ALGORITHMS IN AI \& DATA SCIENCE 1 (AKIDS 1)

Algorithm Complexity

Prof. Dr. Goran Glavaš

Content

- Analyzing algorithms
- Complexity abstractions
- Rate/order of growth
- Big-O notation

In the beginning, there were only problems

- Algorithms are designed to solve problems
- Problems are commonly specified with:
- Inputs
- Desired outputs
- Non-functional constraints
- E.g., time of space complexity

Input: A set of n numbers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and a query number b Output: Answer to the question „is b in $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ "

Analyzing algorithms

Find element

Input: A set of n numbers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and a query number b Output: Answer to the question ,is b in $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}^{\prime \prime}$

- You have written an algorithm for the above find element problem
- Is it a good algorithm for the problem?
- Is it the only algorithm that solves the given problem?
- If you can think of more than one algorithm for the problem, which one is better and why?

Analyzing algorithms

Find element

Input: A set of n numbers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and a query number b Output: Answer to the question „, is b in $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}^{\prime \prime}$

- Criteria for evaluating algorithms
- Correctness: does it give a correct output for every input?
- In other words, does it actually solve the problem correctly

```
find_element(7, {2, 17, 35, 1, 14}) -> False
find_element(35, {2, 17, 35, 1, 14}) -> True
```


Analyzing algorithms

- Criteria for evaluating algorithms
- Efficiency: how much computational resources and time does an algorithm's execution require?
- If we have multiple correct algorithms for the problem, we would, intuitively, use the most efficient one
- The fastest among correct algorithms - time complexity
- The one using the least computer resources (typically memory) - space complexity
- Time and space complexity are often in a trade-off relation
- How to measure time and space complexity of algorithms?

Analyzing algorithms

Find element

Input: A set of n numbers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and a query number b Output: Answer to the question ,is b in in $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}^{\prime \prime}$

- How to measure time and space complexity of algorithms?
- Execution time and memory occupation in most cases directly depend on the actual input (actual values provided for the input variables)

```
find_element(7, {2, 17, 35, 1, 14, 9, 43, 91}) -> False VS.
find_element(35, {35, 1, 14}) -> True
```

Which execution is faster and requires less memory?

Analyzing algorithms

- Complexity theory

- Formal examination of an algorithm with respect to its efficiency
- Time efficiency usually much more important than space complexity.
- Q: Why?
- The actual efficiency depends on concrete inputs, but we need to analyze algorithms "in general", that is, for "any (allowed) input"
- Best case running time - time efficiency in/for the most favorable case/inputs
- Lower bound: for no input can the running time be smaller than this
- Worst case running time - time efficiency in/for the least favorable case/inputs
- Upper bound: for no input can the running time be larger than this
- Average-case running time - estimate of time efficiency across all input possibilities

Analyzing algorithms

Find element

Input: A set of n numbers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and a query number b Output: Answer to the question „, is b in $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$?"

Algorithm

```
find_element(lo, a_set)
    for a in a set
        if a= b
    return False
```

read/write
comparison

- In terms of number of elementary operations executed
- How does that number depend on the input?
- Given the length n of the input set „a_set", what is
- The smallest possible number of comparisons?
- The largest possible number of comparisons?
- Number of comparisons „on average"?

Content

- Analyzing algorithms
- Complexity abstractions
- Rate/order of growth
- Big-O notation

Complexity abstractions

- How do we measure time complexity?
- In terms of number of elementary operations executed
- How does that number depend on the input? What is the size of the problem?
- What about the operations that do not depend on the size of the input?
- Let us go back to the sorting problem...

Sorting Problem

Input: A sequence of n numbers $<a_{1}, a_{2}, \ldots, a_{n}>$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}>$ such that

$$
a^{\prime}{ }_{1} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}
$$

Complexity abstractions (on insert sort)

Input: A sequence of n numbers $\left.<a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}>$ such that

$$
a^{\prime}{ }_{1} \leq a^{\prime}{ }_{2} \leq \ldots \leq a_{n}^{\prime}
$$

Algorithm: insert(ion) sort

```
insert_sort(L) # L is a list of numbers
    for i = 1 to L.length - 1 # 0-indexing, first element is at index 0, last at len-1
        key = L[i]
        j = i-1
        while j > -1 and L[j] > key
            L[j+1] = L[j]
            j = j - 1
        L[j+1] = key
```


Complexity abstractions (on insert sort)

Input: A sequence of n numbers $<a_{1}, a_{2}, \ldots, a_{n}>$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}>$ such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}
$$

Algorithm: insert(ion) sort

```
insert_sort(L)
    for i = 1 to L.length - 1
        key = L[i]
        j = i-1
        while j > -1 and L[j] > key
            L[j+1] = L[j]
            j = j - 1
        L[j+1] = key
```

L. Length $=8$| | 2 | 6 | 4 | 5 | 1 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | | | | | | |

1st iteration of outer loop (for)

9	2	6	4	5	1	8	7

$i=1$
j $=$ i-1 $=$
j > -1 and L[j] > key -> True

9	9	6	4	5	1	8

Complexity abstractions (on insert sort)

Input: A sequence of n numbers $<a_{1}, a_{2}, \ldots, a_{n}>$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}>$ such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}
$$

Algorithm: insert(ion) sort

```
insert sort(L)
    for i = 1 to L.length - 1
        key = L[i]
        j = i-1
        while j > -1 and L[j] > key
            L[j+1] = L[j]
            j = j - 1
        L[j+1] = key
```

L. Length $=8 \quad$| 9 | 2 | 6 | 4 | 5 | 1 | 8 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Complexity abstractions (on insert sort)

Input: A sequence of n numbers $\left.<a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}>$ such that

$$
a^{\prime}{ }_{1} \leq a^{\prime}{ }_{2} \leq \ldots \leq a_{n}^{\prime}
$$

Algorithm: insert(ion) sort

```
insert sort(L)
    for i = 1 to L.length - 1
        key = L[i]
        j = i-1
        while j > -1 and L[j] > key
            L[j+1] = L[j]
            j = j - 1
        L[j+1] = key
```

2nd iteration of outer loop (for)

2	6	9	4	5	1	8

Complexity abstractions (on insert sort)

Input: A sequence of n numbers $<a_{1}, a_{2}, \ldots, a_{n}>$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}{ }_{n}>$ such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}
$$

Algorithm: insert(ion) sort

```
insert_sort(L)
    for i = 1 to L.length - 1
        key = L[i]
        j = i-1
        while j > -1 and L[j] > key
            L[j+1]=L[j]
            j = j - 1
        L[j+1] = key
```

3rd iteration of outer loop (for)

2	4	6	9	5	1	8	7

Complexity abstractions (on insert sort)

Sorting Problem

Input: A sequence of n numbers $\left.<a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}>$ such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}
$$

- Let's analyze running time

Algorithm: insert(ion) sort

- $\mathrm{n}=\mathrm{L}$. length: num. elements in the list

```
insert sort(L) # L is a list of numbers
```

 for \(\bar{i}=1\) to L.length \(-1 \longrightarrow\) • Elementary operation:
 - Assignment of value to iterator variable \(i\)
 - Assigned fixed cost \(\mathrm{c}_{1}\)
 - Executed how many times?
 - Cost: \((\mathrm{n}-1) * \mathrm{c}_{1}\)

Complexity abstractions (on insert sort)

Sorting Problem

Input: A sequence of n numbers $\left.<a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}>$ such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}
$$

- Let's analyze running time

Algorithm: insert(ion) sort

- $n=L$. length: num. elements in the list

```
insert_sort(L) # L is a list of numbers
    for }\overline{i}=1 to L.length - 1
        key = L[i]
        j = i-1 \longrightarrowCost: (n-1)* co
        while j > -1 and L[j] > key
            L[j+1] = L[j]
            j = j - 1
        L[j+1] = key
- Elementary operations:
- Reading value L[i]
- Assignment of that value to variable key
- Assigned fixed cost \(\mathrm{C}_{2}\)
- Executed how many times?
```

- Cost: (n-1) * c_{2}

Complexity abstractions (on insert sort)

Input: A sequence of n numbers $\left.<a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
(Desired) Output: A permutation (reordering) of the input $<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}>$ such that

$$
a_{1}^{\prime} \leq a_{2}^{\prime} \leq \ldots \leq a_{n}^{\prime}
$$

- Let's analyze running time

Algorithm: insert(ion) sort

$$
n=L . \text { length: num. elements in the list }
$$

```
```

insert_sort(L) \# L is a list of numbers

```
```

insert_sort(L) \# L is a list of numbers
for \overline{i}=1 to L.length - 1 \# (n-1)* * cl
for \overline{i}=1 to L.length - 1 \# (n-1)* * cl
key = L[i] \# (n-1)* *2
key = L[i] \# (n-1)* *2
j = i-1 \# (n-1)*c
j = i-1 \# (n-1)*c
while j > -1 and L[j] > key
while j > -1 and L[j] > key
L[j+1] = L[j]\longrightarrowCost 勆 n-1 c5* *(ti-1)

```
```

 L[j+1] = L[j]\longrightarrowCost 勆 n-1 c5* *(ti-1)
    ```
```



```
```

 j= [j - 1
    ```
```

```
```

 j= [j - 1
    ```
```

- Elementary operations:
- 2 comparisons in the complex condition
- Assigned fixed cost c_{4}
- Executed how many times?
- That depends on the condition
- For each i we have t_{i} executions of while conditions and all commands inside of the while loop
- Cost $\sum_{i=1}^{n-1} c_{4} * t_{i}$

Complexity abstractions (on insert sort)

Sorting Problem

Input: A sequence of n numbers $<a_{1}, a_{2}, \ldots, a_{n}>$
(Desired) Output: A permutation (reordering) of the input $\left.<a^{\prime}{ }_{1}, a^{\prime}{ }_{2}, \ldots, a^{\prime}\right\rangle$ such that

$$
a_{1}^{\prime} \leq a^{\prime}{ }_{2} \leq \ldots \leq a_{n}^{\prime}
$$

Algorithm: insert(ion) sort

```
insert_sort(L)
    for i = 1 to L.length - 1 # (n-1)* * cm
        key = L[i] # (n-1)*c
        j = i-1 # (n-1)*c
        while j > -1 and L[j] > key # \sum \sumi=1 n-1 c * ti
```



```
        L[j+1] = key # (n-1)* * c
```

- Let's analyze running time
$n=L$. length: num. elements in the list
- Total running time $T(n)$

$$
\begin{aligned}
\mathbf{T}(\mathrm{n})= & (\mathrm{n}-1) *\left(\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{7}\right)+ \\
& \sum_{i=1}^{n-1} c_{4} * t_{i}+\left(c_{5}+c_{6}\right) *\left(t_{i}-1\right)
\end{aligned}
$$

Complexity abstractions (on insert sort)

Algorithm: insert(ion) sort

```
insert_sort(L)
    for i = 1 to L.length - 1 # (n-1)* cc
        key = L[i] # (n-1)* c%
        j = i-1 # (n-1)* c3
        while j > -1 and L[j] > key # \sum Ni=1
            L[j+1] = L[j]# \sum ni=1 n-1}\mp@subsup{c}{5}{*}*(\mp@subsup{t}{i}{}-1
```



```
        L[j+1]= key # (n-1)* c,
```

- Total running time $T(n)$

$$
\begin{aligned}
\mathbf{T}(\mathrm{n})= & (\mathrm{n}-1) *\left(\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{7}\right)+ \\
& \sum_{i=1}^{n-1} c_{4} * t_{i}+\left(c_{5}+c_{6}\right) *\left(t_{i}-1\right)
\end{aligned}
$$

- $T(n)$ depends not only on n but also on concrete numbers in L (their order)
- What is the best possible scenario (smallest possibe running time)?
- If the input L is already sorted
- $t_{i}=1$ for each i
- $T(n)=(n-1) *\left(c_{1}+c_{2}+c_{3}+c_{7}+c_{4}\right)$
- Let's sum up the constant elementary operation costs: $a=c_{1}+c_{2}+c_{3}+c_{7}+c_{4}$
- $T(n)=a^{*} n-a$: this is a linear function of n

Complexity abstractions (on insert sort)

Algorithm: insert(ion) sort

```
insert_sort(L)
    for i = 1 to L.length - 1 # (n-1)* cor
        key = L[i] # (n-1)* co
        j = i-1 # (n-1)* c3
        while j > -1 and L[j] > key # \sum ni=1 n-1}\mp@subsup{c}{4}{}*t
```



```
    L[j+1] = key # (n-1)* c,
```

- Total running time $T(n)$

$$
\begin{aligned}
\mathbf{T}(\mathrm{n})= & (\mathrm{n}-1) *\left(\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{7}\right)+ \\
& \sum_{i=1}^{n-1} c_{4} * t i+\left(c_{5}+c_{6}\right) *\left(t_{i}-1\right)
\end{aligned}
$$

- What is the worst possible scenario (largest possible running time)?
- If the input L is inversely sorted (from largest to smallest value)
- $t_{i}=i$ for each i
- $\sum_{i=1}^{n-1} c_{4} * t_{i}=(1+2+\ldots+(n-1)) * c_{4}=\frac{(n-1) * n}{2} * c_{4}$
- $\sum_{i=1}^{n-1} c_{5} *\left(t_{i}-1\right)=(0+1+\ldots+(n-2)) * c_{5}=\frac{(n-2) *(n-1)}{2} * c_{5}$
- $\sum_{i=1}^{n-1} c_{6} *\left(t_{i}-1\right)=(0+1+\ldots+(n-2)) * c_{6}=\frac{(n-2) *(n-1)}{2} * c_{6}$

Complexity abstractions (on insert sort)

Algorithm: insert(ion) sort

```
insert_sort(L)
    for i = 1 to L.length - 1 # (n-1)* c
        key = L[i] # (n-1)* co
        j = i-1 # (n-1)* c3
        while j > -1 and L[j] > key # \sum ni=1 n-1}\mp@subsup{c}{4}{}*t
        L[j+1] = L[j]# \sum ni=1 n-1}\mp@subsup{c}{5}{*}*(\mp@subsup{t}{i}{}-1
        j = j - 1 # \sum \sumi=1}n=1 co* * (ti-1
    L[j+1] = key # (n-1)* * }\mp@subsup{c}{7}{
```

- Total running time $T(n)$

$$
\begin{aligned}
\mathbf{T}(\mathrm{n})= & (\mathrm{n}-1) *\left(\mathrm{c}_{1}+\mathrm{c}_{2}+\mathrm{c}_{3}+\mathrm{c}_{7}\right)+ \\
& \sum_{i=1}^{n-1} c_{4} * t i+\left(c_{5}+c_{6}\right) *\left(t_{i}-1\right)
\end{aligned}
$$

- What is the worst possible scenario (largest possible running time)?
- If the input L is inversely sorted (from largest to smallest value)
- $t_{i}=i$ for each i
- $T(n)=(n-1) *\left(c_{1}+c_{2}+c_{3}+c_{7}\right)+\frac{(n-1) * n}{2} * c_{4}+\frac{(n-2) *(n-1)}{2} *\left(c_{5}+c_{6}\right)$
- $T(n)=a^{*} n^{2}+b^{*} n+c$
- This is a quadratic function of n

Focus on worst case running time

- In much of algorithm complexity analysis, we focus on the worst case running time because of the following

1. Worst case running gives an upper bound on the running time

- whatever the input, the running time cannot be worse than this

2. For many algorithms the worst case running time occurs often

- Example: search database for values not in database

3. The average running time is often not much better than worst case

- Insert-sort average: $\mathrm{t}_{\mathrm{i}}=\mathrm{i} / 2$
- This still makes the $T(n)$ a quadratic function of n
- Just the coefficients a, b, and c will be smaller
- But this has little effect if n is large \rightarrow growth of functions

Complexity abstractions: rate of growth

- To compute $\mathbf{T}(\mathbf{n})$ we already used simplifying abstractions

1. Ignored actual costs of elementary operations, replaced them with constants c_{i}
2. Replaced any combination of constants c_{i} with a constant (a, b, c)

- This gave the worst case running time function for insert sort
- $\mathbf{T}(\mathbf{n})=\mathbf{a}^{*} \mathrm{n}^{2}+\mathbf{b}^{*} \mathrm{n}+\mathbf{c}$
- But we are actually interested in the rate of growth of the running time, with the increase of n
- For small n, any algorithm will run „fast enough"
- We need to see how $T(n)$ grows with n

Complexity abstractions: rate of growth

- $\mathbf{T}(\mathbf{n})=\mathbf{a}^{*} \mathrm{n}^{2}+\mathbf{b}^{*} \mathrm{n}+\mathbf{c}$
- For growing n
- We introduce further simplifications for simpler description of time efficiency

1. We keep only the leading term of the polynomial above, $\mathbf{a}^{*} n^{2}$

- For large n, n^{k} is an order of magnitude larger than n^{k-1}
- The larger n is, the more insignificant n^{k-1} is compared to n^{k}
- Example (n^{2} vs. n for different n): for $n=5,25$ vs. 5 ; for $n=10^{6}$ it's 10^{12} vs. 10^{6}

2. We can lose the constant - as n becomes larger, the constant factors become less significant also (the constants don't grow with n)

- The constant operation cost does not affect the order of growth
- $\left(a^{*} n_{1}{ }^{k}\right) /\left(a^{*} n_{2}{ }^{k}\right)=\left(n_{1} / n_{2}\right)^{k}$ - as n is growing, the increase in running time doesn't depend on a

Content

- Analyzing algorithms
- Complexity abstractions
- Rate/order of growth
- Big-O notation

Rate of growth and efficiency

- A_{1} more efficient than A_{2} if
- Worst case running time of A_{1} has a lower rate of growth than that of A_{2}
- Worst case running time (considering only rate of growth)
- Denoted with symbol Θ (uppercased „theta")
- Insert sort has a worst case running time $T(n)=a^{*} n^{2}+b^{*} n+\mathbf{c}$
- But (only) n^{2} drives the rate of growth of $T(n)$
- So we say: it has the worst case running time $\Theta\left(n^{2}\right)$ (,theta of n-squared")
- Also, colloquially, insert sort has „quadratic complexity" (or „complexity n-square")

Rates of growth and complexity

- Growth rates for some common complexity functions
- $\Theta(1)$ (constant)
- $\Theta(\log n)$ (logarithmic)
- $\Theta(n)$ (linear)
- $\Theta(n \log n)$ (loglinear)
- $\Theta\left(n^{2}\right)$ (quadratic complexity)
- $\Theta\left(n^{3}\right)$ (cubic complexity)
- ... $\Theta\left(n^{k}\right)$ for $k \geq 0$ (polynomial)
- $\Theta\left(2^{n}\right)$ (exponential)

Image from https://tinyurl.com/46c3cssy

- $\Theta(\mathrm{n}!)$ (factorial)

Asymptotic notation

- Say we have two algorithms A_{1} and A_{2}
- Worst-case running times: $\mathrm{T}_{1}(\mathrm{n})=a^{*} \mathrm{n}+b$;

$$
\mathrm{T}_{2}(\mathrm{n})=c^{*} \mathrm{n}^{2}+d^{*} \mathrm{n}+e
$$

- For some (small) values of n, depending on the values of constants (a, b, c, d, e), $T_{2}(n)$ may even be lower than $T_{1}(n)$
- But when we look at input sizes large enough to make only rate of growth of running time relevant, the quadratic running time will be larger than linear
- There is a (large enough) value n_{0} such that for all $n \geq n_{0}, T_{2}(n) \geq T_{1}(n)$
- Asymptotic efficiency of algorithms: looking at input sizes so large that only rate of growth of the worst running time of the algorithm matters ($n \geq n_{0}$)

Θ-notation

- For insert sort, we denoted the worst running time as $T(n)=\Theta\left(n^{2}\right)$
- Now we formally define the theta function

For a given function $g(n), \Theta(g(n))$ denotes a set of functions $\Theta(g(n))=\left\{f(n):\right.$ there exists positive constants c_{1}, c_{2}, and n_{0} such that

$$
0 \leq c_{1}{ }^{*} g(\mathrm{n}) \leq f(\mathrm{n}) \leq c_{2}^{*} g(\mathrm{n}) \text { for all } \mathrm{n} \geq \mathrm{n}_{0}
$$

- Q: is the above satisfied for $g(n)=n^{2}$ and $f(n)=1 / 2 n^{2}+2 n$?
- Give one set of valid values for c_{1}, c_{2}, and n_{0}
- If, for example, $c_{1}=1 / 2, c_{2}=1$, what is then n_{0} ?

Θ-notation

For a given function $g(n), \Theta(g(n))$ denotes a set of functions $\Theta(g(n))=\left\{f(n)\right.$: there exists positive constants c_{1}, c_{2}, and n_{0} such that

$$
0 \leq c_{1}^{*} g(n) \leq f(n) \leq c_{2}^{*} g(n) \text { for all } n \geq n_{0}
$$

- $f(\mathrm{n})$, sandwiched" between $\mathrm{c}_{1} g(\mathrm{n})$ and $\mathrm{c}_{2} g(\mathrm{n})$
- Gurantee that this is true for all $n \geq n_{0}$
- $g(\mathrm{n})$ asymptotically tight bound for $f(\mathrm{n})$
- Both upper ($\mathrm{c}_{2} g(\mathrm{n})$) and lower asymptotic bound $\left(\mathrm{c}_{1} g(\mathrm{n})\right)$
- For polynomials: $f(n)=a_{d} n^{d}+a_{d-1} n^{d-1}+\ldots+a_{1} n+a_{0}$
- $f(n)=\Theta\left(n^{d}\right)$
- Constants are polynomials of 0-th degree: $\Theta\left(n^{0}\right)=\Theta(1)$

(Big) O-notation

- Θ-notation bounds a function from both above and below
- In algorithmic efficiency, we are typically interested more (only) in the asymptoptic upper bound

```
O-notation
```

For a given function $g(n), O(g(n))$ denotes a set of functions $O(g(n))=\left\{f(n)\right.$: there exists positive constants c, and n_{0} such that $0 \leq f(n) \leq c^{*} g(n)$ for all $n \geq n_{0}$

- O-notation: an upper bound of a function to within a constant factor
- Any $f(n)$ in $\Theta(g(n))$ is surely also in $O(g(n))$
- The opposite not true: e.g., linear functions are in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ but not in $\Theta\left(\mathrm{n}^{2}\right)$

(Big) O-notation

For a given function $g(n), O(g(n))$ denotes a set of functions $\mathrm{O}(g(n))=\left\{f(n)\right.$: there exists positive constants c, and n_{0} such that

$$
0 \leq f(n) \leq c^{*} g(n) \text { for all } n \geq n_{0}
$$

- $f(n)$ limited from above with $c g(n)$
- Gurantee that this is true for all $n \geq n_{0}$
- $g(\mathrm{n})$ asymptotic upper bound for $f(\mathrm{n})$
- For polynomials: $f(n)=a_{d} n^{d}+a_{d-1} n^{d-1}+\ldots+a_{1} n+a_{0}$
- $f(n)=O\left(n^{k}\right)$, for each $k \geq d$

Lists: Arrays vs. Linked Lists

- ADT: List - a linear sequence of elements, ordered collection of values
- When we design algorithms, we typically think in terms of ADTs
- Array (as data structure, not ADT)
- Writing values into and reading values from an array is fast
- Example in C (as Arrays in Python or Java are implemented differently)
- int primes [5] ; // allocate $5 \times$ size of int (typically 4 bytes) of contiguous memory

Lists: Arrays vs. Linked Lists

- ADT: List - a linear sequence of elements
- When we design algorithms, we typically think in terms of ADTs

- Linked List

- Consists of nodes: nodes contain both the data (values) and a pointer to the next node in the list
- Nodes can contain values of different types
- Dynamic data structure: „resizable" at run time
- Non-contiguous memory allocation possible, space for new nodes can be allocated dynamically (on „per-need" basis)

Set element of List - running time

- List as Array

- L: the memory address of the first element of the list (array)
- size - the number of bytes for storing one value

```
set_element(L, ind, val)
    L = L + ind*size
    write(L, val)
```

$\mathrm{n}=$ size of the list
Worst running time (Big-O)?

- List as Linked List
- L: pointer (memory address) to the first node of the list

```
set_element(L, ind, val)
    for i = 0 to ind
        L = L.next
    write(L, val)
```

$\mathrm{n}=$ size of the list
Worst running time
(Big-O)?

Stacks and queues - running time

- Stack

```
push(S, x)
    if S.top == len(S.elements) - 1
        error ",overflow"
    else
        S.elements[S.top] = x
        S.top = S.top + 1
```

- Queue
$\mathrm{n}=$ size of the stack/queue Worst running time (Big-O)?

```
enqueue(Q, x)
    if is_full(Q)
        error "overflow"
    else
        Q.elements[Q.tail] = x
        Q.tail = (Q.tail + 1) % len(Q.elements)
```


Questions?

