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Sorting problem

• How do we measure time complexity?
• In terms of number of elementary operations executed

• How does that number depend on the input? What is the size of the problem?

• What about the operations that do not depend on the size of the input?

• Let us go back to the sorting problem...

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that       

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem



Why Sorting?

• Sorting is considered to be the most fundamental problem in the 
study of algorithms

• Some applications are basically directly expressible as  sorting problems
• E.g., Banks are legally obliged to issue checks in sorted order

Companies must issue invoices in some order

• Many algorithms use sorting as a component, i.e., a subroutine

• There’s a wide variety of sorting algorithms: they use techniques and data 
structures used in more complex algorithms too
• Good starting point for „algorithmic thinking” 

• We can prove a nontrivial lower-bound complexity for sorting, and also know 
that the best sorting algorithms reach this bound asymptotically 
• This can be used to prove lower-bound complexity for more complex problems



Keys and Records

central elementary operation in all sorting algorithms 

• All examples will sort numbers
• How do we sort items of other data types?

• We just need to define a comparison operator for other primitive types
• E.g., strings can be converted into integers. Q: how?

• We typically sort more complex items („records”), with key being the numeric 
field of the record based on which we sort
• The rest of the record is just moved together with the key

comparison
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Lower-bound complexity

• A lower bound for a problem is the worst-case running time of the 
best (most efficient) possible algorithm that solves the problem

• Lower-bound for sorting?

• So far, we’ve seen only one sorting algorithm: Insert(ion) sort
• Insert sort has the quadratic complexity, it’s running time is in O(n2)

• A sorting algorithm with lower/better worst-case running time? 

• A sorting algorithm of linear complexity: in O(n)?



Insert sort

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that       

a’1 ≤ a’2 ≤ ... ≤ a’n

Algorithm: insert(ion) sort

insert_sort(L) # L is a list of numbers

for i = 1 to L.length – 1 # 0-indexing, first element is at index 0, last at len-1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key   

Image from Cormen et al. 

Sorting Problem



Insert sort: running time

Algorithm: insert(ion) sort

insert_sort(L) 

for i = 1 to L.length – 1 # (n-1) * c1

key = L[i] # (n-1) * c2

j = i-1  # (n-1) * c3

while j > -1 and L[j] > key # σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖

L[j+1] = L[j] # σ𝑖=1
𝑛−1 𝑐5 ∗ (𝑡𝑖-1)

j = j – 1 # σ𝑖=1
𝑛−1 𝑐6 ∗ (𝑡𝑖 − 1)

L[j+1] = key # (n-1) * c7

• What is the worst possible scenario (largest possible running time)?
• If the input L is inversely sorted (from largest to smallest value)
• ti = i for each i

• σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖 = (1 + 2 + ... + (n-1)) * c4 = 

𝑛−1 ∗𝑛

2
∗ c4

• σ𝑖=1
𝑛−1 𝑐5 ∗ (𝑡𝑖 − 1) = (0 + 1 + ... + (n-2)) * c5 = 

𝑛−2 ∗(𝑛−1)

2
∗ c5

• σ𝑖=1
𝑛−1 𝑐6 ∗ (𝑡𝑖 − 1) = (0 + 1 + ... + (n-2)) * c6 = 

𝑛−2 ∗(𝑛−1)

2
∗ c6

• Total running time T(n)

T(n) = (n-1) *(c1 + c2 + c3 + c7) + 

σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖 + (𝑐5+ 𝑐6) ∗ (𝑡𝑖 − 1)



Insert sort: running time

Algorithm: insert(ion) sort

insert_sort(L) 

for i = 1 to L.length – 1 # (n-1) * c1

key = L[i] # (n-1) * c2

j = i-1  # (n-1) * c3

while j > -1 and L[j] > key # σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖

L[j+1] = L[j] # σ𝑖=1
𝑛−1 𝑐5 ∗ (𝑡𝑖-1)

j = j – 1 # σ𝑖=1
𝑛−1 𝑐6 ∗ (𝑡𝑖 − 1)

L[j+1] = key # (n-1) * c7

• Total running time T(n)

T(n) = (n-1) *(c1 + c2 + c3 + c7) + 

σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖 + (𝑐5+ 𝑐6) ∗ (𝑡𝑖 − 1)

• What is the worst possible scenario (largest possible running time)?
• If the input L is inversely sorted (from largest to smallest value)

• ti = i for each i

• T(n) = (n-1) *(c1 + c2 + c3 + c7) + 
𝑛−1 ∗𝑛

2
∗ c4 +

𝑛−2 ∗ 𝑛−1

2
∗ (c5+ c6)

• T(n) = a*n2 + b*n + c

• This is a quadratic function of n   → O(n2)



Rates of growth and complexity

• Growth rates for some common 
complexity functions
• Θ(1) (constant)

• Θ(log n) (logarithmic)

• Θ(n) (linear)

• Θ(n log n) (loglinear)

• Θ(n2) (quadratic complexity)

• Θ(n3) (cubic complexity)
• ... Θ(nk) for k ≥ 0 (polynomial)

• Θ(2n) (exponential)

• Θ(n!) (factorial)

Image from https://tinyurl.com/46c3cssy

https://tinyurl.com/46c3cssy


Sorting algorithms

• We will not only consider time complexity, but also space complexity
• Space is normally not an issue, but to emphasize space-time trade-off

• In-place sorting
• Algorithm that only needs to store a constant number of elements from the 

input array outside of that array

• Is insert(ion) sort an in-place sorting algorithm?
• How many elements are stored outside of the input array at any given time?

• When sorting very large arrays, „in-place” sorting becomes important



Sorting and algorithm design techniques

• When building algorithms, we often resort to some common 
algorithm design techniques

• Insert sort: sorting based on incremental approach
• Having sorted the subarray L[0:i-1]

• We proceed to insert the i-th element 

into the correct place

• This yields the correct sorting for the subarray 

L[0:i]

insert_sort(L)

for i = 1 to L.length – 1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key   



Sorting and algorithm design techniques

• When building algorithms, we often resort to some common 
algorithm design techniques

• Sorting based on divide-and-conquer approach (recursion!)

• Divide-and-conquer:
• DIVIDE: divide the problem into a number of subproblems that are instances 

of the same problem

• CONQUER: solve the subproblems
• if the size of the subproblem is small enough, solve it the straightforward way

• If the size of the subproblem is still large, DIVIDE it further

• COMBINE: create the solution to the problem by combining the solutions to 
the subproblems



Content

• Sorting

• Merge Sort

• Quick Sort



Merge Sort

Merge Sort implements the „divide-and-conquer” algorithm design

• DIVIDE: divide the n-element input array to be sorted into two 
subarrays of length n/2 each

• CONQUER: sort each of the subarrays recursively (the recursion hits 
the „bottom” when the subarray to be sorted is of length 1)

• COMBINE: Merge the sorted subarrays to produce the sorted array
• Key is the merge function here, otherwise merge sort is a simple recursion     



Merge Sort: illustration

9 2 6 4 5 1 8 7

0 1   2   3    4   5    6   7

9 2 6 4 5 1 8 7

9 2 6 4 5 1 8 7

9 2 6 4 5 1 8 7

Divide until reaching single-element subarrays

Conquer: trivial – „sort one-element arrays” (no real sorting)

Divide

„Conquer” 
(nothing happens)



Merge Sort: illustration

Combine: merge two sorted subarrays into a sorted array

We need to define the critical  merge(A, p, q, r) function
• A: the input array

• p: index of first element of the first subarray

• q: index of last element of first subarray

• r: index of last element of second subarray
• Q: what’s the index of the first element of 

second subarray?

9 2 6 4 5 1 8 7

...

2 9 4 6 1 5 7 8

2 4 6 9 1 5 7 8

1 2 4 5 6 7 8 9

merge(L, 0, 0, 1)

merge(L, 4, 5, 7)



Merge Sort: merge function

merge(A, p, q, r)

n_left = q - p + 1 # number of elements in the left subarray

n_right = r – q # number of of elements in the right subarray

L = array[n_left] # create the left subarray

R = array[n_right] # create the right subarray

# copy the elements from the original array into subarrays

for i = 0 to n_left - 1: 

L[i] = A[p + i] 

for j = 0 to n_right – 1:

R[j] = A[q + 1 + j]    

# the real „merging” starts now

ind_l = 0

ind_r = 0

for k = p to r

if ind_r > n_right – 1 or L[ind_l] ≤ R[ind_r]

A[k] = L[ind_l]

ind_l = ind_l + 1

else

A[k] = R[ind_r]

ind_r = ind_r + 1



Merge sort: merge function

• What is the running time 
of the merge function?

• What is the „input size” n?
• Length of (sub)array under 

consideration: r – p + 1

• Consists of two subarrays 

• If we ignore the constant 
runtime costs, we get

n/2 + n/2 + n = 2n = O(n)

merge(A, p, q, r)

n_left = q - p + 1

n_right = r – q

L = array[n_left]

R = array[n_right]

for i = 0 to n_left - 1: # runtime = n/2

L[i] = A[p + i]

for j = 0 to n_right – 1: # runtime = n/2

R[j] = A[q + 1 + j]    

ind_l = 0

ind_r = 0

for k = p to r # runtime = n    

if ind_r > n_right – 1 or L[ind_l] ≤ R[ind_r]

A[k] = L[ind_l]

ind_l = ind_l + 1

else

A[k] = R[ind_r]

ind_r = ind_r + 1



Merge sort

• Now that we have defined the merge function, let’s see the whole 
recursive merge sort algorithm

merge_sort(A, p, r)

n = r – p + 1

if n % 2 == 1 # odd number of elements

q = p + n//2 # a//b is integer division, 7//2 = 3

else # even number of elements

q = p + n/2 - 1

merge_sort(A, p, q)

merge_sort(A, q + 1, r)   

merge(A, p, q, r)



Merge sort: runtime

• Runtime of the merge function is 2n = O(n)

• Merge-sort on 1-element array
• Constant time (nothing actually), O(1)

• When n > 1
• DIVIDE: just computes the middle of the subarray, constant time →

• D(n) = O(1)

• CONQUER: recursively sort two subproblems of size n/2
• C(n) = 2 * T(n/2)

• COMBINE (merge): runtime of the merge function 
• M(n) = O(n)

merge_sort(A, p, r)

n = r – p + 1

if n % 2 == 1

q = p + n//2

else

q = p + n/2 - 1

merge_sort(A, p, q)

merge_sort(A, q + 1, r)   

merge(A, p, q, r)



Merge sort: runtime

DIVIDE: D(n) = O(1)

CONQUER: C(n) = 2 * T(n/2)

COMBINE (merge): M(n) = O(n)

• Summing D(n) + M(n) gives O(n) + O(1) = O(n)

• So, T(n) for merge sort is 

→ O(1), if n = 1

→ 2*T(n/2) + O(n), if n > 1 (recursively defined runtime)

• Or, removing the O notation, introducing the constants, T(n) =

→ c, if n = 1

→ 2*T(n/2) + c*n, if n > 1



Merge sort: runtime

...
(Adapted) Image from Cormen et al.

• So, T(n) is
→ c, if n = 1

→2*T(n/2) + c*n, if n > 1

• Recursive runtime computation

T(n/2) = 2*T(n/4) + c*n/2

T(n/4) = 2* T(n/8) + c*n/4

...

T(n = 1) = c



Merge sort: runtime

...

• T(n) = c*n + 2*c*n/2 + 4*c*n/4 + ... + n * c 

= c*n + c*n + c*n + ... + c*n

• Depth of the tree = log2n

• T(n) = c*n* log2n = O(n log n)

How many times 
do we have c*n?



Merge sort: space complexity

• Q: Is merge sort an „in place” sorting 
algorithm? 

• How much additional memory does it 
need besides A?
• Is that additional memory of constant 

size or depends on n?

• In merge function, we copy all 
elements into subarrays L and R
• L+R have n elements
• So total memory occupation is 2n

• Not in place sorting
• A problem only in case of 

extremely large arrays

merge(A, p, q, r)

n_left = q - p + 1

n_right = r – q

L = array[n_left]

R = array[n_right]

for i = 0 to n_left - 1: # runtime – n/2

L[i] = A[p + i]

for j = 0 to n_right – 1: # runtime – n/2

R[j] = A[q + 1 + j]    

ind_l = 0

ind_r = 0

for k = p to r # runtime – n    

if ind_r > n_right – 1 or L[ind_l] ≤ R[ind_r]

A[k] = L[ind_l]

ind_l = ind_l + 1

else

A[k] = R[ind_r]

ind_r = ind_r + 1
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Quick Sort

Quick sort is another „divide-and-conquer”
sorting algorithm

• Unlike merge sort, sorts the array in place

• DIVIDE: central part of the algorithm
• Partition the array A[p, r] into two subarrays 

A[p, q-1] and A[q+1, r], such that all elements of 
A[p, q-1] are smaller than A[q] and all elements 
of A[q+1, r] are larger than A[q]

• After sorting A[p, q-1] and A[q+1, r]
(recursively) the whole array is sorted

quick_sort(A, p, r)

q = partition(A, p, r)

quick_sort(A, p, q - 1)

quick_sort(A, q + 1, r)   



Quick sort: partition

partition(A, p, r)

pivot = A[r]

s = p – 1 # index of the last element smaller (or same) than pivot

for i = p to r - 1: 

if A[i] ≤ pivot
s = s + 1

exchange(A[i], A[s])   

exchange(A[s+1], A[r])

return s + 1

9 2 6 7 5 1 8 4

0 1   2   3    4   5    6   7

pivot = A[7] = 4

s = 0 - 1 = -1

#for loop, 1. iteration

A[0] = 9 ≤ pivot = 4 → False

#for loop, 2. iteration

A[1] = 2 ≤ pivot = 4 → True

s = s + 1 = 0

exchange A[1], A[0] (2 and 9)    

2 9 6 7 5 1 8 4



Quick sort: partition

partition(A, p, r)

pivot = A[r]

s = p – 1 # index of the last element smaller (or same) than pivot

for i = p to r - 1: 

if A[i] ≤ pivot
s = s + 1

exchange(A[i], A[s])   

exchange(A[s+1], A[r])

return s + 1

2 9 6 7 5 1 8 4

0 1   2   3    4   5    6   7

#for loop, 3. iteration

A[2] = 6 ≤ pivot = 4 → False

#for loop, 4. iteration

A[3] = 7 ≤ pivot = 4 → False

#for loop, 5. iteration

A[4] = 5 ≤ pivot = 4 → False

...



Quick sort: partition

partition(A, p, r)

pivot = A[r]

s = p – 1 # index of the last element smaller (or same) than pivot

for i = p to r - 1: 

if A[i] ≤ pivot
s = s + 1

exchange(A[i], A[s])   

exchange(A[s+1], A[r])

return s + 1

2 9 6 7 5 1 8 4

0 1   2   3    4   5    6   7

#for loop, 6. iteration

A[5] = 1 ≤ pivot = 4 → True

s = s + 1 = 1

exchange A[1], A[5] (1 and 9)

2 1 6 7 5 9 8 4

0 1   2   3    4   5    6   7



Quick sort: partition

partition(A, p, r)

pivot = A[r]

s = p – 1 # index of the last element smaller (or same) than pivot

for i = p to r - 1: 

if A[i] ≤ pivot
s = s + 1

exchange(A[i], A[s])   

exchange(A[s+1], A[r])

return s + 1

2 1 6 7 5 9 8 4

0 1   2   3    4   5    6   7

#for loop, 7. iteration

A[6] = 8 ≤ pivot = 4 → False

# for loop over, s = 1

exchange A[7](pivot), A[s+1 = 2]   

(6 and 4)

return 2 (s+1)

quick_sort([2,1])

quick_sort([7, 5, 9, 8, 6])

2 1 4 7 5 9 8 6

0 1   2   3    4   5    6   7



Quick sort: running time

• The running time of the quick sort depends on whether the 
partitioning is (mostly) balanced or unbalanced

• If the partitioning is balanced, quick sort will have the running time of 
a merge sort (but with in place sorting!)
• On average, partitioning will be balanced! Q: why? 
• So average runtime of quick sort is O(n*log n)!
• Not just that, the constants in running time are lower for quick sort 

• Worst case scenario
• Running time of quick sort will be O(n2). 
• Q: why?



Quick sort: worst running time

• If  A[i] ≤ pivot is never fulfilled 

• So the partitions will be [] and A[1...r]

• Q: Can you think of a worst case
example for quick sort?

• T(n) = (n-1) + (n-2) + ... + 2 + 1

= (n - 1) * n / 2 

= O(n2)

2 4 5 6 7 8 9 1

0 1   2   3    4   5    6   7

partition(A, p, r)

pivot = A[r]

s = p – 1

for i = p to r - 1: 

if A[i] ≤ pivot
s = s + 1

exchange(A[i], A[s])   

exchange(A[s+1], A[r])

return s + 1

1 4 5 6 7 8 9 2

0 1   2   3    4   5    6   7

1 2 5 6 7 8 9 4

0 1   2   3    4   5    6   7

1 2 4 6 7 8 9 5

0 1   2   3    4   5    6   7

n-1

n-2

n-3

n-4

... ...
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