```


Insert sort: running time

Algorithm: insert(ion) sort

```
insert_sort(L)
    for i = 1 to L.length - 1 # (n-1)* cc
        key = L[i] # (n-1)* c%
        j = i-1 # (n-1)* c3
        while j > -1 and L[j] > key # \sum Ni=1
        L[j+1] = L[j] # \sum ni=1
```



```
    L[j+1] = key # (n-1)* c,
```

- Total running time $T(n)$

$$
\begin{aligned}
\mathbf{T}(\mathrm{n})= & (\mathrm{n}-1) *\left(\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{7}\right)+ \\
& \sum_{i=1}^{n-1} c_{4} * t_{i}+\left(c_{5}+c_{6}\right) *\left(t_{i}-1\right)
\end{aligned}
$$

- What is the worst possible scenario (largest possible running time)?
- If the input L is inversely sorted (from largest to smallest value)
- $\mathrm{t}_{\mathrm{i}}=\mathrm{i}$ for each i
- $\sum_{i=1}^{n-1} c_{4} * t i=(1+2+\ldots+(n-1)) * c_{4}=\frac{(n-1) * n}{2} * c_{4}$
- $\sum_{i=1}^{n-1} c_{5} *\left(t_{i}-1\right)=(0+1+\ldots+(n-2)) * c_{5}=\frac{(n-2) *(n-1)}{2} * c_{5}$
- $\sum_{i=1}^{n-1} c_{6} *(t i-1)=(0+1+\ldots+(n-2)) * c_{6}=\frac{(n-2) *(n-1)}{2} * c_{6}$

Insert sort: running time

Algorithm: insert(ion) sort

```
insert_sort(L)
    for i = 1 to L.length - 1 # (n-1)* cc
        key = L[i] # (n-1)* co
        j = i-1 # (n-1)* c3
        while j > -1 and L[j] > key # \sum Ni=1
        L[j+1] = L[j] # \sum ni=1 n-1 c5*(ti-1)
        j = j - 1 # \sum ni=1}n\mp@subsup{c}{6}{*}*(\mp@subsup{t}{i}{}-1
    L[j+1]= key # (n-1)* c,
```

- Total running time $T(n)$

$$
\begin{aligned}
\mathbf{T}(\mathrm{n})= & (\mathrm{n}-1) *\left(\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{7}\right)+ \\
& \sum_{i=1}^{n-1} c_{4} * t i+\left(c_{5}+c_{6}\right) *\left(t_{i}-1\right)
\end{aligned}
$$

- What is the worst possible scenario (largest possible running time)?
- If the input L is inversely sorted (from largest to smallest value)
- $\mathrm{t}_{\mathrm{i}}=\mathrm{i}$ for each i
- $T(n)=(n-1) *\left(c_{1}+c_{2}+c_{3}+c_{7}\right)+\frac{(n-1) * n}{2} * c_{4}+\frac{(n-2) *(n-1)}{2} *\left(c_{5}+c_{6}\right)$
- $T(n)=a^{*} n^{2}+b^{*} n+c$
- This is a quadratic function of $\mathrm{n} \rightarrow \mathrm{O}\left(\mathrm{n}^{2}\right)$

Rates of growth and complexity

- Growth rates for some common complexity functions
- $\Theta(1)$ (constant)
- $\Theta(\log n)$ (logarithmic)
- $\Theta(n)$ (linear)
- $\Theta(n \log n)$ (loglinear)
- $\Theta\left(n^{2}\right)$ (quadratic complexity)
- $\Theta\left(n^{3}\right)$ (cubic complexity)
- ... $\Theta\left(n^{k}\right)$ for $k \geq 0$ (polynomial)
- $\Theta\left(2^{n}\right)$ (exponential)

Image from https://tinyurl.com/46c3cssy

- $\Theta(\mathrm{n}!)$ (factorial)

Sorting algorithms

- We will not only consider time complexity, but also space complexity
- Space is normally not an issue, but to emphasize space-time trade-off
- In-place sorting
- Algorithm that only needs to store a constant number of elements from the input array outside of that array
- Is insert(ion) sort an in-place sorting algorithm?
- How many elements are stored outside of the input array at any given time?
- When sorting very large arrays, ,,in-place" sorting becomes important

Sorting and algorithm design techniques

- When building algorithms, we often resort to some common algorithm design techniques
- Insert sort: sorting based on incremental approach
- Having sorted the subarray L [0:i-1]
- We proceed to insert the i-th element into the correct place
- This yields the correct sorting for the subarray L[0:i]

```
insert_sort(L)
    for i = 1 to L.length - 1
    key = L[i]
    j = i-1
    while j > -1 and L[j] > key
        L[j+1] = L[j]
        j = j - 1
    L[j+1] = key
```


Sorting and algorithm design techniques

- When building algorithms, we often resort to some common algorithm design techniques
- Sorting based on divide-and-conquer approach (recursion!)
- Divide-and-conquer:
- DIVIDE: divide the problem into a number of subproblems that are instances of the same problem
- CONQUER: solve the subproblems
- if the size of the subproblem is small enough, solve it the straightforward way
- If the size of the subproblem is still large, DIVIDE it further
- COMBINE: create the solution to the problem by combining the solutions to the subproblems

Content

- Sorting
- Merge Sort
- Quick Sort

Merge Sort

Merge Sort implements the „divide-and-conquer" algorithm design

- DIVIDE: divide the n-element input array to be sorted into two subarrays of length $n / 2$ each
- CONQUER: sort each of the subarrays recursively (the recursion hits the „bottom" when the subarray to be sorted is of length 1)
- COMBINE: Merge the sorted subarrays to produce the sorted array
- Key is the merge function here, otherwise merge sort is a simple recursion

Merge Sort: illustration

Divide until reaching single-element subarrays
Conquer: trivial - „sort one-element arrays" (no real sorting)

Merge Sort: illustration

Combine: merge two sorted subarrays into a sorted array
We need to define the critical merge ($\mathbb{A}, \mathrm{p}, \mathrm{q}, \mathrm{r}$) function

- A: the input array
- p: index of first element of the first subarray
- q: index of last element of first subarray
- r : index of last element of second subarray
- Q: what's the index of the first element of second subarray?

Merge Sort: merge function

```
merge(A, p, q, r)
    n left = q - p + 1 # number of elements in the left subarray
    n_right = r - q # number of of elements in the right subarray
    L = array[n_left] # create the left subarray
    R = array[n_right] # create the right subarray
    # copy the elements from the original array into subarrays
    for i = 0 to n left - 1:
    L[i] = A[p + i]
for j = 0 to n right - 1:
    R[j] = A[q + 1 + j]
# the real "merging" starts now
ind_l = 0
ind_r = 0
for k = p to r
    if ind_r > n_right - 1 or L[ind_l] \leq R[ind_r]
        A[k] = L[ind_l]
        ind_l = ind_l + 1
    else
        A[k] = R[ind_r]
        ind_r = ind_r + 1
```


Merge sort: merge function

- What is the running time of the merge function?
- What is the „input size" n?
- Length of (sub)array under consideration: $r-p+1$
- Consists of two subarrays
- If we ignore the constant runtime costs, we get
$n / 2+n / 2+n=2 n=\mathbf{O}(n)$

```
merge (A, p, q, r)
```

merge (A, p, q, r)
n_left = q - p + 1
n_left = q - p + 1
n_right = r - q
n_right = r - q
L = array[n_left]
L = array[n_left]
R = array[n_right]
R = array[n_right]
for i = 0 to n_left - 1: \# runtime = n/2
for i = 0 to n_left - 1: \# runtime = n/2
L[i] = A[p + i]
L[i] = A[p + i]
for j = 0 to n_right - 1: \# runtime = n/2
for j = 0 to n_right - 1: \# runtime = n/2
R[j] = A[q + 1 + j]
R[j] = A[q + 1 + j]
ind_l = 0
ind_l = 0
ind_r = 0
ind_r = 0
for k = p to r \# runtime = n
for k = p to r \# runtime = n
if ind_r > n_right - 1 or L[ind_l] \leq R[ind_r]
if ind_r > n_right - 1 or L[ind_l] \leq R[ind_r]
A[k] = L[ind_l]
A[k] = L[ind_l]
ind_l = ind_l + 1
ind_l = ind_l + 1
else
else
A[k] = R[ind_r]
A[k] = R[ind_r]
ind_r = ind_r + 1

```
        ind_r = ind_r + 1
```


Merge sort

- Now that we have defined the merge function, let's see the whole recursive merge sort algorithm

```
merge_sort(A, P, r)
    n = r - p + 1
    if n % 2 == 1 # odd number of elements
        q = p + n//2 # a//b is integer division, 7//2 = 3
    else # even number of elements
        q = p + n/2 - 1
    merge_sort(A, p, q)
    merge_sort(A, q + 1, r)
    merge(A, p, q, r)
```


Merge sort: runtime

- Runtime of the merge function is $2 \mathrm{n}=\mathrm{O}(\mathrm{n})$
- Merge-sort on 1-element array
- Constant time (nothing actually), O(1)
- When $n>1$
- DIVIDE: just computes the middle of the subarray, constant time \rightarrow
- $D(n)=O(1)$
- CONQUER: recursively sort two subproblems of size $n / 2$
- $C(n)=2 * T(n / 2)$
- COMBINE (merge): runtime of the merge function
- $M(n)=O(n)$

```
merge_sort(A, p, r)
    n=r - p + 1
    if n % 2 == 1
        q = p + n//2
    else
        q=p + n/2 - 1
    merge_sort(A, p, q)
    merge_sort(A, q + 1, r)
    merge(A, p, q, r)
```


Merge sort: runtime

DIVIDE: $\mathrm{D}(\mathrm{n})=\mathbf{O}(\mathbb{1})$
CONQUER: $C(n)=2$ * $T(n / 2)$
COMBINE (merge): $M(n)=\mathbf{O}(n)$

- Summing $D(n)+M(n)$ gives $O(n)+O(1)=O(n)$
- So, $\mathrm{T}(\mathrm{n})$ for merge sort is
$\rightarrow \mathbf{O}(\mathbf{1})$, if $\mathrm{n}=1$
$\rightarrow 2 * T(n / 2)+O(n)$, if $n>1 \quad$ (recursively defined runtime)
- Or, removing the O notation, introducing the constants, $T(n)=$
$\rightarrow \mathrm{c}$, if $\mathrm{n}=1$
$\rightarrow 2 * T(n / 2)+c^{*} n$, if $n>1$

Merge sort: runtime

- $\mathrm{So}, \mathrm{T}(\mathrm{n})$ is

$$
\begin{aligned}
& \rightarrow c \text {, if } n=1 \\
& \rightarrow 2^{*} T(n / 2)+c^{*} n, \text { if } n>1
\end{aligned}
$$

- Recursive runtime computation

$$
\begin{aligned}
& T(n / 2)=2 * T(n / 4)+c^{*} n / 2 \\
& T(n / 4)=2 * T(n / 8)+c^{*} n / 4
\end{aligned}
$$

$$
T(n=1)=c
$$

(Adapted) Image from Cormen et al.

Merge sort: runtime

- $T(n)=c^{*} n+2^{*} c^{*} n / 2+4^{*} c^{*} n / 4+\ldots+n *$

$$
=c^{*} n+c^{*} n+c^{*} n+\ldots+c^{*} n
$$

How many times do we have c*n?

- Depth of the tree $=\log _{2} n$

- $\mathrm{T}(\mathrm{n})=\mathrm{c}^{*} \mathrm{n}^{*} \log _{2} \mathrm{n}=\mathbf{O}(\mathrm{n} \log \mathrm{n})$

Merge sort: space complexity

- Q: Is merge sort an „in place" sorting algorithm?
- How much additional memory does it need besides A?
- Is that additional memory of constant size or depends on n ?
- In merge function, we copy all elements into subarrays L and R
- $L+R$ have n elements
- So total memory occupation is $2 n$
- Not in place sorting
- A problem only in case of extremely large arrays

```
merge (A, p, q, r)
```

merge (A, p, q, r)
n_left = q - p + I
n_left = q - p + I
n_right = r - q
n_right = r - q
L = array[n_left]
L = array[n_left]
R = array[n_right]
R = array[n_right]
for i = 0 to n_left - 1: \# runtime - n/2
for i = 0 to n_left - 1: \# runtime - n/2
L[i] = A[p + i]
L[i] = A[p + i]
for j = 0 to n_right - 1: \# runtime - n/2
for j = 0 to n_right - 1: \# runtime - n/2
R[j] = A[q + 1 + j]
R[j] = A[q + 1 + j]
ind_l = 0
ind_l = 0
ind r = 0
ind r = 0
for k = p to r \# runtime - n
for k = p to r \# runtime - n
if ind_r > n_right - 1 or L[ind_l] \leq R[ind_r]
if ind_r > n_right - 1 or L[ind_l] \leq R[ind_r]
A[k] = L[ind_l]
A[k] = L[ind_l]
ind_l = ind_l + 1
ind_l = ind_l + 1
else
else
A[k] = R[ind_r]
A[k] = R[ind_r]
ind_r = ind_r + 1

```
        ind_r = ind_r + 1
```

Content

- Sorting
- Merge Sort
- Quick Sort

Quick Sort

Quick sort is another „divide-and-conquer"

sorting algorithm

- Unlike merge sort, sorts the array in place
- DIVIDE: central part of the algorithm
- Partition the array $\mathbf{A}[\mathrm{p}, \mathrm{r}]$ into two subarrays $A[p, q-1]$ and $A[q+1, r]$, such that all elements of $\mathbf{A}[p, q-1]$ are smaller than $\mathbf{A}[q]$ and all elements of $\mathbf{A}[q+1, r]$ are larger than $\mathbf{A}[q]$

```
quick_sort(A, p, r)
    q = partition(A, p, r)
    quick_sort(A, p, q - 1)
    quick_sort(A, q + 1,r)
```

- After sorting $\mathbf{A}[p, q-1]$ and $\mathbf{A}[q+1, r]$ (recursively) the whole array is sorted

Quick sort: partition

```
partition(A, P, r)
    pivot = A[r]
    s = p - 1 # index of the last element smaller (or same) than pivot
    for i = p to r - 1:
    if A[i] \leq pivot
        S = s + 1
        exchange(A[i], A[s])
    exchange(A[s+1], A[r])
    return s + 1
```

\#for loop, 1. iteration
A[0] = 9 S pivot = 4 倍 False
\#for loop, 2. iteration
A[1] = 2 \leq pivot = 4 }->\mathrm{ True
s=s + 1 = 0
exchange A[1], A[0] (2 and 9)

```


```

```
pivot = A[7] = 4
```

```
pivot = A[7] = 4
s = 0 - 1 = -1
```

s = 0 - 1 = -1

```
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 2 & 9 & 6 & 7 & 5 & 1 & 8 \\
\hline
\end{tabular}

\section*{Quick sort: partition}
```

partition(A, P, r)
pivot = A[r]
s = p - 1 \# index of the last element smaller (or same) than pivot
for i = p to r - 1:
if A[i] \leq pivot
s = s + 1
exchange(A[i], A[s])
exchange(A[s+1], A[r])
return s + 1

```
```

22

```
```

22

```
```

\#for loop, 3. iteration

```
#for loop, 3. iteration
A[2] = 6 S pivot = 4 T False
A[2] = 6 S pivot = 4 T False
#for loop, 4. iteration
A[3] = 7 \leq pivot = 4 T False
#for loop, 5. iteration
A[4] = 5 S pivot = 4 T False
```


Quick sort: partition

```
partition(A, P, r)
    pivot = A[r]
    s = p - 1 # index of the last element smaller (or same) than pivot
    for i = p to r - 1:
    if A[i] \leq pivot
        S = s + 1
        exchange(A[i], A[s])
    exchange(A[s+1], A[r])
    return s + 1
```

```
2
```

```
2
```

```
#for loop, 6. iteration
```

\#for loop, 6. iteration
A[5] = 1 S pivot = 4 T True
A[5] = 1 S pivot = 4 T True
s = s + 1 = 1
s = s + 1 = 1
exchange A[1], A[5] (1 and 9)
exchange A[1], A[5] (1 and 9)
\2 }10.6\mp@code{7

```

\section*{Quick sort: partition}
```

partition(A, P, r)
pivot = A[r]
s = p - 1 \# index of the last element smaller (or same) than pivot
for i = p to r - 1:
if A[i] \leq pivot
s = s + 1
exchange(A[i], A[s])
exchange(A[s+1], A[r])
return S + 1

2	1	6	7	5	9	8	4

```
```

\#for loop, 7. iteration

```
#for loop, 7. iteration
A[6] = 8 S pivot = 4 }->\mathrm{ False
A[6] = 8 S pivot = 4 }->\mathrm{ False
# for loop over, s = 1
# for loop over, s = 1
exchange A[7](pivot), A[s+1 = 2]
(6 and 4)
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 2 & 1 & 4 & 7 & 5 & 9 & 8 & 6 \\
\hline
\end{tabular}
```

```
return 2 (s+1)
```

return 2 (s+1)
quick_sort([2,1])
quick_sort([2,1])
quick_sort([7, 5, 9, 8, 6])

```
quick_sort([7, 5, 9, 8, 6])
```


Quick sort: running time

- The running time of the quick sort depends on whether the partitioning is (mostly) balanced or unbalanced
- If the partitioning is balanced, quick sort will have the running time of a merge sort (but with in place sorting!)
- On average, partitioning will be balanced! Q: why?
- So average runtime of quick sort is $O\left(n^{*} \log n\right)$!
- Not just that, the constants in running time are lower for quick sort
- Worst case scenario
- Running time of quick sort will be $\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- Q: why?

Quick sort: worst running time

- If $A[i] \leq$ pivot is never fulfilled
- So the partitions will be [] and A[1...r]
- Q: Can you think of a worst case example for quick sort?
- $T(n)=(n-1)+(n-2)+\ldots+2+1$

$$
\begin{aligned}
& =(n-1) * n / 2 \\
& =O\left(n^{2}\right)
\end{aligned}
$$

```
partition(A, P, r)
    pivot = A[r]
    S = 0 - 1
    for i = p to r - 1:
        if A[i] S pivot
    exchange(A[s+1], A[r])
    return s + 1
```

$$
\begin{array}{|l|l|l|l|l|l|l|ll}
\hline 2 & 4 & 5 & 6 & 7 & 8 & 9 & 1 & n-1
\end{array}
$$

\square

$$
\begin{array}{|l|l|l|l|l|l|ll}
\hline 4 & 5 & 6 & 7 & 8 & 9 & 2 & n-2
\end{array}
$$

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 5 & 6 & 7 & 8 & 9 & 4 \\
\hline
\end{array}
$$

\square

6	7	8	9	5	$n-4$

Questions?

