
Algorithmen, KI & Data Science 1

Winter semester 2023/24

Prof. Dr. Goran Glavaš,
M.Sc. Fabian David Schmidt
M.Sc. Benedikt Ebing
Lecture Chair XII for Natural Language Processing, Universität Würzburg

9. Exercise for “Algorithmen, KI & Data Science 1”

1 Metaheuristic Search

1. How do state space search problems differ from discrete constraint optimization
problems?

• Starting point: set of initial states (small subset of state space) vs whole
state space

• Finding next state: compute successor states based on allowed transitions
vs compute neighborhood states (usually based on distance)

• Ending point: goal state based on goal test (small subset of state space) vs.
no explicit ending state, try to find state with maximum/minimum value of
objective function f

• Problem to solve: How to get to the goal state with minimal cost/maximal
gain vs. find the state with minimal/maximal value

• Guidance: Specific heuristics (estimate distance to goal state) to trim the
number of paths to explore vs. problem agnostic metaheuristics to find
next best solution in the neighborhood

2. Define the 0-1 knapsack problem as discrete constrained optimization problem.
The 0-1 knapsack problem is defined as follows: given a set of N items, each with
a weight w and a value v, determine the subset of items to choose such that the
total weight is less than or equal to a given limit W and the total value is as large
as possible.

1



Example 0-1 knapsack problem:
You are packing your bag pack for a trip. You have the following items at home:

• knife, weight 2, value 6

• water, weight 7, value 9

• sleeping bag, weight 5, value 7

• mobile phone, weight 1, value 2

• jacket, weight 2, value 3

With W = 7, you could pack {knife, sleeping bag} with weight 7 and value 13
or {mobile phone, jacket} with weight 3 and value 10 or ..., but you would not be
allowed to pack {knife, water} with weight 9.

• X = (x1, x2, ..., xN ), where N is the total number of items

• D1 = D2 = ... = DN ∈ {0, 1} because an item is either included in the
knapsack or not

• f(X) =
∑N

i=1 vixi, where vi refers to the value of item xi

• Constraint:
∑N

i=1 wixi ≤ W , where wi refers to the weight of item xi

3. How does simulated annealing escape local optima?

Simulated annealing allows non-improving steps with a decreasing probability
through the search.

4. How does genetic algorithm escape local optima?

Genetic algorithm uses mutation (random change of values in a chromosome)
to escape local optima (e.g., element change or element swap)

2 Constrained Satisfaction Problems

1. How do state space search problems differ from constrained satisfaction problems?

a) Type of problems: Optimal path problems vs finding and any solution (all
equally good)

2



b) Type of states: Complex, non-factorable states vs factorable states

c) Type of transitions: Explicit state transitions defined by the nature of the
problem vs transitions from k to k+1 assigned variables

2. How many solutions does the map coloring problem from lecture 18 have? How
many if two colors are allowed?

Starting form SA, there are three possible colors to choose from. Next going
to WA which has two colors left. All other regions in the mainland have only
one color left. Therefore, there are 2× 3 = 6 choices for the mainland. As T
is not connected to the mainland, we can choose any of the three colors for T.
This results in 3× 6 = 18 possible solutions. If only two colors are allowed no
solution exists.

3. Explain why choosing the variable that is most constrained, but the value that is
least constrained is considered a good heuristic?

Choosing the variable that is most constrained allows the algorithm to fail early.
Therefore, large parts of the search tree are pruned. Choosing the value that is
least constrained gives higher chances on avoiding conflicts in upcoming steps.
Hence, it increases the chances of finding and actual solution.

4. Consider the problem of placing k knights on an n× n chessboard such that no
two knights are attacking each other, where k is given and k ≤ n2. Choose a CSP
formulation giving your (a) variables, (b) the domain of each variable, and (c) the
constraints.

(a) Variables: X = (x1, x2, ..., xk), where k is the number of knights placed on
the chess board and xi represents the position of each knight.

(b) Domain: xi ∈ {(a, 1), (a, 2), ..., (h, 8)}, where each tuple is a position on
the chess board

(c) Constraints: Two knights cannot share the same position AND a move from
any knight does not result in two knights sharing the same position

5. Consider the following graph that represents a coloring problem. Each vertex of
the graph should be colored with either blue (B), green (G) or red (R), such that
adjacent nodes do not have the same color (similar to the coloring problem shown

3



in lecture 18).

T

W

X

YV

U Z

Fill out the table below by applying the backtracking algorithm with inference,
degree heuristic and least constraining value heuristic to the coloring problem. In
case the heuristics do not produce a single next best move, process the variables
and values in lexicographical order. The assignment of a value to a variable is
depicted with "(a)".

4



T U V W X Y Z

Init B,G,R B,G,R B,G,R B,G,R B,G,R B,G,R B,G,R

1. Iter B (a) G,R G,R G,R G,R B,G,R B,G,R

2. Iter

3. Iter

4. Iter

5. Iter

6. Iter

7. Iter

8. Iter

T U V W X Y Z

Init B,G,R B,G,R B,G,R B,G,R B,G,R B,G,R B,G,R

1. Iter B (a) G,R G,R G,R G,R B,G,R B,G,R

2. Iter G,R G,R G,R G,R B (a) G,R

3. Iter R G (a) R G,R G,R

4. Iter R R G (a) R

5. Iter R (a) R R

6. Iter R (a) R

7. Iter R (a)

6. Implement the class ColoringCSP and the additional methods in the provided
.ipynb to solve coloring problems similar to the one presented in lecture 18. You
should select variables and colors in lexicographical order. In the provided .ipynb,
you can find a cell that provides examples on how to use the class’ attributes.
Implement the following methods:

a) complete(s, csp): The method takes the current assignment s and the csp as
input. It returns True if the assignment is complete and False otherwise.

5



b) select_unassigned_var(csp) : The method takes the csp as input. It returns
an unassigned variable in lexicographical order.

c) order_values(csp) : The method takes the csp as input. It returns the values
in lexicographical order.

d) violates(s, v, val) : The method is a class method of ColoringCSP . It takes
the current assignment s, and the new variable v together with its new value
val as input. It returns True if the new assignment violates the constraints
and False otherwise.

e) backtrack(s, csp) : Implement the naive backtracking as shown in lecture
18.

6


	Metaheuristic Search
	Constrained Satisfaction Problems

