
Algorithms: fundamentals
Prof. Dr. Goran Glavaš

26.10.2023

WüNLP

ALGORITHMS IN AI & DATA SCIENCE 1 (AKIDS 1)

Content

• Building blocks of algorithms

• Algorithmic/programming paradigms

• Determinism in algorithms

Algorithm: Definitions

A process or set of rules to be followed in calculations or other problem-solving
operations, especially by a computer.

Oxford dictionary

A finite sequence of rigorous instructions, typically used to solve a class of specific
problems or to perform a computation.

Wikipedia

Any well-defined computational procedure that takes
some (set of) value(s) as input and produces some (set of) value(s) output.

Cormen et al.

In the beginning, there were only problems

• Algorithms are designed to solve problems

• Problems are commonly specified with:
• Inputs

• Desired outputs

• Optional: Non-functional constraints
• E.g., time or space complexity

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Sorting Problem

In the beginning, there were problems

• Optional: Non-functional constraints
• Refer to the constraints on the execution of the algorithm

• Time complexity: duration of the algorithm execution

• Space complexity: amount of computer memory needed for execution

Input: A sequence of n numbers <a1, a2, ..., an>
(Desired) Output: A permutation (reordering) of the input <a’1, a’2, ..., a’n> such that

a’1 ≤ a’2 ≤ ... ≤ a’n

Time-complexity constraint: not more than n2

elementary operations

Sorting Problem

What are algorithms built from?

• Building blocks of algorithms
• Elementary operations

• Sequential processing (one processing line)

• Parallel processing (multiple processing lines)

• Conditions (conditioned execution)

• Loops (repetition)

• Subprograms (modular construction of an algorithm)

• Recursion (later in the course)

Let’s build an algorithm: pseudocode

• Programming languages (e.g., Python, Java, C++) are artificial (as opposed to
natural human languages), but formal

enroll_student_into_all_semester_courses

Input: stud_ID, sem_no

Data: studien_aufbau # maps semesters to courses

wuecamp # maps courses to WueCampus courses/URLs

courses <- look into studien_aufbau for sem_no # our „step” 1

enrolled <- [] # empty list

for each course c in courses # step 2, iterating over all obtained courses

wcc <- look into wuecamp for c # our „step” 2a

success <- enroll(stud_ID, wcc)

if success = True

add wcc to enrolled

Output: enrolled

Pseudocode is an artificial and informal language that helps us develop
algorithms. It can be seen as a "text-based” tool for designing algorithms.

Let’s build an algorithm: pseudocode

• Building blocks of algorithms
_

enroll_student_into_all_semester_courses

Input: stud_ID, sem_no

Data: studien_aufbau # maps semesters to courses

wuecamp # maps courses to WueCampus courses/URLs

courses <- look into studien_aufbau for sem_no # our „step” 1

enrolled <- [] # empty list

for each course c in courses # step 2, iterating over all obtained courses

wcc <- look into wuecamp for c # our „step” 2a

success <- enroll(stud_ID, wcc)

if success = True

add wcc to enrolled

Output: enrolled

Pseudocode is an artificial and informal language that helps us develop
algorithms. It can be seen as a "text-based” tool for designing algorithms.

Elementary (atomic) operations
• Cannot be broken into

smaller suboperations
• Basiselemente eines Algorithmus,

die nicht näher aufgeschlüsselt werden

Elementary operations

• Atomic elements of algorithms, not broken down further
• Depends on how fine-grained the view we adopt is

• Types of elementary operations
• Arithmetic operations (addition, subtraction, division, multiplication, ...)
• Variable assignments
• Value comparisons
• Input/Output (that is, read/write operations)

An elementary operation is one whose execution time is bounded by a constant
for a particular machine and programming language

Let’s build an algorithm: pseudocode

• Building blocks of algorithms
_

enroll_student_into_all_semester_courses

Input: stud_ID, sem_no

Data: studien_aufbau # maps semesters to courses

wuecamp # maps courses to WueCampus courses/URLs

courses <- look into studien_aufbau for sem_no # our „step” 1

enrolled <- [] # empty list

for each course c in courses # step 2, iterating over all obtained courses

wcc <- look into wuecamp for c # our „step” 2a

success <- enroll(stud_ID, wcc)

if success = True

add wcc to enrolled

Output: enrolled

read/write

comparison

assignment

Conditions

• Define whether one or more steps will be executed or not

• Structure:
• if [condition] then <step(s)> [else <other steps>]

• Nesting conditions
• Condition within a condition

if [cond1] then

if [cond2] then

<steps>

else

<steps>

else

if [cond3] then

<steps>

Conditions

• Atomic conditions are propositions of Boolean logic
• They „return” a binary value: true or false

• Typically value comparisons
• a = 4?, b ≥ c?, d in [17, 4, 3, 25]?

• Three standard boolean logic operations can be applied to conditions to
create complex conditions
• Negation („NOT” operator): NOT [cond]

• True iff [cond] is False (and vice-versa)

• Conjuction („AND” operator): [cond1] AND [cond2]
• True iff both [cond1] and [cond2] are True

• Disjunction („OR” operator): [cond1] OR [cond2]
• True iff at least one of [cond1] and [cond2] are True

Loops (Schleife)

• Repeated execution of some steps

• Two types of loops
• WHILE: the execution is repeated until the condition is satisfied

• Number of repetitions not necessarily known in advance

• FOR: the execution is repeated a fixed number of times

• [condition] in WHILE loop: a Boolean expression as before

• [iterator] in FOR loop: generates a sequence of values over which to iterate

while [condition] do

step1

step2

...

for [iterator] do

step1

step2

...

Loops (Schleife)

• Examples

• Infinite loops (Endlosschleifen)
• With WHILE loops, if the condition

never becomes False

• Changing iterator while iterating
• In FOR loops, some programming languages don’t

allow iterator to be changed inside of the loop
• Python does allow it!

• Behind the scene computes fixed list at first evaluation of
the iterator

x <- 10

while x > 5 do

x <- x-1

print x

num <- [1, 2, 3]

sum <- 0

for x in num do

sum <- sum + x*x

print sum

x <- 10

while x < 12 do

x <- x-1

num <- [1, 2, 3]

sum <- 0

for x in num do

sum <- sum + x*x

num <- [4, 5, 6]

Functions, Subprograms, Modules

• Different problems sometimes share parts of the solution
• Algorithms for those problems could thus have common subparts

• Functions (subprograms, modules)
• Encapsulate the functionality that is needed across different algorithms

• Advantage: avoid redundancy, implement shared functionality once, reuse wherever needed

• Advantage: build algorithms compositionally, reusing existing solutions as much as possible
(instead of from scratch for every new problem)

func enroll_student:

Input: stud_id, wcc

val_s <- check_valid_student(stud_id)

val_c <- check_valid_course(wcc)

if val_s = True AND val_c = True:

add_student_course(stud_id, wcc)

Output: True

else:

Output: False

Functions, Subprograms, Modules

• Functions (subprograms, modules)
• Encapsulate the functionality that is needed across

different algorithms

• Advantage: avoid redundancy, implement shared
functionality once, reuse wherever needed

func enroll_student:

Input: stud_id, wcc

val_s <- check_valid_student(stud_id)

val_c <- check_valid_course(wcc)

if val_s = True AND val_c = True:

add_student_course(stud_id, wcc)

Output: True

else:

Output: False

enroll_student_into_all_semester_courses

Input: stud_ID, sem_no

studien_aufbau # maps semesters to courses

Data: wuecamp # maps courses to WueCampus courses/URLs

courses <- look into studien_aufbau for sem_no # our „step” 1

enrolled <- [] # empty list

for each course c in courses # step 2, iterating over all obtained courses

wcc <- look into wuecamp for c # our „step” 2a

success <- enroll_student(stud_ID, wcc)

if success = True

add wcc to enrolled

Output: enrolled

Functions (Subprograms, Modules)

• Functions (subprograms, modules)
• Advantage: build algorithms compositionally, reusing as much existing

solutions as possible (instead of from scratch for every new problem)

enroll_all_program_students_into_all_semester_courses

Input: sem_no, studiengang

Data: program_aufbaus # maps study programs to studienaufbau tables

students_programs # maps programs to list of students enrolled into them

studien_aufbau <- look into program_aufbaus for studiengang

students <- look into students_programs for studiengang

student_enrollments <- []

for each student s in students:

enrolled <- enroll_student_into_all_semester_courses(s, sem_no, studien_aufbau)

add <s, enrolled> to student_enrollments

Output: student_enrollments

Recursion

• Recursive algorithms solve recursive problems:
• Divisible into subproblems of the same type as the original problem

• Solution to the subproblem is part of the solution to the whole problem

Input: Natural number n
(Desired) Output: Factorial n! = 1 * 2 * ...* n

prod <- 1

for x in [2, 3, ..., n] do

prod <- prod * x

Iterative solution But n! is a recursive problem

n! = n * (n-1)!

= n * (n-1) * (n-2)!

= ...

= n * (n-1) * (n-2) * ... * 3 * 2 * 1

Factorial (Fakultät) problem

Recursion

• Recursive algorithms solve recursive problems:
• Divisible into subproblems of the same type as the original problem

• Solution to the subproblem is part of the solution to the whole problem

Input: Natural number n
(Desired) Output: Factorial n! = 1 * 2 * ...* n

Factorial (Fakultät) problem

func factorial

Input: n

if n = 1

Output: 1

else

Output: n * factorial(n-1)

Recursive solution (pseudocode) Recursive solution (Python)

def factorial(n):

if n == 1:

return 1

else:

return n * factorial(n-1)

Recursion

• Recursive algorithms have two main components:
• Call-to-self: recursive call to the function within the function itself

• Termination criterion of the recursion (Abbruchkriterium der Rekursion)
• Without it, recursions would never end (infinite execution, similar to infinite loops)

func factorial

Input: n

if n = 1

Output: 1

else

Output: n * factorial(n-1)

Recursive solution (pseudocode) Recursive solution (Python)

def factorial(n):

if n == 1:

return 1

else:

return n * factorial(n-1)

Termination criterion

Recursive call

Content

• Building blocks of algorithms

• Algorithmic/programming paradigms

• Determinism in algorithms

Imperative vs. Declarative (and then objects...)

• Two main paradigms of algorithms:
• Imperative (procedural) algorithms/programming

• Explicitly describe steps to be executed (how)

• Imperative programming languages: C, C++, Java*, C#*, Python*, ...

• Declarative (applicative) algorithms/programming
• Describe what is to be done, but not (so directly) how (what)

• Most well-known subtype is functional programming
• Functional programming languages: Haskell, Lisp, Clojure, Scala*, ...

Programming paradigms

Source: https://www.educative.io/blog/declarative-vs-imperative-programming

https://www.educative.io/blog/declarative-vs-imperative-programming

Imperative programming

• The approach to algorithm design and programming that is:
• The oldest, the most basic, the most intuitive, the most common/widespread

• Step-by-step execution (control flow) of commands – individual
statements („elementary operations”) or function calls
• With conditions and loops as basic building blocks

• Stateful: after every command, program/algorithm in different state;
• If state is stored, program can continue running from it if interrupted

Imperative programming is a paradigm that uses statements that change a program's state. An imperative
program consists of commands for the computer to perform. It focuses on describing how a program

operates step by step, rather than on high-level descriptions of its expected results.

Wikipedia

Types of imperative programming

• Procedural programming
• Program/algorithm built from one or more procedures (aka subroutines or

functions): these typically have well defined inputs and outputs

• Much of AI/DS programming you’ll write (e.g., in Python) will be procedural

• Object-oriented programming
• Programming paradigm grounded in the notion of objects, which encapsulate data

(fields) and functions (methods) that meaningfully go together

• Classes define sets of data and functions, objects are instances of classes
• In principle, it is possible to create any number of objects of some class
• Classes determine the type of object (or class = object type)

• Functions (or methods) of an object can access and modify the object's data

• Even more of AI/DS programming you’ll write (e.g., in Python) will be OO

Crash course in OOP

Class: Circle

Data fields:

radius

Functions:

create(r):

radius <- r

surface():

Output:

radius*radius*pi

perimeter():

Output: 2*radius*pi

Class: Rectangle

Data fields:

height

width

Functions:

create(h, w):

height <- h

width <- w

surface():

Output: height * width

perimeter():

Output: 2*(height + width)

Constructor!

Core Principles of OOP

• Encapsulation
• Data (fields) and methods that require that data

placed together

• Data and methods made private or public

• Private fields (and methods) cannot be
accessed/changed by object-external code, i.e.,
other objects

• Public methods (and fields) are what the object
exposes to „the world”

• Python has classes/objects but doesn’t have
private methods

Class: Rectangle

Data fields:

height

width

Functions:

create(h, w):

height <- h

width <- w

surface():

Output: height * width

perimeter():

Output: 2*(height + width)

Pseudocode

Core Principles of OOP

• Encapsulation
• Data (fields) and methods that require that data

placed together

• Data and methods made private or public

• Private fields (and methods) cannot be
accessed/changed by object-external code, i.e.,
other objects

• Public methods (and fields) are what the object
exposes to „the world”

• Python has classes/objects but doesn’t have
private methods

class Rectangle(object):

def __init__(self, h, w):

self.height = h

self.width = w

def surface(self):

return self.height * self.width

def perimeter(self):

return 2*(self.height + self.width)

Python code

Core Principles of OOP

• Abstraction
• Extension of encapsulation: complex programs

contain (tens of) thousands of lines of codes

• Encapsulation into classes provides a layer of
abstraction – mental organization of code easier

• Every object exposes only high-level mechanism
for interacting with it (in a sense, interface)

• Abstracts away low-level inner workings

• If another object/code needs the surface of a
Rectangle (or Circle), it just calls the method

• Computation abstracted away from the calling
object/code, it’s the responsibility of the Rectangle class

class Rectangle(object):

def __init__(self, h, w):

self.height = h

self.width = w

def surface(self):

return self.height * self.width

def perimeter(self):

return 2*(self.height + self.width)

Python code

Core Principles of OOP

• Inheritance
• Complex programs often involve dealing with similar objects

(objects of the same „type”)

• Similar objects have similar properties
• Share some code and logic but not exactly the same

• Rectangle and Circle both geometric shapes with a measurable surface and perimeter

• Idea: abstract away the „shared stuff” into something like a „parent class”

• Parent class can typically have multiple children classes that inherit from it
• In most OO programming languages, a class can have only one parent

• Abstract classes: cannot be instantiated

Core Principles of OOP

• Inheritance: let’s slightly modify our Rectangle and Circle classes

Class: Circle

Data fields:

color

radius

Functions:

create(r, c):

radius <- r

color <- c

surface():

Output: radius*radius*pi

perimeter():

Output: 2*radius*pi

change_color(c_new):

color <- c_new

Class: Rectangle

Data fields:

color

height

width

Functions:

create(h, w, c):

height <- h

width <- w

color <- c

surface():

Output: height * width

perimeter():

Output: 2*(height + width)

change_color(c_new):

color <- c_new

Core Principles of OOP

• Inheritance: a parent class GeoShape that Rectangle and Circle inherit from

Class: GeoShape

Data fields:

color

Functions:

create(c):

color <- c

surface():

cannot be implemented

perimeter():

cannot be implemented

change_color(c_new):

color <- c_new

Class: Rectangle inh GeoShape

Data fields:

height

width

Functions:

create(h, w, c):

parent.create(c)

height <- h

width <- w

surface():

Output: height * width

perimeter():

Output: 2*(height + width)

Class: Circle inh GeoShape

Data fields:

radius

Functions:

create(r, c):

parent.create(c)

radius <- r

surface():

Output: height * width

perimeter():

Output: 2*(height + width)

Core Principles of OOP

• Inheritance: a parent class GeoShape that Rectangle and Circle inherit from

class GeoShape(object):

def __init__(self, c):

self.color = c

def surface(self):

raise NotImplementedError(„.")

def perimeter(self):

raise NotImplementedError(„.")

def change_color(self, c_new):

self.color = c_new

class Rectangle(GeoShape):

def __init__(self, h, w, c):

super().__init__(c)

self.height = h

self.width = w

def surface(self):

return self.height * self.width

def perimeter(self):

return 2*(self.height + self.width)

class Circle(GeoShape):

def __init__(self, r, c):

super().__init__(c)

self.radius = r

def surface(self):

return self.radius**2 * math.pi

def perimeter(self):

return 2*self.radius*math.pi

rec1 = Rectangle(2, 5, "blue")

print(rec1.color)

rec1.change_color("red")

print(rec1.color)

circ1 = Circle(10, "green")

print(circ1.color)

circ1.change_color("yellow")

print(circ1.color)

Core Principles of OOP

• Polymorphism

• Children may have a different
implementation of a method (between
them and) compared to the parent

• But we can still call the same function for
objects of different children classes (all
classes that inherit the same parent class)

rec1 = Rectangle(3, 7, "violet")

rec2 = Rectangle(6, 2, "pink")

circ1 = Circle(6, "orange")

circ2 = Circle(4, "white")

shapes = [rec1, circ1, rec2, circ2]

for gs in shapes:

print(gs.surface())

Declarative Programming

• We will focus on functional programming, the main branch of DP
• Based on lambda calculus, a framework developed by Alonzo Church
• Computation via (only) functions

• Everything is a function
• Programming paradigm where we declare everything as calls to functions
• „What to solve”, rather than „how to solve” (imperative)

• Statelessness
• No (global) program state beyond the functions

• No variables that store values, so that some other code can access them later

• Information sharing exclusively though function inputs and outputs
• No loops: iteration implemented via recursion!

Declarative Programming

• We will focus on functional programming, the main branch of DP
• Based on lambda calculus, a framework developed by Alonzo Church
• Computation via (only) functions

• Expressions instead of statements
• Expressions are evaluated to produce a value
• Statements are executed, i.e., assign values to variables (create state)

• Pure functions have two main properties:
1. Always give the same value (output) for the same argument (input)
2. No side-effects: do not modify inputs nor local/global variables

• The values of variables can only be read (not (over)written): referential transparency
• No state change (actually, no state at all): statelessness

Pros and Cons of Functional Programming

Pros Cons

Pure functions are easier to understand, guaranteed
not to change anything inadvertently

Writing pure functions can, in some cases, reduce the
readability of code

functions as values (passed to other functions as
parameters) often makes the code more readable and
understandable

Writing programs in recursive style (instead of using
loops) is counterintuitive for humans and requires
mental adaptation (tough learning curves)

As variable values are immutable (cannot change
value), debugging is easier

Writing pure functions is easy, but combining with
(stateful) applications and I/O operations difficult

Pure functions are very suitable for
concurrency/parallelism, as they don’t change states

Immutable values and recursion can result in slower
execution (decrease in performance)

Lazy evaluation: values evaluated and stored only
when really needed (avoids repeated evaluation)

• Multi-paradigm languages: popular programming languages (Python, Java, C++, C#)
are „generally imperative”, but support functional programming to some extent

Functional components (in Python)

• „Imperative” languages support some degree of functional programming

• Functions „first-class citizens”: anything you can do with „data” (variables), you can do
with functions
• Functions can be assigned to variables (same as data)

def func(x):

print("Priting the provided input: " + str(x))

func(10)

function can be assigned to a variable

some_other_variable = func

some_other_variable("will print this too")

Functional components (in Python)

• Anonymous functions:
• Function without a name, defined „on the fly”, where you need it (instead of with „def”)

• Typically for specific functions needed in a particular context that won’t be reused across contexts

• In Python: with „lambda” keyword
lambda <parameter_list>: <expression>

anonymous functions

square = lambda x : x*x # or x**2

print(square(5))

numbers = [1, 2, 3, 4, 5]

for n in numbers:

print(square(n))

Functional components (in Python)

• Anonymous functions:
• Function without a name, defined „on the fly”, where you need it (instead of with „def”)

• Typically for specific functions needed in a particular context that won’t be reused across contexts

• In Python: with „lambda” keyword
lambda <parameter_list>: <expression>

• Not necessary to assign a variable to a lambda expression before calling it

(lambda x1, x2, x3: x1 + x2 + x3)(9, 6, 6)

Functional components (in Python)

• Map and Filter
• Built-in Python functions that fit the

functional programming

• Take another function as an argument

• Designed to allow those who want to code
functionally to avoid looping

• map(<f>, <iterable>)

• <f> is a function to be applied on every
element of <iterable> (list or array)

def square(x):

return x**2

numbers = [1, 2, 3, 4, 5]

iterator not a list, a function still

iterator = map(square, numbers)

can ”evaluate” by casting to a list

squared_numbers = list(iterator)

Functional components (in Python)

def square(x):

return x**2

numbers = [1, 2, 3, 4, 5]

iterator not a list, a function still

iterator = map(square, numbers)

can ”evaluate” by casting to a list

squared_numbers = list(iterator)

Functional

def square(x):

return x**2

numbers = [1, 2, 3, 4, 5]

instantiating empty list

squared_numbers = []

iterating over numbers

for n in numbers:

squared_numbers.append(square(n))

Imperative (Procedural)

Functional components (in Python)

• Map and Filter
• Built-in Python functions that fit the

functional programming

• Take another function as an argument

• Designed to allow those who want to code
functionally to avoid looping

• filter(<f>, <iterable>)

• <f> is a boolean function, returns either
True or False for each element of
<iterable> (list or array)

• map and filter can be combined
with anonymous functions (lambda)

def is_even(x):

return x%2 == 0

numbers = [1, 2, 3, 4, 5]

iterator not a list, a function still

iterator = filter(is_even, numbers)

can ”evaluate” by casting to a list

even_numbers = list(iterator)

num_minus_one = map(lambda x : x-1, numbers)

odd_numbers = filter(lambda x: x%2 == 1, numbers)

Content

• Building blocks of algorithms

• Algorithmic/programming paradigms

• Determinism in algorithms

Finite & deterministic algorithms

• In this course, we will (for the most part) deal with finite and
deterministic algorithms

An algorithm is finite if it terminates in a finite numbers of steps for any given input

Finite algorithm

An algorithm that returns a consistent result for any given input. That means that if the algorithm is executed
multiple times with the same input, it will produce the same output every time.

Deterministic algorithm

Algorithms that are not guaranteed to return the same output for the same input. In AI & DS, non-
deterministic algorithms are most often stochastic, which means that the source of non-determinism is

randomization (i.e., a random process).

Non-deterministic algorithm

Non-deterministic vs. Stochastic

• Stochasticity means there is randomness

• Every stochastic algorithm is non-deterministic but not every non-
deterministic algorithm is necessarily stochastic
• That is, there are other causes of non-determinism as well

• Output needs to depend on something additional, not just input

def non_det_func(x):

now = datetime.now()

if now.second % 2 == 0:

return x + 1

else:

return x + 2

Non-deterministic, not stochastic

import random

def stochastic_func(x):

return x + random.randint(0, 5)

Stochastic

Questions?

Questions?
Fragen?有问题吗？

Pitanja?

Küsimusi?

D
o

m
an

d
e

?

Ερωτήσεις;
Frågor?

П
и

тан
н

я?

Sorusu olan?

Tu
rite

klau
sim

ų
?

Vragen?

D
ú

vid
as?

¿Preguntas?

P
yt

an
ia

?

質問は？

Porandukuéra? ؟أسئلة

ਸਵਾਲ?

A
w

ọ
n

ib
e

er
e

?

ค ำถำม?

	Slide 1: Algorithms: fundamentals Prof. Dr. Goran Glavaš
	Slide 2: Content
	Slide 3: Algorithm: Definitions
	Slide 4: In the beginning, there were only problems
	Slide 5: In the beginning, there were problems
	Slide 6: What are algorithms built from?
	Slide 7: Let’s build an algorithm: pseudocode
	Slide 8: Let’s build an algorithm: pseudocode
	Slide 9: Elementary operations
	Slide 10: Let’s build an algorithm: pseudocode
	Slide 11: Conditions
	Slide 12: Conditions
	Slide 13: Loops (Schleife)
	Slide 14: Loops (Schleife)
	Slide 15: Functions, Subprograms, Modules
	Slide 16: Functions, Subprograms, Modules
	Slide 17: Functions (Subprograms, Modules)
	Slide 18: Recursion
	Slide 19: Recursion
	Slide 20: Recursion
	Slide 21: Content
	Slide 22: Imperative vs. Declarative (and then objects...)
	Slide 23: Programming paradigms
	Slide 24: Imperative programming
	Slide 25: Types of imperative programming
	Slide 26: Crash course in OOP
	Slide 27: Core Principles of OOP
	Slide 28: Core Principles of OOP
	Slide 29: Core Principles of OOP
	Slide 30: Core Principles of OOP
	Slide 31: Core Principles of OOP
	Slide 32: Core Principles of OOP
	Slide 33: Core Principles of OOP
	Slide 34: Core Principles of OOP
	Slide 35: Declarative Programming
	Slide 36: Declarative Programming
	Slide 37: Pros and Cons of Functional Programming
	Slide 38: Functional components (in Python)
	Slide 39: Functional components (in Python)
	Slide 40: Functional components (in Python)
	Slide 41: Functional components (in Python)
	Slide 42: Functional components (in Python)
	Slide 43: Functional components (in Python)
	Slide 44: Content
	Slide 45: Finite & deterministic algorithms
	Slide 46: Non-deterministic vs. Stochastic
	Slide 47: Questions?

