Julius-Maximilians-
UN'VERS”’AT Algorithmen, KI & Data Science 1
WU RZBURG Winter semester 2023/24

Prof. Dr. Goran Glavas,

M.Sc. Fabian David Schmidt

M.Sc. Benedikt Ebing

Lecture Chair XII for Natural Language Processing, Universitidt Wiirzburg

7. Exercise for “Algorithmen, KI & Data Science 17

1 Two Friends Problem

Suppose two friends live in different cities on a map (similar to the map shown below).
On every turn, we must simultaneously move each friend to a neighboring city on the
map. The amount of time needed to move from city i to neighbor j is equal to the road
distance d(i, j) between the cities, but on each turn, the friend that arrives first must wait
until the other one arrives before the next turn can begin. We want the two friends to
meet as quickly as possible (shortest amount of time).

1. Formulate this problem by giving (a) initial state, (b) goal test, (c) successor
function, and (d) cost function.



2. Let D(i,j) be the straight-line distance between cities 7 and j. Which of the
following heuristic functions are admissible/optimistic? (a) D(i,j); (b) 2 X
D(i,7); (¢)D(i, 5)/2. Either give a counter-example or show that the heuristic is
admissible/optimistic.

3. Are there completely connected maps for which no solution exists?

4. Are there maps in which all solutions require one friend to visit the same city
twice?

2 Decantation Problem

You are given an 8-liter jar full of water and two empty jars of 5- and 3-liter capacity.
You have to get exactly 4 liters of water in one of the jars. You can completely empty a
jar into another jar with enough space or completely fill up a jar from another jar.

1. Formulate this problem giving (a) initial state, (b) goal test, and (c) successor
function. Represent the states by a 3-tuple where each element refers to one of the
jars (e.g., (8,0,0))

2. Implement the functions succ(s) and goal(s) in the provided .ipynb. The function
succ(s) takes a state s as input (e.g., (8,0,0)). The function returns a list of
possible next states of the same form. One of the possible next states would be
(3,5,0). The function goal takes a state s as input and returns true if the goal test
is successful and false otherwise.

3. Implement the Breadth-First-Search algorithm (bfs(search_problem) in the pro-
vided .ipynb) to search the state space graph for a goal state. Keep track of the
expanded states and expand each state only once. Return the goal state, number of
pourings required and the solution path, if a goal state is found and false otherwise.

4. Tmplement the Iterative-Deepening-Search algorithm (ids(search_problem) and
limited — df s(search_problem) in the provided .ipynb) to search the state space
graph for a goal state. In limited_df s, keep track of the expanded states and
expand each state only once. Both methods return the goal state, the number of
pourings required, and the solution path if a goal state is found and false otherwise.

3 Shortest Path Problem

1. Apply the A* algorithm (see lecture 15, slides 21-24) to the graph below to find the
shortest path and the total cost from s to x. You are given the following heuristics:



h(s) =9,h(t) =1,h(y) =4,h(z) = 13,h(z) =0

2. Apply the GreedyBestFlirstSearch algorithm to the graph from the previous
exercise to find the shortest path and the total cost from s to . You are given the
following heuristics: h(s) =9, h(t) = 1, h(y) =4,h(z) = 13,h(z) =0

3. Implement the A* algorithm (function a_star(search_problem) in the provided
.tpynb) for shortest path problems (similar to the previous exercise). Return the
goal state and the total costs if a goal state is found and false otherwise.

Note: The implementation for the classes PriorityQueue (similar to exercise
5) and GraphSearchProblem are given.



	Two Friends Problem
	Decantation Problem
	Shortest Path Problem

