
Algorithm Complexity
Prof. Dr. Goran Glavaš

2.11.2023

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Analyzing algorithms

• Complexity abstractions
• Rate/order of growth

• Big-O notation

In the beginning, there were only problems

• Algorithms are designed to solve problems

• Problems are commonly specified with:
• Inputs

• Desired outputs

• Non-functional constraints
• E.g., time of space complexity

Input: A set of n numbers {a1, a2, ..., an} and a query number b
Output: Answer to the question „is b in {a1, a2, ..., an}”

Find element

Analyzing algorithms

• You have written an algorithm for the above find element problem
• Is it a good algorithm for the problem?

• Is it the only algorithm that solves the given problem?

• If you can think of more than one algorithm for the problem, which one is
better and why?

Input: A set of n numbers {a1, a2, ..., an} and a query number b
Output: Answer to the question „is b in {a1, a2, ..., an}”

Find element

Analyzing algorithms

• Criteria for evaluating algorithms
• Correctness: does it give a correct output for every input?

• In other words, does it actually solve the problem correctly

find_element(7, {2, 17, 35, 1, 14}) -> False

find_element(35, {2, 17, 35, 1, 14}) -> True

Input: A set of n numbers {a1, a2, ..., an} and a query number b
Output: Answer to the question „is b in {a1, a2, ..., an}”

Find element

Analyzing algorithms

• Criteria for evaluating algorithms
• Efficiency: how much computational resources and time does an algorithm’s

execution require?

• If we have multiple correct algorithms for the problem, we would, intuitively,
use the most efficient one
• The fastest among correct algorithms – time complexity

• The one using the least computer resources (typically memory) – space complexity

• Time and space complexity are often in a trade-off relation

• How to measure time and space complexity of algorithms?

Analyzing algorithms

• How to measure time and space complexity of algorithms?
• Execution time and memory occupation in most cases directly depend on

the actual input (actual values provided for the input variables)

Input: A set of n numbers {a1, a2, ..., an} and a query number b
Output: Answer to the question „is b in in {a1, a2, ..., an}”

Find element

find_element(7, {2, 17, 35, 1, 14, 9, 43, 91}) -> False vs.
find_element(35, {35, 1, 14}) -> True

Which execution is faster and requires less memory?

Analyzing algorithms

• Complexity theory
• Formal examination of an algorithm with respect to its efficiency

• Time efficiency usually much more important than space complexity.
• Q: Why?

• The actual efficiency depends on concrete inputs, but we need to analyze
algorithms “in general”, that is, for “any (allowed) input”
• Best case running time – time efficiency in/for the most favorable case/inputs

• Lower bound: for no input can the running time be smaller than this

• Worst case running time – time efficiency in/for the least favorable case/inputs
• Upper bound: for no input can the running time be larger than this

• Average-case running time – estimate of time efficiency across all input possibilities

Analyzing algorithms

Input: A set of n numbers {a1, a2, ..., an} and a query number b
Output: Answer to the question „is b in {a1, a2, ..., an}?”

Find element

Algorithm

find_element(b, a_set)

for a in a_set

if a = b

return True

return False

• How do we measure time complexity?

• In terms of number of elementary operations executed
• How does that number depend on the input?

• Given the length n of the input set „a_set”, what is
• The smallest possible number of comparisons?

• The largest possible number of comparisons?

• Number of comparisons „on average”?
read/write

comparison

assignment

Content

• Analyzing algorithms

• Complexity abstractions
• Rate/order of growth

• Big-O notation

Complexity abstractions

• How do we measure time complexity?
• In terms of number of elementary operations executed

• How does that number depend on the input? What is the size of the problem?

• What about the operations that do not depend on the size of the input?

• Let us go back to the sorting problem...

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Complexity abstractions (on insert sort)

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Algorithm: insert(ion) sort

insert_sort(L) # L is a list of numbers

for i = 1 to L.length – 1 # 0-indexing, first element is at index 0, last at len-1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key

Image from Cormen et al.

Sorting Problem

Complexity abstractions (on insert sort)

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Algorithm: insert(ion) sort

insert_sort(L)

for i = 1 to L.length – 1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key

9 2 6 4 5 1 8 7

0 1 2 3 4 5 6 7

L.Length = 8

9 2 6 4 5 1 8 7

i = 1

key = L[i] = 2

j = i-1 = 0

j > -1 and L[j] > key -> True

L[1] = L[0] = 9

1st iteration
of outer loop (for)

9 9 6 4 5 1 8 7

Complexity abstractions (on insert sort)

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Algorithm: insert(ion) sort

insert_sort(L)

for i = 1 to L.length – 1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key

9 2 6 4 5 1 8 7

0 1 2 3 4 5 6 7

L.Length = 8

key = 2

...

L[1] = L[0] = 9

j = j-1 = -1

j > -1 and L[j] > key –> False

-> exited while loop

L[0] = key = 2

1st iteration
of outer loop (for)

9 9 6 4 5 1 8 7

2 9 6 4 5 1 8 7

Complexity abstractions (on insert sort)

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Algorithm: insert(ion) sort

insert_sort(L)

for i = 1 to L.length – 1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key

2nd iteration
of outer loop (for) 2 9 6 4 5 1 8 7

2 9 9 4 5 1 8 7key = 6

2 6 9 4 5 1 8 7

Complexity abstractions (on insert sort)

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Algorithm: insert(ion) sort

insert_sort(L)

for i = 1 to L.length – 1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key

3rd iteration
of outer loop (for)

key = 4

2 6 9 4 5 1 8 7

2 6 9 9 5 1 8 7

2 6 6 9 5 1 8 7key = 4

2 4 6 9 5 1 8 7

Complexity abstractions (on insert sort)

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Algorithm: insert(ion) sort

insert_sort(L) # L is a list of numbers

for i = 1 to L.length – 1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key

• Let’s analyze running time
• n = L.length: num. elements in the list

• Elementary operation:
• Assignment of value to iterator variable i

• Assigned fixed cost c1

• Executed how many times?
• Cost: (n-1) * c1

assignment

Complexity abstractions (on insert sort)

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Algorithm: insert(ion) sort

insert_sort(L) # L is a list of numbers

for i = 1 to L.length – 1

key = L[i]

j = i-1

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key

• Let’s analyze running time
• n = L.length: num. elements in the list

• Elementary operations:
• Reading value L[i]

• Assignment of that value to variable key

• Assigned fixed cost c2

• Executed how many times?
• Cost: (n-1) * c2 read/write

assignment

Cost: (n-1) * c3

Complexity abstractions (on insert sort)

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Algorithm: insert(ion) sort

insert_sort(L) # L is a list of numbers

for i = 1 to L.length – 1 # (n-1) * c1

key = L[i] # (n-1) * c2

j = i-1 # (n-1) * c3

while j > -1 and L[j] > key

L[j+1] = L[j]

j = j – 1

L[j+1] = key

• Let’s analyze running time
n = L.length: num. elements in the list

• Elementary operations:
• 2 comparisons in the complex condition

• Assigned fixed cost c4

• Executed how many times?
• That depends on the condition

• For each i we have ti executions of while
conditions and all commands inside of the
while loop

• Cost σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖

Cost σ𝑖=1
𝑛−1 𝑐5 ∗ (𝑡𝑖-1)

Cost σ𝑖=1
𝑛−1 𝑐6 ∗ (𝑡𝑖−1)

Cost (n-1) * c7

Complexity abstractions (on insert sort)

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

Algorithm: insert(ion) sort

insert_sort(L)

for i = 1 to L.length – 1 # (n-1) * c1

key = L[i] # (n-1) * c2

j = i-1 # (n-1) * c3

while j > -1 and L[j] > key # σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖

L[j+1] = L[j] # σ𝑖=1
𝑛−1 𝑐5 ∗ (𝑡𝑖-1)

j = j – 1 # σ𝑖=1
𝑛−1 𝑐6 ∗ (𝑡𝑖 − 1)

L[j+1] = key # (n-1) * c7

• Let’s analyze running time
n = L.length: num. elements in the list

• Total running time T(n)

T(n) = (n-1) *(c1 + c2 + c3 + c7) +

σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖 + (𝑐5+ 𝑐6) ∗ (𝑡𝑖 − 1)

Complexity abstractions (on insert sort)

Algorithm: insert(ion) sort

insert_sort(L)

for i = 1 to L.length – 1 # (n-1) * c1

key = L[i] # (n-1) * c2

j = i-1 # (n-1) * c3

while j > -1 and L[j] > key # σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖

L[j+1] = L[j] # σ𝑖=1
𝑛−1 𝑐5 ∗ (𝑡𝑖-1)

j = j – 1 # σ𝑖=1
𝑛−1 𝑐6 ∗ (𝑡𝑖 − 1)

L[j+1] = key # (n-1) * c7

• Total running time T(n)

T(n) = (n-1) *(c1 + c2 + c3 + c7) +

σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖 + (𝑐5+ 𝑐6) ∗ (𝑡𝑖 − 1)

• T(n) depends not only on n but also on concrete numbers in L (their order)

• What is the best possible scenario (smallest possibe running time)?
• If the input L is already sorted
• ti = 1 for each i
• T(n) = (n-1) *(c1 + c2 + c3 + c7 + c4)
• Let’s sum up the constant elementary operation costs: a = c1 + c2 + c3 + c7 + c4

• T(n) = a*n – a: this is a linear function of n

Complexity abstractions (on insert sort)

Algorithm: insert(ion) sort

insert_sort(L)

for i = 1 to L.length – 1 # (n-1) * c1

key = L[i] # (n-1) * c2

j = i-1 # (n-1) * c3

while j > -1 and L[j] > key # σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖

L[j+1] = L[j] # σ𝑖=1
𝑛−1 𝑐5 ∗ (𝑡𝑖-1)

j = j – 1 # σ𝑖=1
𝑛−1 𝑐6 ∗ (𝑡𝑖 − 1)

L[j+1] = key # (n-1) * c7

• Total running time T(n)

T(n) = (n-1) *(c1 + c2 + c3 + c7) +

σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖 + (𝑐5+ 𝑐6) ∗ (𝑡𝑖 − 1)

• What is the worst possible scenario (largest possible running time)?
• If the input L is inversely sorted (from largest to smallest value)
• ti = i for each i

• σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖 = (1 + 2 + ... + (n-1)) * c4 =

𝑛−1 ∗𝑛

2
∗ c4

• σ𝑖=1
𝑛−1 𝑐5 ∗ (𝑡𝑖 − 1) = (0 + 1 + ... + (n-2)) * c5 =

𝑛−2 ∗(𝑛−1)

2
∗ c5

• σ𝑖=1
𝑛−1 𝑐6 ∗ (𝑡𝑖 − 1) = (0 + 1 + ... + (n-2)) * c6 =

𝑛−2 ∗(𝑛−1)

2
∗ c6

Complexity abstractions (on insert sort)

Algorithm: insert(ion) sort

insert_sort(L)

for i = 1 to L.length – 1 # (n-1) * c1

key = L[i] # (n-1) * c2

j = i-1 # (n-1) * c3

while j > -1 and L[j] > key # σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖

L[j+1] = L[j] # σ𝑖=1
𝑛−1 𝑐5 ∗ (𝑡𝑖-1)

j = j – 1 # σ𝑖=1
𝑛−1 𝑐6 ∗ (𝑡𝑖 − 1)

L[j+1] = key # (n-1) * c7

• Total running time T(n)

T(n) = (n-1) *(c1 + c2 + c3 + c7) +

σ𝑖=1
𝑛−1 𝑐4 ∗ 𝑡𝑖 + (𝑐5+ 𝑐6) ∗ (𝑡𝑖 − 1)

• What is the worst possible scenario (largest possible running time)?
• If the input L is inversely sorted (from largest to smallest value)

• ti = i for each i

• T(n) = (n-1) *(c1 + c2 + c3 + c7) +
𝑛−1 ∗𝑛

2
∗ c4 +

𝑛−2 ∗ 𝑛−1

2
∗ (c5+ c6)

• T(n) = a*n2 + b*n + c

• This is a quadratic function of n

Focus on worst case running time

• In much of algorithm complexity analysis, we focus on the worst case
running time because of the following

1. Worst case running gives an upper bound on the running time
• whatever the input, the running time cannot be worse than this

2. For many algorithms the worst case running time occurs often
• Example: search database for values not in database

3. The average running time is often not much better than worst case
• Insert-sort average: ti = i/2

• This still makes the T(n) a quadratic function of n
• Just the coefficients a, b, and c will be smaller

• But this has little effect if n is large → growth of functions

Complexity abstractions: rate of growth

• To compute T(n) we already used simplifying abstractions
1. Ignored actual costs of elementary operations, replaced them with

constants ci

2. Replaced any combination of constants ci with a constant (a, b, c)

• This gave the worst case running time function for insert sort
• T(n) = a*n2 + b*n + c

• But we are actually interested in the rate of growth of the running
time, with the increase of n
• For small n, any algorithm will run „fast enough”

• We need to see how T(n) grows with n

Complexity abstractions: rate of growth

• T(n) = a*n2 + b*n + c
• For growing n

• We introduce further simplifications for simpler description of time efficiency
1. We keep only the leading term of the polynomial above, a*n2

• For large n, nk is an order of magnitude larger than nk-1

• The larger n is, the more insignificant nk-1 is compared to nk

• Example (n2 vs. n for different n): for n = 5, 25 vs. 5; for n = 106 it’s 1012 vs. 106

2. We can lose the constant – as n becomes larger, the constant factors become less
significant also (the constants don’t grow with n)
• The constant operation cost does not affect the order of growth

• (a * n1
k)) / (a * n2

k) = (n1/n2)k – as n is growing, the increase in running time doesn’t depend on a

Content

• Analyzing algorithms

• Complexity abstractions
• Rate/order of growth

• Big-O notation

Rate of growth and efficiency

• A1 more efficient than A2 if
• Worst case running time of A1 has a lower rate of growth than that of A2

• Worst case running time (considering only rate of growth)
• Denoted with symbol Θ (uppercased „theta”)

• Insert sort has a worst case running time T(n) = a*n2 + b*n + c
• But (only) n2 drives the rate of growth of T(n)

• So we say: it has the worst case running time Θ(n2) („theta of n-squared”)
• Also, colloquially, insert sort has „quadratic complexity” (or „complexity n-square”)

Rates of growth and complexity

• Growth rates for some common
complexity functions
• Θ(1) (constant)

• Θ(log n) (logarithmic)

• Θ(n) (linear)

• Θ(n log n) (loglinear)

• Θ(n2) (quadratic complexity)

• Θ(n3) (cubic complexity)
• ... Θ(nk) for k ≥ 0 (polynomial)

• Θ(2n) (exponential)

• Θ(n!) (factorial)

Image from https://tinyurl.com/46c3cssy

https://tinyurl.com/46c3cssy

Asymptotic notation

• Say we have two algorithms A1 and A2
• Worst-case running times: T1(n) = a * n + b;

T2(n) = c * n2 + d * n + e

• For some (small) values of n, depending on the values of constants (a, b, c, d, e),
T2(n) may even be lower than T1(n)

• But when we look at input sizes large enough to make only rate of growth of
running time relevant, the quadratic running time will be larger than linear
• There is a (large enough) value n0 such that for all n ≥ n0, T2(n) ≥ T1(n)

• Asymptotic efficiency of algorithms: looking at input sizes so large that only rate
of growth of the worst running time of the algorithm matters (n ≥ n0)

Θ-notation

• For insert sort, we denoted the worst running time as T(n) = Θ(n2)

• Now we formally define the theta function

• Q: is the above satisfied for g(n) = n2 and f(n) = ½ n2 + 2n ?
• Give one set of valid values for c1, c2, and n0

• If, for example, c1 = ½, c2 = 1, what is then n0?

For a given function g(n), Θ(g(n)) denotes a set of functions
Θ(g(n)) = { f(n) : there exists positive constants c1, c2, and n0 such that

0 ≤ c1* g(n) ≤ f(n) ≤ c2* g(n) for all n ≥n0

Θ-notation

Θ-notation

• f(n) „sandwiched” between c1g(n) and c2g(n)
• Gurantee that this is true for all n ≥ n0

• g(n) asymptotically tight bound for f(n)
• Both upper (c2g(n)) and lower asymptotic bound (c1g(n))

• For polynomials: f(n) = adnd + ad-1nd-1 + ... + a1n + a0

• f(n) = Θ(nd)

• Constants are polynomials of 0-th degree: Θ(n0) = Θ(1)

For a given function g(n), Θ(g(n)) denotes a set of functions
Θ(g(n)) = { f(n) : there exists positive constants c1, c2, and n0 such that

0 ≤ c1* g(n) ≤ f(n) ≤ c2* g(n) for all n ≥n0

Θ-notation

(Big) O-notation

• Θ-notation bounds a function from both above and below

• In algorithmic efficiency, we are typically interested more (only) in the
asymptoptic upper bound

• O-notation: an upper bound of a function to within a constant factor
• Any f(n) in Θ(g(n)) is surely also in O(g(n))

• The opposite not true: e.g., linear functions are in O(n2) but not in Θ(n2)

For a given function g(n), O(g(n)) denotes a set of functions
O(g(n)) = { f(n) : there exists positive constants c, and n0 such that

0 ≤ f(n) ≤ c*g(n) for all n ≥n0

O-notation

(Big) O-notation

• f(n) limited from above with c g(n)
• Gurantee that this is true for all n ≥ n0

• g(n) asymptotic upper bound for f(n)

• For polynomials: f(n) = adnd + ad-1nd-1 + ... + a1n + a0

• f(n) = O(nk), for each k ≥ d

For a given function g(n), O(g(n)) denotes a set of functions
O(g(n)) = { f(n) : there exists positive constants c, and n0 such that

0 ≤ f(n) ≤ c*g(n) for all n ≥n0

O-notation

Lists: Arrays vs. Linked Lists

• ADT: List – a linear sequence of elements, ordered collection of values
• When we design algorithms, we typically think in terms of ADTs

• Array (as data structure, not ADT)
• Writing values into and reading values from an array is fast

• Example in C (as Arrays in Python or Java are implemented differently)
• int primes[5]; // allocate 5 x size of int (typically 4 bytes) of contiguous memory

1 byte

primes[4] = 32

int x = primes[0]

Lists: Arrays vs. Linked Lists

• ADT: List – a linear sequence of elements
• When we design algorithms, we typically think in terms of ADTs

• Linked List
• Consists of nodes: nodes contain both the data (values) and a pointer to the

next node in the list

• Nodes can contain values of different types

• Dynamic data structure: „resizable” at run time
• Non-contiguous memory allocation possible, space for new nodes can be allocated

dynamically (on „per-need” basis)

null

data
next

prev
data
next

prev
data 1
null

prev
data
next

start
...

end

Set element of List – running time

• List as Array
• L: the memory address of the first element of the list (array)
• size – the number of bytes for storing one value

set_element(L, ind, val)

L = L + ind*size

write(L, val)

n = size of the list
Worst running time
(Big-O)?

• List as Linked List
• L: pointer (memory address) to the first node of the list

set_element(L, ind, val)

for i = 0 to ind

L = L.next

write(L, val)

n = size of the list
Worst running time
(Big-O)?

Stacks and queues – running time

• Stack

• Queue

enqueue(Q, x)

if is_full(Q)

error „overflow”

else

Q.elements[Q.tail] = x

Q.tail = (Q.tail + 1) % len(Q.elements)

push(S, x)

if S.top == len(S.elements) - 1

error „overflow”

else

S.elements[S.top] = x

S.top = S.top + 1

n = size of the stack/queue
Worst running time (Big-O)?

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и
тан

н
я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w
ọ
n

ib
e

er
e

?

ค ำถำม?

	Slide 1: Algorithm Complexity Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: In the beginning, there were only problems
	Slide 4: Analyzing algorithms
	Slide 5: Analyzing algorithms
	Slide 6: Analyzing algorithms
	Slide 7: Analyzing algorithms
	Slide 8: Analyzing algorithms
	Slide 9: Analyzing algorithms
	Slide 10: Content
	Slide 11: Complexity abstractions
	Slide 12: Complexity abstractions (on insert sort)
	Slide 13: Complexity abstractions (on insert sort)
	Slide 14: Complexity abstractions (on insert sort)
	Slide 15: Complexity abstractions (on insert sort)
	Slide 16: Complexity abstractions (on insert sort)
	Slide 17: Complexity abstractions (on insert sort)
	Slide 18: Complexity abstractions (on insert sort)
	Slide 19: Complexity abstractions (on insert sort)
	Slide 20: Complexity abstractions (on insert sort)
	Slide 21: Complexity abstractions (on insert sort)
	Slide 22: Complexity abstractions (on insert sort)
	Slide 23: Complexity abstractions (on insert sort)
	Slide 24: Focus on worst case running time
	Slide 25: Complexity abstractions: rate of growth
	Slide 26: Complexity abstractions: rate of growth
	Slide 27: Content
	Slide 28: Rate of growth and efficiency
	Slide 29: Rates of growth and complexity
	Slide 30: Asymptotic notation
	Slide 31: Θ-notation
	Slide 32: Θ-notation
	Slide 33: (Big) O-notation
	Slide 34: (Big) O-notation
	Slide 35: Lists: Arrays vs. Linked Lists
	Slide 36: Lists: Arrays vs. Linked Lists
	Slide 37: Set element of List – running time
	Slide 38: Stacks and queues – running time
	Slide 39: Questions?

