[l CAIDAS WiNLP

ALGORITHMS IN Al & DATA SCIENCE 1 (AKIDS 1)

Algorithm Complexity

Prof. Dr. Goran Glavas

2.11.2023

Content

* Analyzing algorithms

* Complexity abstractions
* Rate/order of growth

* Big-O notation

In the beginning, there were only problems

* Algorithms are designed to solve problems

* Problems are commonly specified with:
* Inputs
* Desired outputs

* Non-functional constraints
* E.g., time of space complexity

’

Input: A set of n numbers {a,, a,, ..., a,} and a query number b
Output: Answer to the question ,isbin{a, a,, ..., a,}"

Analyzing algorithms

r

Input: A set of n numbers {a,, a,, ..., a,} and a query number b
Output: Answer to the question ,isbin{a, a,, ..., a.}”
_ y,

* You have written an algorithm for the above find element problem
* |s it a good algorithm for the problem?
* Is it the only algorithm that solves the given problem?

* If you can think of more than one algorithm for the problem, which one is
better and why?

Analyzing algorithms

r

Input: A set of n numbers {a,, a,, ..., a,} and a query number b
Output: Answer to the question ,isbin{a, a,, ..., a.}”
_ y,

* Criteria for evaluating algorithms

* Correctness: does it give a correct output for every input?
* In other words, does it actually solve the problem correctly

find element(/, {2, 17, 35, 1, 14}) -> False

find element (35, {2, 17, 35, 1, 14}) -> True

Analyzing algorithms

* Criteria for evaluating algorithms

* Efficiency: how much computational resources and time does an algorithm’s
execution require?

* If we have multiple correct algorithms for the problem, we would, intuitively,
use the most efficient one
* The fastest among correct algorithms — time complexity
* The one using the least computer resources (typically memory) — space complexity
* Time and space complexity are often in a trade-off relation

* How to measure time and space complexity of algorithms?

Analyzing algorithms

r

Input: A set of n numbers {a,, a,, ..., a,} and a query number b
Output: Answer to the question ,isbinin{a , a,, ..., a. }”
_ J

* How to measure time and space complexity of algorithms?

* Execution time and memory occupation in most cases directly depend on
the actual input (actual values provided for the input variables)

find element(/, {2, 17/, 35, 1, 14, 9, 43, 91}) =-> False VS,
find element (35, (35, 1, 14}) -> True

Which execution is faster and requires less memory?

Analyzing algorithms

* Complexity theory
* Formal examination of an algorithm with respect to its efficiency

* Time efficiency usually much more important than space complexity.
e Q: Why?

* The actual efficiency depends on concrete inputs, but we need to analyze
algorithms “in general”, that is, for “any (allowed) input”

* Best case running time — time efficiency in/for the most favorable case/inputs
* Lower bound: for no input can the running time be smaller than this

* Worst case running time — time efficiency in/for the least favorable case/inputs
* Upper bound: for no input can the running time be larger than this

* Average-case running time — estimate of time efficiency across all input possibilities

Analyzing algorithms

r

Input: A set of n numbers {a,, a,, ..., a,} and a query number b
Output: Answer to the question ,isbin{a, a,, ..., a }?”
_ J

, * How do we measure time complexity?
Algorithm

* In terms of number of elementary operations executed

find element (b, a set)
— o * How does that number depend on the input?

for 2 1n a set

if|ja = Db
return True * Given the length n of the input set ,a_set”, what is
return False e The smallest possible number of comparisons?

* The largest possible number of comparisons?
* Number of comparisons , on average”?

read/write

comparison

assignment

Content

* Analyzing algorithms

* Complexity abstractions
» Rate/order of growth

* Big-O notation

Complexity abstractions

 How do we measure time complexity?

* In terms of number of elementary operations executed
* How does that number depend on the input? What is the size of the problem?
* What about the operations that do not depend on the size of the input?

* Let us go back to the sorting problem...

r

Sorting Problem
n

(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a',=a,=..=2,

Input: A sequence of n numbers<a,, a,, ..., a,>

Complexity abstractions (on insert sort)

Sorting Problem

s
Input: A sequence of n numbers <a,, a,, ..., a,>
(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=..=ad,
.

Algorithm: insert(ion) sort

insert sort(L) # L is a list of numbers

for 1 = 1 to L.length — 1 # 0-indexing, first element is at index 0, last at len-1

key = L[1]

7= 1-1

while 7 > -1 and L[] > key
L{j+1] = L[7]
J =31 -1

L{J+1] = key

Image from Cormen et al.

Complexity abstractions (on insert sort)

r Sorting Problem
Input: A sequence of n numbers<a,, a,, ..., a >
(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=..=ad,
g J
Algorithm: insert(ion) sort S S
insert sort (L) L.Length = 8 |9(12(/6|/4||5/||1||8]|7
for i = 1 to L.length - 1 l
key = LI _— all2l6l|lal||s||1]/8]|7
j = 1-1 1st iteration
while 7 > -1 and L[j] > key of outer loop (for) ie; ! L
Lig+1l] = L[7J] j=i-1=0
o] > -1 and L[J] > key —-> True
J =] 1 im = L[O0] =j9 !
L[j+1] = key
9119|16(|4]/5]/1]/8||7

Complexity abstractions (on insert sort)

r Sorting Problem

Input: A sequence of n numbers <a,, a,, ..., a,>
(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=..=ad,
. Y,

Algorithm: insert(ion) sort

L.Length =8 |9(12(/6|/4||5/||1||8]|7

insert sort (L)
for i = 1 to L.length - 1

key = L[1]
j = 1i-1 1st iteration a1 | L R
while 7 > -1 and L[]J] > key of outer loop (for) kev = 2

L{7+1] = L[7] L[1] = L[0] = ©

o= j = 3-1=-1

jl J 1 3 > -1 and L[]J] > key —> False
L [j‘|‘1] = key -> exited while loop

L[0] = key = 2

2119116145/ /8(|7

Complexity abstractions (on insert sort)

r Sorting Problem

Input: A sequence of n numbers<a,, a,, ..., a >

n

(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=..=ad,

\- y,
Algorithm: insert(ion) sort 2nd iteration l
insert sort (L) of outer loop (for) 2((9//6(/4||5/11|/8||7

for i = 1 to L.length - 1

key = L[i] ‘

7 o= i-1
while 7 > -1 and L[] > key

L[5+1] = L{7]
j=3 -1 @

L{j+1] = key

key = 6 [2(/9(19(|4]/5]|1]|8]||7

Complexity abstractions (on insert sort)

r Sorting Problem

Input: A sequence of n numbers<a,, a,, ..., a >

n

(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=..=ad,

\- y,
Algorithm: insert(ion) sort 3rd iteration l
insert sort (L) of outer loop (for) 2(16(/9(/4/|5//1/(8]||7
for 1 = 1 to L.length — 1 .
key = L[1]
j = i-1 key = 4 |2]|6]|9]19||5]]1/||8||7

while 7 > -1 and L[] > key
L{J+1] = L[7J]
j =3 -1 key = 4 |2||6]|6
L{J+1] = key

e

©
Ul
=
00
~

@

Complexity abstractions (on insert sort)

r Sorting Problem

Input: A sequence of n numbers <a,, a,, ..., a,>

(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=..=ad,

. J
* Let’s analyze running time
Algorithm: insert(ion) sort * n=L.length: num. elements in the list
insert sort (L) # L is a list of numbers
for i = 1 to L.length - 1 » * Elementary operation: assignment
key = L[1] « Assignment of value to iterator variable i
J = 1-1 * Assigned fixed cost c,

while 7 > -1 and L[] > key
L{J+1] = L[7]
j=3 -1

L[J+t1l] = key

e Executed how many times?
e Cost: (n-1) * ¢,

Complexity abstractions (on insert sort)

r Sorting Problem

Input: A sequence of n numbers <a,, a,, ..., a,>
(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=..=ad,
. Y,

e Let’s analyze running time
Algorithm: insert(ion) sort * n=L.length: num. elements in the list

insert_sort(L) # L is a list of numbers
for i = 1 to L.length - 1

key = L[1] > » Elementary operations:

j = 1-1 — Cost: (n-1) * ¢, + Reading value L][i]

while j > -1 and L[]J] > key * Assignment of that value to variable key
L. [] +1.] =1L []] * Assigned fixed cost c,
J = 1 -

L[j+1] = key * Executed how many times?

« Cost: (n-1) * ¢, read/write

assignment

Complexity abstractions (on insert sort)

r Sorting Problem

Input: A sequence of n numbers <a,, a,, ..., a,>

(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=.=2

\ ” y
e Let’s analyze running time
Algorithm: insert(ion) sort n=L.length: num. elements in the list
insert_sort(L) # L is a list of numbers
for i = 1 to L.length — 1 # (n-1)*c * Elementary operations:

key = L[1] # (n1)*g * 2 comparisons in the complex condition

J = 1-1 # () *q * Assigned fixed cost c,

while] > -1 and L[7]] > key

e Executed how many times?

L. [Trl.] _=1L = - Cost Zl 165 % (ti_l) * That depends on the condition
L j.+1 j_ K = Cost)/, ¢ * (1) * For each i we have t, executions of while
[J+1] = key I conditions and all commands inside of the
Cost (n-1) * while Ioop

e Cost)!"l'c, =t

2

Complexity abstractions (on insert sort)

(
Input: A sequence of n numbers <a,, a,, ..., a,>
(Desired) Output: A permutation (reordering) of the input <a’,, a’,, ..., 2’ > such that
a,=a,=..=ad,
.

Sorting Problem

Algorithm: insert(ion) sort

insert sort (L)

for i = 1 to L.length — 1 # (n1)*¢

key = L[1] # (n-1)*c,

J = 1-1 # (n-1) *c

while 7 > -1 and L[7] > key # Yllc, =ti
LJ+1] = LIJ] # X5 es = (t-1)
J =3 - 1 #X5c*t—1)

LiJ+1l] = key # (n1)*g

e Let’s analyze running time
n=1L.length: num. elements in the list

* Total running time T(n)
T(n) = (n-1) *(c;+c,+cy+ ;) +

ol *t+ (cs+co) *(t,—1)

Complexity abstractions (on insert sort)

Algorithm: insert(ion) sort

insert sort (L) * Total running time T(n)

for i = 1 to L.length — 1 # (n1)*¢ T(n)=(n-1) *(c,+c, +cy+ ;) +
key = L[i] # (n1)*c, -1
J = 1-1 # (n-1)*c i=1 Ca*C;t (cs+cg) (@, —1)

while j > -1 and L[7] > key # Y'lc, «ti
L{J+1] = LIJ]# X5ies = (6-1)
J =3 = 1 # 35 ¢ *(t—1)

L{J+1l] = key # (n1)*¢

* T(n) depends not only on n but also on concrete numbers in 1. (their order)

 What is the best possible scenario (smallest possibe running time)?
* If theinput L is already sorted
° t.=1foreachi
T(n) = (n-1) *(c;+c, + 3+ ¢, +¢,)
Let’s sum up the constant elementary operation costs: a =c,;+c,+c;+ ¢, + ¢4
T(n) =a*n—a: thisis a linear function of n

Complexity abstractions (on insert sort)

Algorithm: insert(ion) sort

insert sort (L) * Total running time T(n)

for i = 1 to L.length — 1 # (n1)*¢ T(n)=(n-1) *(c,+c, +cy+ ;) +
key = L[1] # (n1)*g n—1 .
j o= i-1 4 (h1)*g i=1 Ca*tTl+ (cs+¢o) *(t;—1)

while 7 > -1 and L[7] > key # Yllc, =ti
L{J+1] = LIJ]# X5ies = (6-1)
J =3 - 1 #X5c*t—-1)

L{J+1l] = key # (n1)*¢

 What is the worst possible scenario (largest possible running time)?
If the input L is inversely sorted (from largest to smallest value)
t. =iforeachi

* YT cyxt =(1+2+...+(n—1))*c4:(n_21)*n % C,
c Y cex (5, — 1) =(0+1+...+(n-2)) *cy= (”—Z)Z(n—l) .
¢ YT e (= 1) =(0+1+...+(n-2)) *cg= (n-2)x(n-1) .

2

Complexity abstractions (on insert sort)

Algorithm: insert(ion) sort

insert sort (L) * Total running time T(n)

for i = 1 to L.length — 1 # (n1)*¢ T(n)=(n-1) *(c,+c, +cy+ ;) +
key = L[1] # (n1)*g _ .
5= i-1 4 (1) *q ey xtit (cstcg) *(—1)
while 7 > -1 and L[7] > key # Yllc, =ti
L{J+1] = LIJ]# X5ies = (6-1)
J =3 = 1 # 35 ¢ *(t—1)
L{J+1] = key # (n1)*¢,

 What is the worst possible scenario (largest possible running time)?
If the input L is inversely sorted (from largest to smallest value)
t. =iforeachi

(n—1)*n ke, + (n—Z)Z*(n—l) . (C5 n C6)

T(n) =(n-1) *(c,+c, + 5+ ¢,) +

T(n)=a*n’+b*n+c
This is a quadratic function of n

Focus on worst case running time

* In much of algorithm complexity analysis, we focus on the worst case
running time because of the following

1. Worst case running gives an upper bound on the running time
* whatever the input, the running time cannot be worse than this

2. For many algorithms the worst case running time occurs often
* Example: search database for values not in database

3. The average running time is often not much better than worst case
* Insert-sort average: t. = i/2
* This still makes the T(n) a quadratic function of n

* Just the coefficients a, b, and c will be smaller
 But this has little effect if n is large = growth of functions

Complexity abstractions: rate of growth

* To compute T(n) we already used simplifying abstractions

1. lIgnored actual costs of elementary operations, replaced them with
constants c,

2. Replaced any combination of constants ¢, with a constant (a, b, c)

* This gave the worst case running time function for insert sort
* T(n)=a*n’+b*n+c

* But we are actually interested in the rate of growth of the running
time, with the increase of n
* For small n, any algorithm will run ,,fast enough”
* We need to see how T(n) grows with n

Complexity abstractions: rate of growth

* T(n) =a*n’+b*n +c
* For growing n

* We introduce further simplifications for simpler description of time efficiency
1. We keep only the leading term of the polynomial above, a*n’
* For large n, n“is an order of magnitude larger than n“!
* The larger n is, the more insignificant n“* is compared to n*
e Example (n? vs. n for different n): forn =5, 25 vs. 5; for n = 10%it’s 10** vs. 10°

2. We can lose the constant — as n becomes larger, the constant factors become less
significant also (the constants don’t grow with n)

* The constant operation cost does not affect the order of growth
* (a*nM)/(a*n,)% =(ny/n,)k—as nis growing, the increase in running time doesn’t depend on a

Content

* Analyzing algorithms

* Complexity abstractions
* Rate/order of growth

* Big-O notation

Rate of growth and efficiency

* A, more efficient than A, if
* Worst case running time of A, has a lower rate of growth than that of A,

* Worst case running time (considering only rate of growth)
* Denoted with symbol © (uppercased ,theta”)

* Insert sort has a worst case running time T(n) = a*n’+ b*n + ¢
* But (only) n’ drives the rate of growth of T(n)

* So we say: it has the worst case running time ©(n?) (,theta of n-squared”)
* Also, colloquially, insert sort has ,,quadratic complexity” (or ,,complexity n-square”)

Rates of growth and complexity

 Growth rates for some common eseind I
complexity functions roanal-
« ©(1) (constant) onel- .
« ©(log n) (logarithmic) el
« ©(n) (linear) :
« ©(n log n) (loglinear) o=,
« ©(n?) (quadratic complexity) °r
« ©(n°) (cubic complexity) n
. ... 0(nX) for k = 0 (polynomial) e B Ba T e R R
° @(Zn) (exponential) Image from https://tinyurl.com/46c3cssy

e ©(n!) (factorial)

https://tinyurl.com/46c3cssy

Asymptotic notation

* Say we have two algorithms A, and A,
* Worst-case running times: T,(n) =a * n + b;
T,(n)=c*n’+d*n+e

* For some (small) values of n, depending on the values of constants (a, b, ¢, d, e),
T,(n) may even be lower than T,(n)

* But when we look at input sizes large enough to make only rate of growth of
running time relevant, the quadratic running time will be larger than l/inear

* Thereis a (large enough) value n, such that for alln = n,, T,(n) = T,(n)

* Asymptotic efficiency of algorithms: looking at input sizes so large that only rate
of growth of the worst running time of the algorithm matters (n = n,)

©—notation

* For insert sort, we denoted the worst running time as T(n) = ©(n?)
* Now we formally define the theta function

©-notation
r ©-notation pN

For a given function g(n), ©(g(n)) denotes a set of functions

©(g(n)) ={ f(n) : there exists positive constants c,, ¢,, and n, such that

0= c,*g(n) = f(n) =c,*g(n)foralln =n,
. Y,

* Q: is the above satisfied for g(n) = n?and fin) =% n?+2n ?
* Give one set of valid values for c¢,, ¢,, and n,
* If, for example, c, =7, ¢, = 1, what is then n,?

©—-notation
r

For a given function g(n), ©(g(n)) denotes a set of functions
©(g(n)) = { f(n) : there exists positive constants c,, ¢,, and n, such that
0= c,*g(n) = f(n) =c,*g(n)foralln =n,

. y,
* f(n) ,sandwiched” between c,g(n) and c,g(n) cr2(1)

* Gurantee that this is true forall n>n,

: : S (n)

* g(n) asymptotically tight bound for f(n)

* Both upper (c,g(n)) and lower asymptotic bound (c,g(n)) c1g(n)
* For polynomials: f(n) = a n + a, n“*t+ ...+ a;n + a, |

* fln)=0(n°) '

* Constants are polynomials of 0-th degree: ©(n°) = ©(1)

' n

Ny

f(n) = 0(g(n))

(Big) O-notation

 ©-notation bounds a function from both above and below

* In algorithmic efficiency, we are typically interested more (only) in the
asymptoptic upper bound

O-notation
r 0-notation o

For a given function g(n), O(g(n)) denotes a set of functions

O(g(n)) = { f(n) : there exists positive constants c, and n, such that

0 = f(n) = c*g(n) for all n =n,
. Y,

* O-notation: an upper bound of a function to within a constant factor
* Any f(n) in ©(g(n)) is surely also in O(g(n))
* The opposite not true: e.g., linear functions are in O(n?) but not in ©(n?)

(Big) O—notation
r

For a given function g(n), O(g(n)) denotes a set of functions

O(g(n)) = { f(n) : there exists positive constants ¢, and n, such that

0 = f(n) = c*g(n) foralln =n,
. J

* f(n) limited from above with cg(n) cg(n)
* Gurantee that this is true for all n > n,

* g(n) asymptotic upper bound for f(n)

* For polynomials: f(n) =a n%+a,,n%1+ .. +a,n+a,
* f{n) = 0O(n¥), for each k > d

n

Mo

f(n) = 0(g(n))

Lists: Arrays vs. Linked Lists

e ADT: List — a linear sequence of elements, ordered collection of values
 When we design algorithms, we typically think in terms of ADTs

* Array (as data structure, not ADT)

* Writing values into and reading values from an array is fast

 Example in C (as Arrays in Python or Java are implemented differently)
e int primes[5]; //allocate 5 x size of int (typically 4 bytes) of contiguous memory

2 B

primes[4] = 32
int x = primes[0]

Lists: Arrays vs. Linked Lists

* ADT: List — a linear sequence of elements
 When we design algorithms, we typically think in terms of ADTs

e Linked List

* Consists of nodes: nodes contain both the data (values) and a pointer to the
next node in the list

* Nodes can contain values of different types

* Dynamic data structure: ,resizable” at run time

* Non-contiguous memory allocation possible, space for new nodes can be allocated
dynamically (on ,per-need” basis)

4) 4 4 4
null _—prev _—Trev L —"prev

/
[start]/> data 5 data ? data e data 1 <\[end]
next J L next L next// L null

N N N

Set element of List — running time

* List as Array
e L: the memory address of the first element of the list (array)
* size —the number of bytes for storing one value

set_element (L, ind, val) n = size of the list
L = L + ind*size >
write (L, wval)

Worst running time
(Big-O)?
* List as Linked List

e L: pointer (memory address) to the first node of the list

set_element (L, ind, val) n = size of the list

for 1 = 0 to ind . .
I = L.next Worst running time

write (L, wval) (Big—O)?

v

Stacks and queues — running time

 Stack
push (S5, x)
if S.top == len(S.elements) - 1
error ,overflow”
else
S.elements[S.top] = x

S.top = S.top + 1]
n = size of the stack/queue

Queue Worst running time (Big-0O)?
e ueu

enqueue (0O, x)
if is full (0)
error ,overflow”
else
O.elements[0O.tall] = x
O.tail = (O.tail + 1) % len(0O.elements)

Questions?

Pitanja?

é¢Preguntas?
Fragor?

BHHE1M|]

Porandukuéra?

Questlons?

Vragen? Epwtl’]GElg,

eali

c

! HET pwusimusi?
o =
Z Sorusu olan? g BREX? é
3 Fragen'-’

Pytan a?
¢opuU Blu0(]

Y

	Slide 1: Algorithm Complexity Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: In the beginning, there were only problems
	Slide 4: Analyzing algorithms
	Slide 5: Analyzing algorithms
	Slide 6: Analyzing algorithms
	Slide 7: Analyzing algorithms
	Slide 8: Analyzing algorithms
	Slide 9: Analyzing algorithms
	Slide 10: Content
	Slide 11: Complexity abstractions
	Slide 12: Complexity abstractions (on insert sort)
	Slide 13: Complexity abstractions (on insert sort)
	Slide 14: Complexity abstractions (on insert sort)
	Slide 15: Complexity abstractions (on insert sort)
	Slide 16: Complexity abstractions (on insert sort)
	Slide 17: Complexity abstractions (on insert sort)
	Slide 18: Complexity abstractions (on insert sort)
	Slide 19: Complexity abstractions (on insert sort)
	Slide 20: Complexity abstractions (on insert sort)
	Slide 21: Complexity abstractions (on insert sort)
	Slide 22: Complexity abstractions (on insert sort)
	Slide 23: Complexity abstractions (on insert sort)
	Slide 24: Focus on worst case running time
	Slide 25: Complexity abstractions: rate of growth
	Slide 26: Complexity abstractions: rate of growth
	Slide 27: Content
	Slide 28: Rate of growth and efficiency
	Slide 29: Rates of growth and complexity
	Slide 30: Asymptotic notation
	Slide 31: Θ-notation
	Slide 32: Θ-notation
	Slide 33: (Big) O-notation
	Slide 34: (Big) O-notation
	Slide 35: Lists: Arrays vs. Linked Lists
	Slide 36: Lists: Arrays vs. Linked Lists
	Slide 37: Set element of List – running time
	Slide 38: Stacks and queues – running time
	Slide 39: Questions?

