

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Algorithm Complexity Prof. Dr. Goran Glavaš

2.11.2023

Content

- Analyzing algorithms
- Complexity abstractions
 - Rate/order of growth
- Big-O notation

In the beginning, there were only problems

- Algorithms are designed to solve problems
- Problems are commonly specified with:
 - Inputs
 - Desired outputs
 - Non-functional constraints
 - E.g., time of space complexity

Find element

Input: A set of *n* numbers {a₁, a₂, ..., a_n} and a query number b **Output**: Answer to the question "is b in {a₁, a₂, ..., a_n}"

Find element

Input: A set of *n* numbers $\{a_1, a_2, ..., a_n\}$ and a query number **b Output**: Answer to the question "is b in $\{a_1, a_2, ..., a_n\}$ "

- You have written *an algorithm* for the above find element problem
 - Is it a **good** algorithm for the problem?
 - Is it the **only** algorithm that solves the given problem?
 - If you can think of more than one algorithm for the problem, which one is **better** and why?

Find element

Input: A set of *n* numbers $\{a_1, a_2, ..., a_n\}$ and a query number **b Output**: Answer to the question "is b in $\{a_1, a_2, ..., a_n\}$ "

- Criteria for evaluating algorithms
 - Correctness: does it give a correct output for every input?
 - In other words, does it actually solve the problem correctly
 find_element(7, {2, 17, 35, 1, 14}) -> False
 find element(35, {2, 17, 35, 1, 14}) -> True

• Criteria for evaluating algorithms

- Efficiency: how much computational resources and time does an algorithm's execution require?
- If we have multiple **correct** algorithms for the problem, we would, intuitively, use the most efficient one
 - The **fastest** among correct algorithms **time complexity**
 - The one using the **least computer resources** (typically **memory**) **space complexity**
 - Time and space complexity are often in a trade-off relation
- How to **measure** time and space complexity of algorithms?

Find element

Input: A set of *n* numbers $\{a_1, a_2, ..., a_n\}$ and a query number b **Output**: Answer to the question "is b in in $\{a_1, a_2, ..., a_n\}$ "

- How to measure time and space complexity of algorithms?
 - Execution time and memory occupation in most cases directly depend on the actual input (actual values provided for the input variables)

find_element(7, {2, 17, 35, 1, 14, 9, 43, 91}) -> False VS.
find_element(35, {35, 1, 14}) -> True

Which execution is faster and requires less memory?

Complexity theory

- Formal examination of an algorithm with respect to its efficiency
- Time efficiency usually much more important than space complexity.
 - Q: Why?
- The actual efficiency depends on concrete inputs, but we need to analyze algorithms "in general", that is, for "any (allowed) input"
 - Best case running time time efficiency in/for the most favorable case/inputs
 - Lower bound: for no input can the running time be smaller than this
 - Worst case running time time efficiency in/for the least favorable case/inputs
 - Upper bound: for no input can the running time be larger than this
 - Average-case running time estimate of time efficiency across all input possibilities

Find element

Input: A set of *n* numbers $\{a_1, a_2, ..., a_n\}$ and a query number b **Output**: Answer to the question "is b in $\{a_1, a_2, ..., a_n\}$?"

Algorithm

```
find_element(b, a_set)
for a in a_set
if a = b
return True
return False

read/write
comparison
```

assignment

- How do we measure time complexity?
- In terms of number of elementary operations executed
 - How does that number depend on the input?
- Given the length *n* of the input set "a_set", what is
 - The smallest possible number of comparisons?
 - The largest possible number of comparisons?
 - Number of comparisons "on average"?

Content

- Analyzing algorithms
- Complexity abstractions
 - Rate/order of growth
- Big-O notation

Complexity abstractions

- How do we measure time complexity?
 - In terms of number of elementary operations executed
 - How does that number depend on the input? What is the size of the problem?
 - What about the operations that do not depend on the size of the input?
- Let us go back to the sorting problem...

Sorting Problem Input: A sequence of *n* numbers $<a_1, a_2, ..., a_n >$ (Desired) Output: A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$

Sorting Problem - Sorting Problem - Sorting Problem -

(Desired) Output: A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$

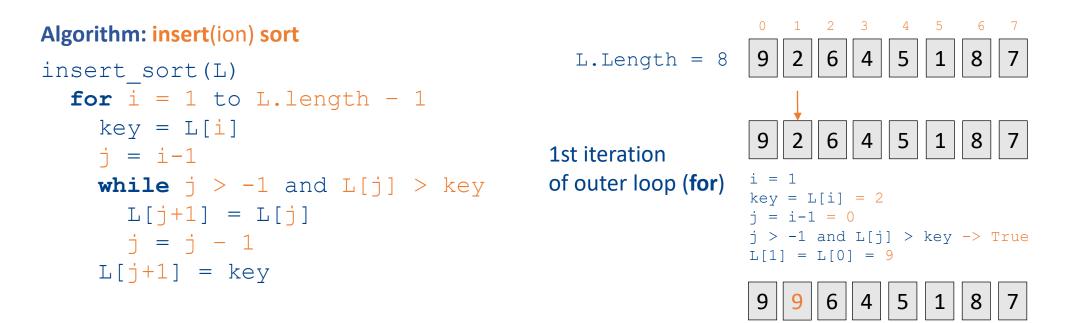
Algorithm: insert(ion) sort

```
insert_sort(L) # L is a list of numbers
for i = 1 to L.length - 1 # 0-indexing, first element is at index 0, last at len-1
    key = L[i]
    j = i-1
    while j > -1 and L[j] > key
    L[j+1] = L[j]
    j = j - 1
    L[j+1] = key
```

Image from Cormen et al.

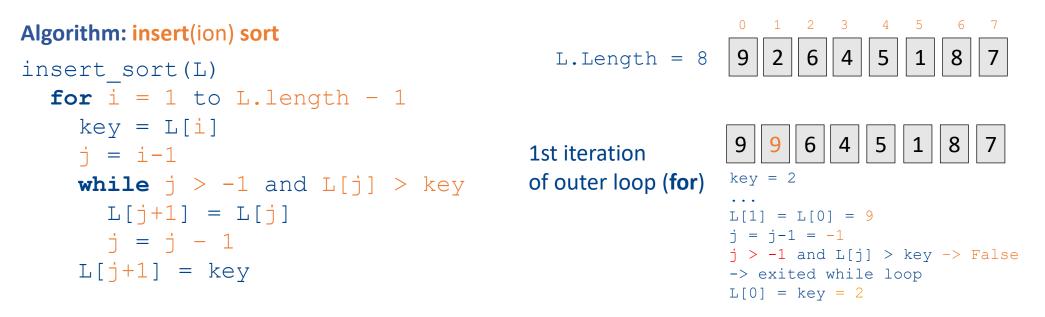
Sorting Problem

Input: A sequence of *n* numbers $<a_1, a_2, ..., a_n >$ (Desired) Output: A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$



Sorting Problem

Input: A sequence of *n* numbers $<a_1, a_2, ..., a_n >$ (Desired) Output: A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$

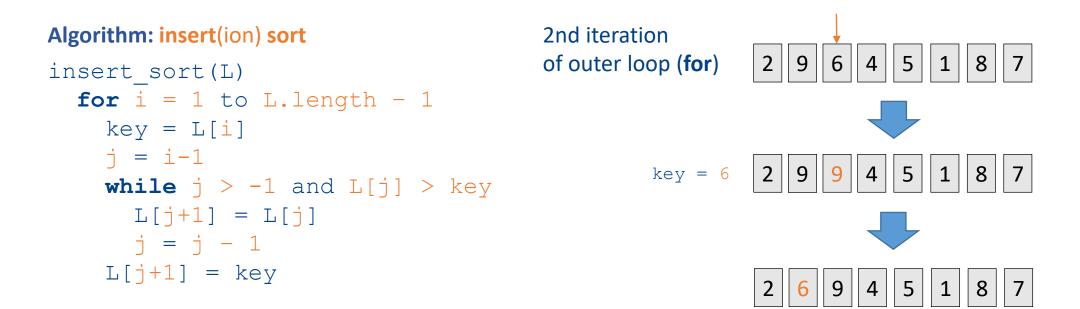


2	9	6	4	5	1	8	7
---	---	---	---	---	---	---	---

Input: A sequence of *n* numbers <a₁, a₂, ..., a_n>

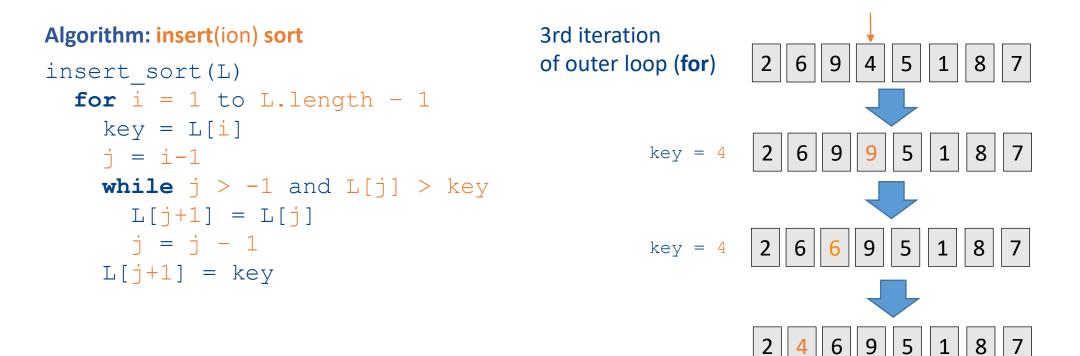
Sorting Problem

(Desired) Output: A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$



Sorting Problem

Input: A sequence of *n* numbers $<a_1, a_2, ..., a_n >$ **(Desired) Output:** A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$



Input: A sequence of *n* numbers $<a_1, a_2, ..., a_n >$ **(Desired) Output**: A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$

Algorithm: insert(ion) sort

insert_sort(L) # L is a list of numbers
for i = 1 to L.length - 1
 key = L[i]
 j = i-1
 while j > -1 and L[j] > key
 L[j+1] = L[j]
 j = j - 1
 L[j+1] = key

- Let's analyze running time
 - n = L.length: num. elements in the list

Sorting Problem

- Elementary operation: assignment
 - Assignment of value to iterator variable *i*
 - Assigned fixed cost c₁
- Executed how many times?
 - Cost: (n-1) * c₁

Input: A sequence of *n* numbers $<a_1, a_2, ..., a_n >$ **(Desired) Output**: A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$

Algorithm: insert(ion) sort

- Let's analyze running time
 - n = L.length: num. elements in the list

Sorting Problem

• Elementary operations:

- Reading value L[i]
- Assignment of that value to variable key
- Assigned fixed cost c₂
- Executed how many times?
 - Cost: (n-1) * c₂

read/write

assignment

Sorting Problem

Input: A sequence of *n* numbers $<a_1, a_2, ..., a_n >$ **(Desired) Output:** A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$

Algorithm: insert(ion) sort

insert_sort(L) # L is a list of numbers
for i = 1 to L.length - 1 # (n-1)*c_1
 key = L[i] # (n-1)*c_2
 j = i-1 # (n-1)*c_3
 while j > -1 and L[j] > key
 L[j+1] = L[j] $\longrightarrow Cost \sum_{i=1}^{n-1} c_5 * (t_i-1)
 j = j - 1 <math>\longrightarrow Cost \sum_{i=1}^{n-1} c_6 * (t_i-1)$ L[j+1] = key $\longrightarrow Cost (n-1)*c_7$

- Let's analyze running time
 - n = L.length: num. elements in the list
- Elementary operations:
 - 2 comparisons in the complex condition
 - Assigned fixed cost c₄
- Executed how many times?
 - That depends on the condition
 - For each *i* we have t_i executions of while conditions and all commands inside of the while loop
 - Cost $\sum_{i=1}^{n-1} c_4 * t_i$

Input: A sequence of *n* numbers $<a_1, a_2, ..., a_n >$ **(Desired) Output**: A permutation (reordering) of the input $<a'_1, a'_2, ..., a'_n >$ such that $a'_1 \le a'_2 \le ... \le a'_n$

Algorithm: insert(ion) sort

```
insert_sort(L)
for i = 1 to L.length - 1 # (n-1)*c_1
    key = L[i] # (n-1)*c_2
    j = i-1 # (n-1)*c_3
    while j > -1 and L[j] > key # \sum_{i=1}^{n-1} c_4 * ti
    L[j+1] = L[j] # \sum_{i=1}^{n-1} c_5 * (t_i-1)
    j = j - 1 # \sum_{i=1}^{n-1} c_6 * (t_i - 1)
    L[j+1] = key # (n-1)*c_7
```

- Let's analyze running time
 n = L.length: num. elements in the list
- Total running time T(n) T(n) = (n-1) *($c_1 + c_2 + c_3 + c_7$) + $\sum_{i=1}^{n-1} c_4 * t_i + (c_5 + c_6) * (t_i - 1)$

Sorting Problem

Algorithm: insert(ion) sort

```
insert_sort(L)
for i = 1 to L.length - 1 # (n-1)*c_1
key = L[i] # (n-1)*c_2
j = i-1 # (n-1)*c_3
while j > -1 and L[j] > key # \sum_{i=1}^{n-1} c_4 * ti
L[j+1] = L[j] # \sum_{i=1}^{n-1} c_5 * (t_i-1)
j = j - 1 # \sum_{i=1}^{n-1} c_6 * (t_i - 1)
L[j+1] = key # (n-1)*c_7
```

• Total running time T(n)

```
\mathbf{T(n)} = (n-1) * (c_1 + c_2 + c_3 + c_7) + 
\sum_{i=1}^{n-1} c_4 * t_i + (c_5 + c_6) * (t_i - 1)
```

- T(n) depends not only on n but also on concrete numbers in L (their order)
- What is the **best possible** scenario (smallest possibe running time)?
 - If the input L is already sorted
 - t_i = 1 for each i
 - $T(n) = (n-1) * (c_1 + c_2 + c_3 + c_7 + c_4)$
 - Let's sum up the constant elementary operation costs: $a = c_1 + c_2 + c_3 + c_7 + c_4$
 - T(n) = a*n a: this is a linear function of n

Algorithm: insert(ion) sort

```
insert_sort(L)
for i = 1 to L.length - 1 # (n-1)*c_1
key = L[i] # (n-1)*c_2
j = i-1 # (n-1)*c_3
while j > -1 and L[j] > key # \sum_{i=1}^{n-1} c_4 * ti
L[j+1] = L[j] # \sum_{i=1}^{n-1} c_5 * (t_i-1)
j = j - 1 # \sum_{i=1}^{n-1} c_6 * (t_i - 1)
L[j+1] = key # (n-1)*c_7
```

• Total running time T(n)

 $T(n) = (n-1) * (c_1 + c_2 + c_3 + c_7) +$ $\sum_{i=1}^{n-1} c_4 * ti + (c_5 + c_6) * (t_i - 1)$

- What is the worst possible scenario (largest possible running time)?
 - If the input L is inversely sorted (from largest to smallest value)
 - t_i = i for each i
 - $\sum_{i=1}^{n-1} c_4 * t_i = (1 + 2 + ... + (n-1)) * c_4 = \frac{(n-1)*n}{2} * c_4$
 - $\sum_{i=1}^{n-1} c_5 * (t_i 1) = (0 + 1 + ... + (n-2)) * c_5 = \frac{(n-2)*(n-1)}{(n-2)^2} * c_5$
 - $\sum_{i=1}^{n-1} c_6 * (t_i 1) = (0 + 1 + ... + (n-2)) * c_6 = \frac{(n-2)\bar{*}(n-1)}{2} * c_6$

Algorithm: insert(ion) sort

```
insert_sort(L)
for i = 1 to L.length - 1 # (n-1)*c_1
key = L[i] # (n-1)*c_2
j = i-1 # (n-1)*c_3
while j > -1 and L[j] > key # \sum_{i=1}^{n-1} c_4 * ti
L[j+1] = L[j] # \sum_{i=1}^{n-1} c_5 * (t_i-1)
j = j - 1 # \sum_{i=1}^{n-1} c_6 * (t_i - 1)
L[j+1] = key # (n-1)*c_7
```

• Total running time T(n)

```
T(n) = (n-1) * (c_1 + c_2 + c_3 + c_7) + 
\sum_{i=1}^{n-1} c_4 * ti + (c_5 + c_6) * (t_i - 1)
```

- What is the worst possible scenario (largest possible running time)?
 - If the input L is inversely sorted (from largest to smallest value)
 - t_i = i for each i
 - T(n) = (n-1) * (c₁ + c₂ + c₃ + c₇) + $\frac{(n-1)*n}{2}$ * c₄ + $\frac{(n-2)*(n-1)}{2}$ * (c₅ + c₆)
 - $T(n) = a^{*}n^{2} + b^{*}n + c$
 - This is a quadratic function of n

- In much of algorithm complexity analysis, we focus on the worst case running time because of the following
- 1. Worst case running gives an upper bound on the running time
 - whatever the input, the running time **cannot be worse than this**
- 2. For many algorithms the worst case running time occurs often
 - Example: search database for values not in database
- 3. The average running time is often **not much better** than worst case
 - Insert-sort average: t_i = i/2
 - This still makes the **T(n)** a quadratic function of **n**
 - Just the coefficients a, b, and c will be smaller
 - But this has little effect if *n* is large → growth of functions

Complexity abstractions: rate of growth

- To compute **T(n)** we already used simplifying abstractions
 - 1. Ignored actual costs of elementary operations, replaced them with constants c_i
 - 2. Replaced any combination of constants c_i with a constant (a, b, c)
- This gave the worst case running time function for insert sort
 - $T(n) = a^{*}n^{2} + b^{*}n + c$
- But we are actually interested in the rate of growth of the running time, with the increase of n
 - For small n, any algorithm will run "fast enough"
 - We need to see how T(n) grows with n

Complexity abstractions: rate of growth

- $T(n) = a^{n^2} + b^{n^2} + c$
 - For growing n
- We introduce further simplifications for simpler description of time efficiency
 - 1. We keep only the leading term of the polynomial above, $\mathbf{a}^*\mathbf{n}^2$
 - For large n, n^k is an order of magnitude larger than n^{k-1}
 - The larger **n** is, the more insignificant \mathbf{n}^{k-1} is compared to \mathbf{n}^k
 - Example (n^2 vs. n for different n): for n = 5, 25 vs. 5; for n = 10⁶ it's 10¹² vs. 10⁶
 - 2. We can lose the constant as n becomes larger, the constant factors become less significant also (the constants don't grow with n)
 - The constant operation cost does not affect the order of growth
 - $(a * n_1^{k}) / (a * n_2^{k}) = (n_1/n_2)^k as n is growing, the increase in running time doesn't depend on a$

Content

- Analyzing algorithms
- Complexity abstractions
 - Rate/order of growth
- Big-O notation

Rate of growth and efficiency

• A₁ more efficient than A₂ if

- Worst case running time of A₁ has a lower rate of growth than that of A₂
- Worst case running time (considering only rate of growth)
 - Denoted with symbol ⊖ (uppercased "theta")
 - Insert sort has a worst case running time T(n) = a*n² + b*n + c
 - But (only) n² drives the rate of growth of T(n)
 - So we say: it has the worst case running time $\Theta(n^2)$ ("theta of n-squared")
 - Also, colloquially, **insert sort** has "quadratic complexity" (or "complexity n-square")

Rates of growth and complexity

- Growth rates for some common complexity functions
 - ⊖(1) (constant)
 - ⊖(log n) (logarithmic)
 - ⊖(n) (linear)
 - ⊖(n log n) (loglinear)
 - ⊖(n²) (quadratic complexity)
 - ⊖(n³) (cubic complexity)
 - ... $\Theta(n^k)$ for $k \ge 0$ (polynomial)
 - ⊖(2ⁿ) (exponential)
 - ⊖(n!) (factorial)

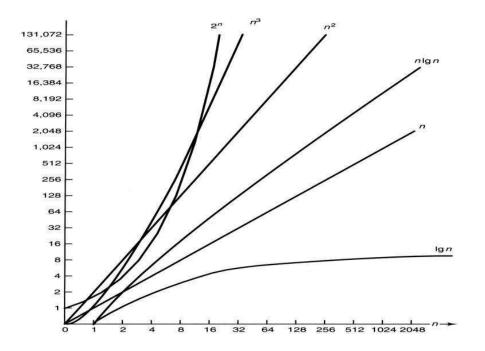


Image from https://tinyurl.com/46c3cssy

Asymptotic notation

- Say we have two algorithms A₁ and A₂
 - Worst-case running times: T₁(n) = a * n + b;
 - $T_2(n) = c * n^2 + d * n + e$
- For some (small) values of n, depending on the values of constants (a, b, c, d, e), T₂(n) may even be lower than T₁(n)
- But when we look **at input sizes large enough** to make **only** rate of growth of running time relevant, the *quadratic* running time will be larger than *linear*
 - There is a (large enough) value n_0 such that for all $n \ge n_0$, $T_2(n) \ge T_1(n)$
- <u>Asymptotic efficiency</u> of algorithms: looking at input sizes so large that only rate of growth of the worst running time of the algorithm matters $(n \ge n_0)$

Θ -notation

- For insert sort, we denoted the worst running time as $T(n) = \Theta(n^2)$
- Now we formally define the theta function

For a given function $g(\mathbf{n})$, $\Theta(g(\mathbf{n}))$ denotes a set of functions $\Theta(g(\mathbf{n})) = \{ f(\mathbf{n}) : \text{there exists positive constants } c_1, c_2, \text{ and } n_0 \text{ such that}$ $0 \le c_1^* g(\mathbf{n}) \le f(\mathbf{n}) \le c_2^* g(\mathbf{n}) \text{ for all } \mathbf{n} \ge \mathbf{n}_0$

O-notation

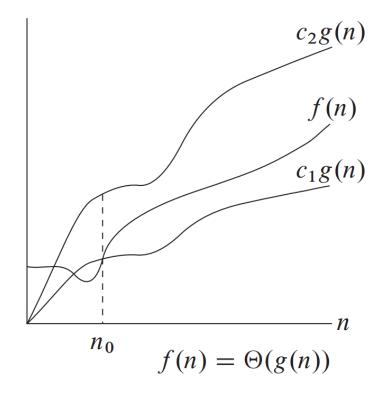
- Q: is the above satisfied for $g(n) = n^2$ and $f(n) = \frac{1}{2}n^2 + 2n$?
 - Give one set of valid values for c_1 , c_2 , and n_0
 - If, for example, $c_1 = \frac{1}{2}$, $c_2 = 1$, what is then n_0 ?

Θ -notation

O-notation

For a given function g(n), $\Theta(g(n))$ denotes a set of functions $\Theta(g(n)) = \{ f(n) : \text{there exists positive constants } c_1, c_2, \text{ and } n_0 \text{ such that}$ $0 \le c_1^* g(n) \le f(n) \le c_2^* g(n) \text{ for all } n \ge n_0$

- f(n) "sandwiched" between $c_1g(n)$ and $c_2g(n)$
 - Gurantee that this is true for all $n \ge n_0$
- g(n) asymptotically tight bound for f(n)
 - Both **upper** $(c_2g(n))$ and **lower** asymptotic bound $(c_1g(n))$
- For polynomials: $f(n) = a_d n^d + a_{d-1} n^{d-1} + ... + a_1 n + a_0$
 - $f(n) = \Theta(n^d)$
 - Constants are polynomials of 0-th degree: $\Theta(n^0) = \Theta(1)$



- \bullet $\Theta\mbox{-notation}$ bounds a function from both above and below
- In algorithmic efficiency, we are typically interested more (only) in the asymptoptic upper bound

For a given function g(n), O(g(n)) denotes a set of functions $O(g(n)) = \{ f(n) : \text{there exists positive constants } c, \text{ and } n_0 \text{ such that}$ $0 \le f(n) \le c^*g(n) \text{ for all } n \ge n_0$

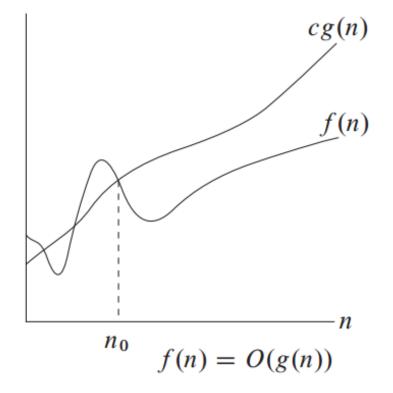
O-notation

- O-notation: an upper bound of a function to within a constant factor
 - Any f(n) in $\Theta(g(n))$ is surely also in O(g(n))
 - The opposite not true: e.g., linear functions are in $O(n^2)$ but not in $\Theta(n^2)$

(Big) O-notation

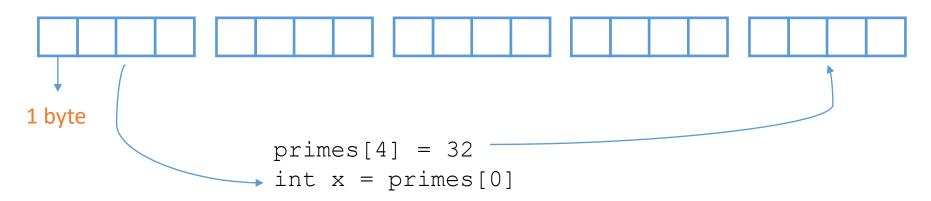
For a given function g(n), O(g(n)) denotes a set of functions $O(g(n)) = \{ f(n) : \text{there exists positive constants } c, \text{ and } n_0 \text{ such that}$ $0 \le f(n) \le c^*g(n) \text{ for all } n \ge n_0$

- *f*(n) limited from above with c*g*(n)
 - Gurantee that this is true for all $n \ge n_0$
- g(n) asymptotic upper bound for f(n)
- For polynomials: $f(n) = a_d n^d + a_{d-1} n^{d-1} + ... + a_1 n + a_0$
 - $f(n) = O(n^k)$, for each $k \ge d$



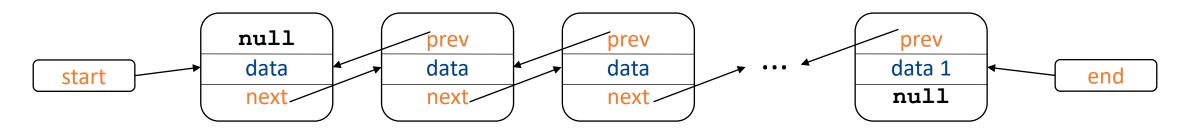
O-notation

- ADT: List a linear sequence of elements, ordered collection of values
 - When we design algorithms, we typically think in terms of ADTs
- Array (as data structure, not ADT)
 - Writing values into and reading values from an array is **fast**
 - Example in C (as Arrays in Python or Java are implemented differently)
 - int primes[5]; // allocate 5 x size of int (typically 4 bytes) of contiguous memory



Lists: Arrays vs. Linked Lists

- ADT: List a linear sequence of elements
 - When we design algorithms, we typically think in terms of ADTs
- Linked List
 - Consists of nodes: nodes contain both the data (values) and a pointer to the next node in the list
 - Nodes can contain values of different types
 - Dynamic data structure: "resizable" at run time
 - Non-contiguous memory allocation possible, space for new nodes can be allocated dynamically (on "per-need" basis)



Set element of List – running time

• List as Array

- L: the memory address of the first element of the list (array)
- size the number of bytes for storing one value

```
set_element(L, ind, val)
L = L + ind*size
write(L, val)
```

n = size of the list
Worst running time
(Big-O)?

• List as Linked List

• L: pointer (memory address) to the first node of the list

```
set_element(L, ind, val)
for i = 0 to ind
    L = L.next
write(L, val)
```

n = size of the list
Worst running time
(Big-O)?

Stacks and queues – running time

• Stack

```
push(S, x)
if S.top == len(S.elements) - 1
error "overflow"
else
   S.elements[S.top] = x
   S.top = S.top + 1
```

Queue

```
enqueue(Q, x)
if is_full(Q)
error "overflow"
else
Q.elements[Q.tail] = x
Q.tail = (Q.tail + 1) % len(Q.elements)
```

n = size of the stack/queue
Worst running time (Big-O)?

Questions?

