
Algorithmen, KI und Data
Science 1 (AKIDS 1):
State Space Search
Herbst- / Wintersemester 2023/24
Prof. Dr. Goran Glavaš
Benedikt Ebing
Fabian David Schmidt

What is state space search (sss)?

Recap State Space Search

• (“Small”) Set of start states
• Transitions between states resulting in large number of possible

successor states
• Finding a goal state that meets a particular criterion

“usually” with minimal cost/maximal gain
• Defined as:

What is difference between a state and a
(search) node?

State vs. Node

• Node is a data structure that stores the state and additional
information like the depth/cost of the node (or the path to the
current state)

• or

What is the difference between uninformed
state space search and informed state space

search?

Uninformed vs. Informed

• Uninformed:
• No additional information about the problem that tells whether a

state is closer to the goal state than another state

• Informed:
• An estimate of a state´s distance to the goal state is available

Recap: The General Search Algorithm

General Search Algorithm

Two Friends Problem

Exercise 1.1

Suppose two friends live in different cities on a map (e.g., think of a
map similar to the one shown in lecture 15, slide 21). On every turn, we

must simultaneously move each friend to a neighboring city on the
map. The amount of time needed to move from city to neighbor is
equal to the road distance between the cities, but on each turn
the friend that arrives first must wait until the other one arrives before
the next turn can begin. We want the two friends to meet as quickly as

possible (smallest amount of time).

Formulate this problem giving (a) initial state,
(b) goal test, (c) successor function, and (d)

cost function.

Exercise 1.1 – Solution

• Start state: any pair of nodes , where
represents the set of cities

• Goal state:
• Successors: all pairs , where is an adjacent node of

and is an adjacent node of

• Cost function:

Exercise 1.2

Recap:
What is a heuristic function in the context of

sss? What is an admissible/optimistic
heuristic?

Recap admissable/optimistic heuristic?

• Heuristic function : Gives an estimate of a state distance
to the goal state

• Admissible/optimistic:
• For all states in ,) never overestimates the distance of to the

goal state:
∗

∗

Let be the straight-line distance
between cities i and j. Which of the following
heuristic functions are admissible/optimistic?

(a) (b) (c) .
Either give a counter example or show that

the heuristic is admissible/optimistic.

What is the scenario for the lowest possible
costs?

Exercise 1.2 – Solution 1

i jx
𝑑(𝑗, 𝑥)𝑑(𝑖, 𝑥)

Best case:
•

 No one has to wait, and we travel straight line distance (there
cannot be a shorter way on a map)

Exercise 1.2 – Solution 2

Given our example:
not optimistic/admissible:

•

not optimistic/admissible:
•

, is admissible:

•
, × ,

• Heuristic always assumes the best-case scenario Cannot
overestimate the true costs

Exercise 1.3

Are there completely connected maps for
which no solution exists?

Exercise 1.3 – Solution

i j

x yi j

Yes:

Exercise 1.4

Are there maps in which all solutions require
one friend to visit the same city twice?

Exercise 1.4 – Solution

i j

x yi j

Yes:

Decantation Problem

You are given an 8-liter jar full of water and
two empty jars of 5- and 3-liter capacity. You
have to get exactly 4 liters of water in one of
the jars. You can completely empty a jar into
another jar with space or completely fill up a

jar from another jar.

Exercise 2.1

Formulate this problem giving (a) initial state,
(b) goal test, and (c) successor function.

Represent the states by a 3-tuple where each
element refers to one of the jars

(e.g., (8, 0, 0))

Exercise 2.1 – Solution

• Initial state: The water is in the 8-liter jar, the other jars are
empty (8,0,0)

• Goal test: One jar contains exactly 4 liters (any element of the
tuple is equal to 4)

• Successor function:
• Fill up a jar completely from another jar
• Empty a jar completely into another jar

Exercise 2.2

Implement the functions and in the provided .ipynb.
The function takes a state as input (e.g.,). The

function returns a list of possible next states of the same form. One of
the possible next states would be . The function takes a
state as input and returns true if the goal test is successful and false

otherwise.

Exercise 2.3

Implement Breadth-First-Search algorithm (in
the provided .ipynb) to search the state space graph for a goal state.
Keep track of the expanded states and expand each state only once.

Return the goal state, number of pourings required and solution path if
a goal state is found and false otherwise.

Exercise 2.3 – Recap BFS

Exercise 2.4

Implement Iterative-Deepening-Search algorithm
(and to

search the state space graph for a goal state. In limited−dfs, keep track
of the expanded states and expand each state only once. Both methods
return the goal state, the number of pourings required and the solution

path if a goal state is found and false otherwise.

Exercise 2.3 – Recap limited-DFS and IDS

Shortest Path Problem

Exercise 3.1

Apply the A algorithm (see lecture 15, slides
21-24) to the graph below to find the

shortest path and the total cost from to .
You are given the following heuristics:

Recap: How does work?

Exercise 3.1 – Recap

Exercise 3.1 - Solution

s

y

t

z

x
1

69

2

3

10

5

Exercise 3.1 - Solution

• Init:
•
•

• 1. Iteration:
• extract-min:
•
•

• 2. Iteration :
• extract−min
•
•

Exercise 3.1 - Solution

• 3. Iteration:
• extract−min:
•
•

• 4. Iteration:
•

Total cost: 9
shortest-path: s → y → t → x

Exercise 3.2

Apply the GreedyBestFirstSearch algorithm
to the graph below to find the shortest path
and the total cost from to . You are given
the following heuristics:

Recap: How does GreedyBestFirstSearch
work?

Exercise 3.2 – Recap GreedyBestFirstSearch

Exercise 3.2 – Solution

• Init:
•

• 1. Iteration:
• extract-min:
•

• 2. Iteration:
• extract−min
•

Exercise 3.2 – Solution

• 3. Iteration:
•

Total cost: 11
“shortest-path”: s → t → x

Exercise 3.3

Implement algorithm (function
in the provided

.ipynb) for shortest path problems (similar to
the previous exercise). Return the goal state

and the total costs if a goal state is found and
false otherwise.

