
Basic Data Structures
Prof. Dr. Goran Glavaš

30.10.2023

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Primitive Data Types

• Abstract Data Types
• List

• Stack

• Queue

Primitive Data Types: Integer

• Several universal primitive data types
• Exist in all programming languages

1. Integer
• In some programming languages, several subtypes of the integer type

• short: typically allocated 2 bytes of memory

• int: typically allocated 4 bytes of memory

• long: typically allocated 8 bytes of memory

0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0

1 byte 1 byte

Primitive Data Types: Integer

• Several universal primitive data types
• Exist in all programming languages

1. Integer
• Range of integers covered by the concrete type, depends on the number of

bytes allocated to the type

• That can vary across programming languages

• 1 byte = 8 bits. N bytes = 8N bits = 28N different numbers

• But we have both positive and negative integers

• N bytes gives the range of [-28N – 1, -28N – 1 - 1]
• For N = 2, we can represent numbers from -32768 (-215) to 32767 (215 - 1)

Primitive Data Types: Float

• Several universal primitive data types
• Exist in all programming languages

2. Float (short for „floating point”)
• Represents real numbers (e.g., 23.4 or -1.532343213)

• Computer memory is limited (how many bytes for one number?)
• We cannot store numbers with infinite precision (e.g., 1.333333333333...)

• So for decimal numbers, we need to decide how much of our „bit budget” do
we want to to integer digits and how many to fraction digits?

Primitive Data Types: Float

2. Float (short for „floating point”)
• So for decimal numbers, we need to decide how much of the „bit budget” do

we want to for integer digits and how many to fraction digits?

To an engineer building a highway, it does not matter if the road is 10 meters or 10.00001
meters wide→more capacity for integer digits

For a designer of a microchip 0.00001 makes a huge difference. At the same time, they
never need numbers larger than 0.1: more capacity for fraction digits

A physicist needs numbers that capture distances in space (e.g., millions of km) as well as
very small quantities (e.g., gravitational constant, 6.674...*10−11): large capacity for both

integer and fraction digits

Primitive Data Types: Float

• If we want to satisfy all the different use cases, a fixed split of bits – some to
integer digits, rest to fraction digits – won’t work

• Solution: format called floating point (float) consisting of:
• Significand: the number’s digits (both from integer part and those from fraction)

• Exponent: specifies where the decimal point is relative to the beginning of the significand
• We assume the decimal point is after the first digit

• The exponent then indicates how many places it needs to be moved!

Real number Significand Exponent Exp. format

15.365 1.5365 1 1.5365 * 101

-300.5 -3.005 2 -3.005 * 102

0.00000000456 4.56 -9 4.56 * 10-9

17340000000 1.734 10 1.734 * 1010

Primitive Data Types: Float

• What is the range of numbers we can represent with a floating point?
• Depends on number of bits/bytes assigned to significand

• Depends on number of bits/bytes assigned to exponent

• Most programming languages support two floating point (sub)types
• Single precision (just „float”)

• Double prediction („double”)

Primitive Data Types: Boolean

• Several universal primitive data types
• Exist in all programming languages

3. Boolean
• This data type has only two possible values: true and false

• Q: How much memory is needed to store one Boolean variable?

Primitive Data Types: Characters

• Several universal primitive data types
• Exist in all programming languages

3. Character (or char) and string (not primitive)
• Character encoding: assigning numbers to graphical characters
• How much memory do we need for a character?

• Depends on how many characters we want to encode/support

• Strings: sequences of characters
• Technically not primitive data type
• But in most programming languages it is predefined (effectively treated as a primitive)

with a lot of built-in functionality for string manipulation

(Data) „Typing” in Programming Languages

• Each programming language has its own (data) type system

• Strongly vs. Weakly (loosely) typed
• Colloquial classification, no strict definition

• Strongly typed: stricter typing rules at compile time
• Regarding variable assignment, function returns values, function arguments, etc.

int name = „anonymous” // will give compile error in C++

public int sum(int a, int b) {...}

sum(1, „student”) // will give compile error in Java

• Weakly typed: looser type checking rules (at compile type or in interpreters)

• looser typing rules/checks in advance

• Type incompatibilities typically yield errors at runtime

• Implicit (silent) type conversion may happen at runtime – can cause „nasty bugs”

(Data) „Typing” in Programming Languages

• Each programming language has its own (data) type system

• Static vs. Dynamic typing

• Static typing: type checking performed at program compilation time
• In strong, static typing no type errors should occur at runtime

• Dynamic typing: type checking happens at runtime (during execution)

• Values used at runtime classified into types

• There are restrictions on how values of certain types can be (are allowed to be) used

• If restrictions are violated, a (dynamic) type error occurs

Primitive Types in Python

• Integer, Float, Bool*, String*
• *Strictly speaking, not primitive types in Python, implemented as classes

• type() built-in function returns the type of any variable or constant

x = 32767

type(x)

w = 1.357e-12

type(w)

print(z == w)

print(type(z == w))

s = "Berlin, Germany"

print(type(s))

slicing

a[:6], a[8:], a[3:11]

('Berlin', 'Germany', 'lin, Ger')

"lin" in s # True

s.startswith("Berlin") # True

s.endswith("Germany") # True

No-value-type („empty” variable)

• In most programming languages, there’s a reserved type indicating
that a variable has no value

• Java, C++, C#: null pointer

• Python: NoneType (keyword None)
• If evaluated directly as a condition, None value in Python gives False (same goes for an

integer value of 0 and empty string ””)

x = None

type(x)

if x:

print("True")

else:

print("False")

y = 0

type(y)

if y:

print("True")

else:

print("False")

Content

• Primitive Data Types

• Abstract Data Types
• List

• Stack

• Queue

Complex and Abstract Data Types

• Complex data types
• Consist of primitive data types

• Concrete complex data types are defined by a concrete programming language

• Algorithms are independent of programming languages
• Instead of concrete, we use abstract data types

• Abstract data types (ADT) are structures needed for efficient algorithms

• For each ADT, every programming language has a corresponding concrete data type

• ADT → classifying data structures according to how they are used / behaviors they provide

• ADT does not specify how the data structure is implemented or represented in memory

Abstract Data Types

Abstract Data Type Other Common Names Commonly implemented as

List Sequence Array, Linked List

Queue Array, Linked List

Double-ended Queue Dequeue, Deque Array, Doubly-linked List

Stack Array, Linked List

Associative Array Dictionary, Hash Map, Map Hash Table

Set Red-black Tree or Hash Table

Priority Queue Heap Heap

Dynamic Sets

• Dynamic sets of values („data”) – collections of items on which the
following operations are expected to be commonly executed
• Addition of elements („INSERT” operation)
• Removal of elements („DELETE” operation)
• Replacement of elements

• Can be seen as removal + addition

• Simple ADTs for dynamic sets
• Lists
• Queues
• Stacks

Lists: Arrays vs. Linked Lists

• ADT: List – a linear sequence of elements, ordered collection of values
• No constraints on INSERT or REMOVE (can insert or fetch from anywhere in the list)

• Commonly implemented as data structures:
• Array or
• Linked List

• Array (as a concrete data structure, not ADT)
• Among the oldest, most widely used data structures in programming
• Values are of homogeneous size and stored in contiguous memory
• To create an array, we need to allocate contiguous memory space

• Q: How much of it?
• Fixed size (Dynamic array allows resizing after creation)

Lists: Arrays vs. Linked Lists

• ADT: List – a linear sequence of elements, ordered collection of values
• When we design algorithms, we typically think in terms of ADTs

• Array (as data structure, not ADT)
• Writing values into and reading values from an array is fast

• Example in C (as Arrays in Python or Java are implemented differently)
• int primes[5]; // allocate 5 x size of int (typically 4 bytes) of contiguous memory

1 byte

primes[4] = 32

int x = primes[0]

Lists: Arrays vs. Linked Lists

• ADT: List – a linear sequence of elements, ordered collection of values

• Array (as data structure, not ADT): problems

• Standard array: elements cannot be of different size/type
• Some languages remedy for this: for example, Python and Java

• Arrays are of fixed size
• Lists (as ADT) are, in most algorithms, expected to be of changeable size (elements

added, removed, etc.)

• Changing the size of array (as data structure) requires allocating additional contiguous
memory (or releasing some) – what if none is available?

Python and Java arrays

• Java and Python arrays can have elements of different types/sizes

• Instead of storing values themselves into the array, they store
pointers to actual values into arrays
• Pointers are all of the same size (numbers representing memory addresses)

pointer (address)

(instance of)
class Rectangle

address 1 address 2 address 3 address 4 address 5

string
„Berlin”

int
223

(instance of)
class Circle

tuple (int, string)
(1,„Glasgow”)

address 1 address 2 address 3 address 4 address 5

Python and Java arrays

• Java and Python arrays can have elements of different types/sizes

• Pointers are fast to read and write, but not the values themselves
• Values are not stored in contiguous memory

• Value access in non-contiguous memory slower

• More flexible: can have arrays of arbitrary objects/values
• Necessary for OO programming languages (remember inheritance and polymorphism)

pointer (address)

(instance of)
class Rectangle

address 1 address 2 address 3 address 4 address 5

string
„Berlin”

int
223

(instance of)
class Circle

tuple (int, string)
(1,„Glasgow”)

address 1 address 2 address 3 address 4 address 5

Lists: Arrays vs. Linked Lists

• ADT: List – a linear sequence of elements
• When we design algorithms, we typically think in terms of ADTs

• Linked List
• Consists of nodes: nodes contain both the data (values) and a pointer to the

next node in the list

• Nodes can contain values of different types

• Dynamic data structure: „resizable” at runtime
• Non-contiguous memory allocation possible, space for new nodes can be allocated

dynamically (on „per-need” basis)

address 1

(instance of)
class Rectangle

address 2

address 1

string

„Berlin”
address 3

address 2

int

223
address 4

address 3

(instance of)
class Circle

address 5

tuple (int, string)
(1,„Glasgow”)

null

address 4 address 5

Lists: Arrays vs. Linked Lists

• ADT: List – a linear sequence of elements
• When we design algorithms, we typically think in terms of ADTs

• Linked List
• Disadvantage: access to nodes (read, write) is slower than with arrays

• To access the value of the n-th element of the list, we have to pass through
the preceding n-1 nodes

• We have only the pointer to the beginning of the list as the access point

address 1

(instance of)
class Rectangle

address 2

address 1

string

„Berlin”
address 3

address 2

int

223
address 4

address 3

(instance of)
class Circle

address 5

tuple (int, string)
(1,„Glasgow”)

null

address 4 address 5

Lists: Doubly Linked List

• ADT: (Bidirectional) List – a linear sequence of elements
• When we design algorithms, we typically think in terms of ADTs

• Doubly Linked List
• Iterating through a regular linked list is possible only in one direction

• Additional pointer in each node → possible to iterate backwards too

• Each node has two pointers now
• Forward pointer (first node called head of the list)

• Backward pointer (last node called tail of the list)

• Q: what would be a circular list?

null

data
next

prev
data
next

prev
data 1
null

prev
data
next

start
...

end

Stacks and Queues

• Data structures for handling dynamic sets for which the operation for
removing an element (DELETE operation) is prespecified
• I.e., cannot remove any element, there is a prespecified order of removal

• Stack („last-in, first-out”, LIFO policy)
• The element removed is always the element last inserted

• Queue („first-in, first-out”, FIFO policy)
• The element removed is always the one inserted the earliest (the one that’s

been in the queue the longest)

• How to efficiently implement stacks and queues?

Stack

• Think of a physical stack, e.g., stack of plates in a restaurant
• INSERT operation is often called PUSH („push to the stack”)

• DELETE operation is often called POP („pop from the stack”)

• Implementing stack (as ADT)
• With Array or with Linked List (as actual data structures)

• Stack as array
• Fixed number of elements

• Not well-suited for stacks that have an unknown maximal size

• Index of the first element of array (so, commonly 0) is the bottom of the
stack, index of the last element is the top

• If the top of the stack is 0, the stack is empty

Stack

• Stack as array
• We allocate an array of fixed size: n elements

• Not suited for stacks that have an unknown maximal size

• If the top of the stack is 0, the stack is empty

• What happens if we try to POP from an empty stack?
• This is stack underflow → you’ll typically get a runtime error

• If the top of the stack is n-1 (stack has n elements)

• What happens if we try to PUSH one more element to the stack?
• This is stack overflow→ depending on the actual implementation of an array: maybe an

error, maybe dynamic reallocation in the memory for a larger array

Stack operations (with array, pseudocode)

• We assume that stacks S consists of two data pieces
• Array containing the elements: S.elements

• An integer variable which indicates where the top is: S.top

create_stack(n)

S.elements = array[n]

S.top = 0

return S

push(S, x)

if S.top == len(S.elements) - 1

error „overflow”

else

S.elements[S.top] = x

S.top = S.top + 1

pop(S)

if is_empty(S)

error „underflow”

else

x = S.elements[S.top]

S.top = S.top - 1

return x

is_empty(S)

if S.top == 0

return True

else

return False

Queue

• Think of a physical queue, e.g., students waiting in the queue in mensa ☺
• INSERT operation is often called ENQUEUE
• DELETE operation is often called DEQUEUE

• Implementing queue (as ADT)
• With array or with linked list (as actual data structures)

• Queue as array
• Fixed number of elements
• Not suited for queues that have an unknown maximal size
• Index of the first element in the queue is the head of the queue, index of the

first empty element in the array is the tail
• Both head and tail can move; keep track of the number of elements in the

queue

Queue

• Start with the queue of size 12 that contains 5 elements (e.g., in positions 7-11)

• Example and image from Cormen et al., page 234

• Then execute

1. Enqueue(Q, 17),

2. Enqueue(Q, 3),

3. Enqueue(Q, 5),

4. Dequeue(Q)

Queue operations (with array, pseudocode)

• We assume that queue Q consists of three data pieces
• Array containing the elements: Q.elements

• Variables indicating where the head and tail are: Q.head, Q.tail

• A Queue of size n requires an array with n+1 elements. Q: Why?

create_queue(n)

Q.elements = array[n+1]

Q.head = 0

Q.tail = 0

return Q

is_empty(Q)

if Q.head == Q.tail

return True

else

return False

is_full(Q)

if Q.tail+1 == Q.head

return True

else

return False

Stack operations (with array, pseudocode)

• We assume that queue Q consists of three data pieces
• Array containing the elements: Q.elements

• Variables indicating where the head and tail are: Q.head, Q.tail

• A Queue of size n requires an array with n+1 elements. Q: Why?

enqueue(Q, x)

if is_full(Q)

error „overflow”

else

Q.elements[Q.tail] = x

Q.tail = (Q.tail + 1) % len(Q.elements)

dequeue(Q)

if is_empty(Q)

error „underflow”

else

x = Q.elements[Q.head]

Q.head = (Q.head + 1) % len(Q.elements)

return x

Stack & Queue with Linked List

• Same as for List, the alternative to an Array for implementing Stack
and Queue is the Linked List

• Pros & cons between Array and Linked List the same as for List (ADT)
• Working with a fixed Array is faster, values stored in contiguous memory

• Dynamic (arbitrary size) queues & stacks require dynamic memory allocation
• Either Dynamic Array or Linked List

• With Linked List
• Dynamic size trivially supported

• We add pointers

• Values can be of different types

• Because of pointer following, slower (more read operations)

Stack with Linked List

data
next

top

...

data
next

data
next

data
next

create_stack()

S.top = null

return S

push(S, x)

x.next = S.top

S.top = x.address

• We assume that each node has the property address
specifying the memory address of its data

• We also assume that each node has a pointer next in
which we store the address of some other data (node)

Stack with Linked List

data
next

top

...

data
next

data
next

data
next

• We assume that each node has the property data getting
the actual data (value) stored in the node

• We also assume that each node has a pointer next in
which we store the address of some other data (node)

pop(S)

if is_empty(S)

error „underflow”

else

x = S.top.data

S.top = S.top.next

return x

is_empty(S)

return (S.top == null)

Queue with Linked List

• Similar to Stack with Linked List, only
we need two pointers
• Head pointer (for dequeing)

• Tail pointer (for enqueing)

data
next

head

...

data
next

data
next

data
next

tail

create_queue()

Q.head = null

Q.tail = null

return Q

is_empty()

return Q.head == null

enqueue(Q, x)

if Q.tail != null

Q.tail.next = x.address

Q.tail = x.address

if Q.head == null

Q.head = x.address

dequeue(Q)

if is_empty(Q)

error „underflow”

else

x = Q.head.data

Q.head = Q.head.next

if Q.head == null

Q.tail = null

return x

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и
тан

н
я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w
ọ
n

ib
e

er
e

?

ค ำถำม?

	Slide 1: Basic Data Structures Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Primitive Data Types: Integer
	Slide 4: Primitive Data Types: Integer
	Slide 5: Primitive Data Types: Float
	Slide 6: Primitive Data Types: Float
	Slide 7: Primitive Data Types: Float
	Slide 8: Primitive Data Types: Float
	Slide 9: Primitive Data Types: Boolean
	Slide 10: Primitive Data Types: Characters
	Slide 11: (Data) „Typing” in Programming Languages
	Slide 12: (Data) „Typing” in Programming Languages
	Slide 13: Primitive Types in Python
	Slide 14: No-value-type („empty” variable)
	Slide 15: Content
	Slide 16: Complex and Abstract Data Types
	Slide 17: Abstract Data Types
	Slide 18: Dynamic Sets
	Slide 19: Lists: Arrays vs. Linked Lists
	Slide 20: Lists: Arrays vs. Linked Lists
	Slide 21: Lists: Arrays vs. Linked Lists
	Slide 22: Python and Java arrays
	Slide 23: Python and Java arrays
	Slide 24: Lists: Arrays vs. Linked Lists
	Slide 25: Lists: Arrays vs. Linked Lists
	Slide 26: Lists: Doubly Linked List
	Slide 27: Stacks and Queues
	Slide 28: Stack
	Slide 29: Stack
	Slide 30: Stack operations (with array, pseudocode)
	Slide 31: Queue
	Slide 32: Queue
	Slide 33: Queue operations (with array, pseudocode)
	Slide 34: Stack operations (with array, pseudocode)
	Slide 35: Stack & Queue with Linked List
	Slide 36: Stack with Linked List
	Slide 37: Stack with Linked List
	Slide 38: Queue with Linked List
	Slide 39: Questions?

