[l CAIDAS WiNLP

ALGORITHMS IN Al & DATA SCIENCE 1 (AKIDS 1)

Sorting

Prof. Dr. Goran Glavas

6.11.2023

Content

* Sorting
* Merge Sort
* Quick Sort

Sorting problem

 How do we measure time complexity?

* In terms of number of elementary operations executed
* How does that number depend on the input? What is the size of the problem?
* What about the operations that do not depend on the size of the input?

* Let us go back to the sorting problem...

r

Sorting Problem
n

(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a',=a,=..=2,

Input: A sequence of n numbers<a,, a,, ..., a,>

Why Sorting?

* Sorting is considered to be the most fundamental problem in the
study of algorithms

* Some applications are basically directly expressible as sorting problems
* E.g., Banks are legally obliged to issue checks in sorted order
Companies must issue invoices in some order

* Many algorithms use sorting as a component, i.e., a subroutine

* There’s a wide variety of sorting algorithms: they use techniques and data
structures used in more complex algorithms too

* Good starting point for ,,algorithmic thinking”

* We can prove a nontrivial lower-bound complexity for sorting, and also know
that the best sorting algorithms reach this bound asymptotically

* This can be used to prove lower-bound complexity for more complex problems

Keys and Records

comparison | central elementary operation in all sorting algorithms

* All examples will sort numbers
* How do we sort items of other data types?

* We just need to define a comparison operator for other primitive types
* E.g., strings can be converted into integers. Q: how?

* We typically sort more complex items (,,records”), with key being the numeric
field of the record based on which we sort

* The rest of the record is just moved together with the key

[) [) [) [)

65 17 27 45 — keys for sorting
Max Dalya Marcin Monika
Mustermann Prost Kovalyev Seles
J \ J \

Lower-bound complexity

* A lower bound for a problem is the worst-case running time of the
best (most efficient) possible algorithm that solves the problem

* Lower-bound for sorting?

 So far, we've seen only one sorting algorithm: Insert(ion) sort
* Insert sort has the quadratic complexity, it’s running time is in O(n?)
* A sorting algorithm with lower/better worst-case running time?
* A sorting algorithm of linear complexity: in O(n)?

Insert sort

Sorting Problem

s
Input: A sequence of n numbers <a,, a,, ..., a,>
(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=..=ad,
.

Algorithm: insert(ion) sort

insert sort(L) # L is a list of numbers

for 1 = 1 to L.length — 1 # 0-indexing, first element is at index 0, last at len-1

key = L[1]

7= 1-1

while 7 > -1 and L[] > key
L{j+1] = L[7]
J =31 -1

L{J+1] = key

Image from Cormen et al.

Insert sort: running time

Algorithm: insert(ion) sort

insert sort (L) * Total running time T(n)

for i = 1 to L.length — 1 # (n1)*¢ T(n)=(n-1) *(c,+c, +cy+ ;) +
key = L[1] # (n1)*c o
5 . ST b e o1 Cax b+ (cs+ce) *(t— 1)
while 7 > -1 and L[7] > key # Yllc, =ti
L{J+1] = LIJ]# X5ies = (6-1)
J =3 - 1 #35 ¢ *(t,—1)
L[J+1] = key # (n-1)*¢,

 What is the worst possible scenario (largest possible running time)?
e If the input L is inversely sorted (from largest to smallest value)
t. =iforeachi

_(n-1)*n

. ?:_11 c, * ti =(1+2+_”+(n_1))*c4 : rc,
e Yl ek (6,—1)=(0+1+..+(n-2)) *c.= (n—Z)Z(n—l) % Co
° ?:_11 C6 * (tl - 1) = (O + 1 + ...+ (n_z)) * C6: (n—Z)*(n—l) . C6

2

Insert sort: running time

Algorithm: insert(ion) sort

insert sort (L) * Total running time T(n)

for i = 1 to L.length — 1 # (n1)*¢ T(n)=(n-1) *(c,+c, +cy+ ;) +
key = L[i] # (n1)*c, n—1
J = 1i-1 # (n1)*c =1
while 7 > -1 and L[] > key # Y'lc, =t
L{J+1] = LIJ]# X5ies = (6-1)
J =3 = 1 # 35 ¢ *(t—1)
L{J+1] = key # (n1)*¢,

Cyu* L+ (cs+co) *(t;— 1)

 What is the worst possible scenario (largest possible running time)?
If the input L is inversely sorted (from largest to smallest value)
t. =iforeachi

(n—1)*n ke, + (n—Z)Z*(n—l) . (C5 n C6)

T(n) =(n-1) *(c,+c, + 5+ ¢,) +

T(n)=a*n’+b*n+c
This is a quadratic function of n = 0(n?)

Rates of growth and complexity

 Growth rates for some common eseind I
complexity functions roanal-
« ©(1) (constant) onel- .
« ©(log n) (logarithmic) el
« ©(n) (linear) :
« ©(n log n) (loglinear) o=,
« ©(n?) (quadratic complexity) °r
« ©(n°) (cubic complexity) n
. ... 0(nX) for k = 0 (polynomial) e B Ba T e R R
° @(Zn) (exponential) Image from https://tinyurl.com/46c3cssy

e ©(n!) (factorial)

https://tinyurl.com/46c3cssy

Sorting algorithms

* We will not only consider time complexity, but also space complexity
e Space is normally not an issue, but to emphasize space-time trade-off

* In-place sorting

* Algorithm that only needs to store a constant number of elements from the
input array outside of that array

* Isinsert(ion) sort an in-place sorting algorithm?
* How many elements are stored outside of the input array at any given time?

* When sorting very large arrays, , in-place” sorting becomes important

Sorting and algorithm design technigues

* When building algorithms, we often resort to some common
algorithm design techniques

* Insert sort: sorting based on incremental approach
e Having sorted the subarray L [0 :1-1]

insert sort (L)
* We proceed to insert the i-th element for i = 1 to L.length - 1

into the correct place]j{e: - =
. . . while 7 > -1 and L[7] > ke
* This yields the correct sorting for the subarray N [j&] I . .
L[O:1] 3=3 -1

L[{j+1] = key

Sorting and algorithm design technigues

* When building algorithms, we often resort to some common
algorithm design techniques

 Sorting based on divide-and-conquer approach (recursion!)

* Divide-and-conquer:
* DIVIDE: divide the problem into a number of subproblems that are instances
of the same problem
* CONQUER: solve the subproblems
* if the size of the subproblem is small enough, solve it the straightforward way
 If the size of the subproblem is still large, DIVIDE it further

* COMBINE: create the solution to the problem by combining the solutions to
the subproblems

Content

* Sorting
* Merge Sort
* Quick Sort

Merge Sort

Merge Sort implements the , divide-and-conquer” algorithm design

* DIVIDE: divide the n-element input array to be sorted into two
subarrays of length n/2 each

* CONQUER: sort each of the subarrays recursively (the recursion hits
the ,bottom” when the subarray to be sorted is of length 1)

* COMBINE: Merge the sorted subarrays to produce the sorted array
* Key is the merge function here, otherwise merge sort is a simple recursion

Merge Sort: illustration

Divide until reaching single-element subarrays
Conquer: trivial — ,sort one-element arrays” (no real sorting)

- 9|26/ 4 5(1(87
Divide — /\ /\
9| 2 6| 4 511 8|7
,Conquer” =5 9| |2| [6]| |4]|5 1 (8| |7

(nothing happens)

Merge Sort: illustration

Combine: merge two sorted subarrays into a sorted array

We need to define the critical merge (A, p, g,) function
* A:the input array
* p:index of first element of the first subarray

* g: index of last element of first subarray A A /\ /\
9| |2| |6| |4||5| |2 |8] |7

* r:index of last element of second subarray
* Q: what’s the index of the first element of

Y I I I
second subarray? /
219 4116 1|5 7118

Merge Sort: merge function

merge (A, p, d, r)
n left = g - p + 1 # number of elements in the left subarray
n right = r - g # number of of elements in the right subarray

L = array[n left] # create the left subarray
R = array[n right] # create the right subarray

copy the elements from the original array into subarrays
for 1 = 0 to n left - 1:

L[1] = Alp + 1]
for 7 = 0 to n right - 1:
R[J] = Alg + 1 + 7]
the real ,merging” starts now
ind 1 = 0
ind:r =0

for kK = p to r
if ind r > n right - 1 or L[ind 1] = R[ind r]

Alk] = L[ind 1]

ind 1 = ind 1 + 1
else

Alk] = R[ind r]

ind r = ind r + 1

Merge sort: merge function

. . . merge (A, p, q, r)
* What is the running time nleft = g - p + 1

of the merge function? n_right = r =4
L = array[n left]

R = arrayl[n right]
° What IS the ,,inpUt Size” n? for i = 0 to n left - 1: # runtime = n/2

L{i] = Alp + i]
e Length of (sub)array under for § = 0 to n right - 1: # runtime = n/2
consideration:r—p +1 R[JI = Alg + 1 + 7]
. ind 1 = 0
e Consists of two subarrays ind r = 0
for Kk = p to r # runtime = n
. if ind r > n right - 1 or L[ind 1] = R[ind r]
o If we ignore the constant A Liina 1)
runtime costs, we get ind 1 = ind 1 + 1
else
n/2+n/2+n=2n=0(n) A[k] = R[ind_r]

ind r = ind r + 1

Merge sort

* Now that we have defined the merge function, let’s see the whole
recursive merge sort algorithm

merge sort(A, p, r)
n=1r —p+1
ifn % 2 == 1 # odd number of elements
q=p + n//2 # a//b is integer division, 7//2 = 3
else # even number of elements
q=p +n/2 -1

merge sort (A, p, d)
merge sort (A, g + 1, r)
merge (A, p, d,)

Merge sort: runtime

* Runtime of the merge functionis 2n = 0(n)

* Merge-sort on 1-element array
e Constant time (nothing actually), O(1)

* Whenn>1
* DIVIDE: just computes the middle of the subarray, constant time -
* D(n) =0(1)
* CONQUER: recursively sort two subproblems of size n/2 merge_sort (A, Pi r)
= — +
« C(n)=2*T(n/2) €02
q=p + n//2
* COMBINE (merge): runtime of the merge function else
* M(n)=0(n) q=p +n/2 -1

merge sort (A, p, d)
merge sort (A, g + 1, 1)
merge (A, p, 4,)

Merge sort: runtime

DIVIDE: D(n) = O(1)
CONQUER: C(n)=2*T(n/2)
COMBINE (merge): M(n) = O(n)

e Summing D(n) + M(n) gives O(n) + O(1) = O(n)
e So, T(n) for merge sort is

2> 0(1),ifn=1
-2 2*T(n/2) + O(n), if n > 1 (recursively defined runtime)

* Or, removing the O notation, introducing the constants, T(n) =
2 ifn=1
2 2*T(n/2) + c*n,ifn>1

Merge sort: runtime

*So, T(n) is
- c,ifn=1 T(n) cn o
22*T(n/2) + c*n,ifn>1 \ /\ / \

T(n/2) T(n/2)

 Recursive runtime computation ~ / \ /\
T(n/2) =2*T(n/4) + c*n/2
T(n/4) =2* T(n/8) + c*n/4

T(n/4) T(n/4) T(n/4) T(n/4)

(Adapted) Image from Cormen et al.

:I:in=1)=c

Merge sort: runtime

* T(n) =c*n + 2*c*n/2 + 4*c*n/4 + ... + n i e
=c*n+c*n+c*n+..+c*n / \
\] |
Y nanang ch
How many times /\ /\
do we have c*n? cnl4 cnl4 cn/d cn/d wwwine e

ANARANA

* Depth of the tree = log,n
* T(n) =c*n* log,n = O(n log n)

Merge sort: space complexity

merge (A, p, g, r)

* Q:Is merge sort an ,in place” sorting n left = qg-p + 1
algorithm? n right = r - g
* How much additional memory does it L = array[n left]
need besides A? R = array[n right]
* Is that additional memory of constant for i = 0 to n left - 1: # runtime - n/2
size or depends on n? L[i] = Alp + 1]
for j = 0 to n right - 1: # runtime - n/2
* In merge function, we copy all R3] = Alg+ 1=+ 3]
elements into subarrays L and R ind 1 = 0
* L+R have n elements ind r =0 |
* So total memory occupation is 2n for k = p to r # runtime - n
y P if ind r > n right - 1 or L[ind 1] = R[ind r]
Alk] = L[ind 1]
* Not in place sorting ind L = dind L + I
e A problem only in case of sise
D y Alk] = R[ind r]

extremely large arrays

ind_r = ind_r + 1

Content

* Sorting
* Merge Sort
* Quick Sort

Quick Sort

Quick sort is another ,divide-and-conquer”

sorting algorithm
* Unlike merge sort, sorts the array in place

* DIVIDE: central part of the algorithm

 Partition the array A[p, r] into two subarrays
quick _sort(A, p, r)

A[p, g-1] and A[g+1, r], such that all elements of ~ partition (A .
A[p, g-1] are smaller than A[qg] and all elements guici sort (A, p: Z' - 1)
of A[g+1, r] are larger than A[q] quick sort (A, o + 1, r)

» After sorting A[p, a-1] and A[g+1, r]
(recursively) the whole array is sorted

Quick sort: partition

partition(A, p, r)
pivot = A[r]

s =p - 1 # index of the last element smaller (or same) than pivot

for i = p to r - 1:
if A[1] = pivot

S s + 1
h A[1], Als
exchange (A[1] [s]) bivot = A[7] = 4
exchange (A[s+1], A[r]) s =0-1= -1

return s + 1

#for loop, 1. iteration
A[0] = 9 < pivot = 4 > False

#for loop, 2. iteration

A[l] = 2 <pivot = 4 = True
s =s + 1 =20

exchange A[1], A[O] (2 and 9)

Quick sort: partition

partition(A, p, r)
pivot = A[r]

s =p - 1 # index of the last element smaller (or same) than pivot
for i = p to r - 1: o 1 2 3 4 5 6 7
: 1<
if A[1i] = pivot 21/19//6/|7|/5/|1|/8||4
s = s + 1

exchange (A[1], Als])
#for loop, 3. iteration

exchange (A[s+1], A[r]) A[2] = 6 <pivot = 4 > False
return s + 1

#for loop, 4. iteration

A[3] = 7 < pivot = 4 = False

#for loop, 5. iteration
A[4] = 5 < pivot = 4 = False

Quick sort: partition

partition(A, p, r)
pivot = A[r]

s =p — 1 # index of the last element smaller (or same) than pivot
for i = p to r - 1: o 1 2 3 4 5 6 7
i . <
if A[1] = pivot 2119(|6/|7/|5/|1//8||4
s = s + 1

exchange (A[1], Als])
#for loop, 6. iteration

exchange (A[s+1], A[r]) A[5] = 1 <pivot = 4 D True
return s + 1

s =s + 1 =1

exchange A[1l], A[5] (1 and 9)

Quick sort: partition

partition (A, p, r)
pivot = A[r]
s =p - 1 # index of the last element smaller (or same) than pivot
for 1 = p to r - 1:
if A[1] = pivot
s = s + 1
exchange (A[1], Als])

2(11/|6(/7]|5//9|/8| 4

#for loop, 7. iteration
exchange (A[s+1], A[r]) A[6] = 8 <pivot = 4 > False
return s + 1 # for loop over, s =1

exchange A[7] (pivot), A[s+l = 2]
(6 and 4)

0 1 2 3 4 5 6 7

2(11|14]|7(|5(|9|8||6

return 2 (s+1)
quick sort([2,1])
quick sort([7, 5, 9, 8, 6])

Quick sort: running time

* The running time of the quick sort depends on whether the
partitioning is (mostly) balanced or unbalanced

* If the partitioning is balanced, quick sort will have the running time of
a merge sort (but with in place sorting!)
* On average, partitioning will be balanced! Q: why?
e So average runtime of quick sort is O(n*log n)!
* Not just that, the constants in running time are lower for quick sort

e Worst case scenario

* Running time of quick sort will be O(n?).
* Q: why?

Quick sort: worst running time

partition(2A, p, r)
pivot = A[r]
eIf A[1] = pivot isnever fulfilled s=p -1
for i = p to r - 1:
* So the partitions will be [] and A[1...r] if Alil = pivot
exchange (A[1], Als])
exchange (A[s+1], Alr])

* O: Can you think of a worst case return - + 1
example for quick sort?

1 2 3 4 5 6 7

2/l4|l5/|6||7!|8]|9]/1] n-1
*T(n)=(n-1)+(n-2)+...+2+1 [
1 4||5|/6(|7]/8]|9||l2| N2
::(r] —:1) * r]‘/:z 0 1 2 3 4 5 6 7
- 0(r) B, Bk -
11|24 6/|7//8/|9||5| n4

Questions?

Pitanja?

é¢Preguntas?
Fragor?

BHHE1M|]

Porandukuéra?

Questlons?

Vragen? Epwtl’]GElg,

eali

c

! HET pwusimusi?
o =
Z Sorusu olan? g BREX? é
3 Fragen'-’

Pytan a?
¢opuU Blu0(]

Y

	Slide 1: Sorting Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Sorting problem
	Slide 4: Why Sorting?
	Slide 5: Keys and Records
	Slide 6: Lower-bound complexity
	Slide 7: Insert sort
	Slide 8: Insert sort: running time
	Slide 9: Insert sort: running time
	Slide 10: Rates of growth and complexity
	Slide 11: Sorting algorithms
	Slide 12: Sorting and algorithm design techniques
	Slide 13: Sorting and algorithm design techniques
	Slide 14: Content
	Slide 15: Merge Sort
	Slide 16: Merge Sort: illustration
	Slide 17: Merge Sort: illustration
	Slide 18: Merge Sort: merge function
	Slide 19: Merge sort: merge function
	Slide 20: Merge sort
	Slide 21: Merge sort: runtime
	Slide 22: Merge sort: runtime
	Slide 23: Merge sort: runtime
	Slide 24: Merge sort: runtime
	Slide 25: Merge sort: space complexity
	Slide 26: Content
	Slide 27: Quick Sort
	Slide 28: Quick sort: partition
	Slide 29: Quick sort: partition
	Slide 30: Quick sort: partition
	Slide 31: Quick sort: partition
	Slide 32: Quick sort: running time
	Slide 33: Quick sort: worst running time
	Slide 34: Questions?

