Julius-Maximilians-
UN'VERS”’AT Algorithmen, KI & Data Science 1
WU RZBURG Winter semester 2023/24

Prof. Dr. Goran Glavas,

M.Sc. Fabian David Schmidt

M.Sc. Benedikt Ebing

Lecture Chair XII for Natural Language Processing, Universitit Wiirzburg

5. Exercise for “Algorithmen, KI & Data Science 17

1 Breadth first search (BFS)

1. What is the running time of BFS if we represent its input graph by an adjacency
matrix and modify the algorithm to handle this form of input?

For each vertex u, we need to check for every v € V' whether it is adjacent to .
This results in O(V?).

2. Does the BFS tree (see L10-slide 24) depend on the ordering of the adjacency
lists? Explain by giving an example.

Yes, it does. Changing the order in the adjacency list of
node 4 (see L10-slide 24), results in the following BFS tree:

2 Depth First Search (DFS)

1. Give a counterexample to the conjecture that if a directed graph GG contains a path
from w to v, and if u.vt < v.vt in a depth-first search of GG, then v is a descendant
of u in the depth-first tree/forest produced. Use the pseudocode of the recursive
DFS shown in "L11 - Graph Algorithms".

Explanation DF'S forest: As the recursive variant of DFS (as shown in the lecture)
might start from different roots, it possibly produces multiple DFS trees (i.e., a
forest).

Given a graph G with V = w, u,v and F = (w, u), (u,w), (w, v), let DFS start
on w and u being in the adjacency list before v. Thus, u.vt < v.vt and v is not
a descendant of .

2. Give a counterexample to the conjecture that if a directed graph G contains a
path from u to v, then any depth-first search must result in v.vt < u. ft. Use the
pseudocode of the recursive DFS shown in "L11 - Graph Algorithms".

Given a graph G with V = w, u,v and F = (w, u), (u, w), (w, v), let DFS start
on w and u being in the adjacency list before v. Thus, u. ft < v.vt because u
finishes before v is visited.

3. Implement the recursive DFS as shown in L11 - slide 6. More precisely, implement
the methods df s(G) and df s_visit(G,) in the provided .ipynb-file. Vertices and
adjacency lists should be processed in lexicographical order.

3 Topological Sort

1. Show the ordering of vertices produced by topological-sort when it is run on the
below graph. Include start and finish times for each vertex. Assume that the
DFS procedure considers the vertices in alphabetical order, and assume that each
adjacency list is ordered alphabetically.

Vertex ot
m 1
q 2
t 3
r 6
u 7
y 9
v 10
w 11
z 12
X 18
n 21
0 22
S 23
p 27

ft
20

17

16
15
14
13
19
26
25
24
28

| List the vertices in descending order of ft: p,n,o0,s,m,z,r,y,v,w, z,u,q,t

2. Optional: Give a linear-time algorithm (pseudocode) that, given a directed acyclic
graph G = (V, E) and two vertices a, b € V, returns the number of simple paths
from a to b in GG. For example, the directed acyclic graph of exercise 3.1 contains
exactly four simple paths from vertex p to vertex v: <p,o,v>, <p,0,1,y,v>,
<p,o0,s,7,y,v>, and <p, s,r,y,v>. Your algorithm needs only to count the
simple paths, not list them.

Key idea is to run DFS for topological sorting until reaching node b. Then
keeping track of the number of simple paths for each of the vertices on the way
back to the source a. Coming back to the source a yields the total number of
simple paths.

Following algorithm implements the idea. First, we initialize all vertices v €
G.V with v.cp = NIL. The variable cp keeps track of the path count. We then
run the algorithm path_count(G, a, b) to determine the number of simple paths
from a to b.

Algorithm 1 path_count((. a,b)

if @ == b then
return 1

else if a.cp # N1L then
return a.cp

else
a.cp — 0
for w € G.Adj[a] do

a.cp = a.cp + path_count(G,w, b)

end for

return a.cp
end if

4 Strongly Connected Component

1. How can the number of strongly connected components of a graph change (increase,
decrease or stay the same) if a new edge is added?

a) Increase: This is not possible. Adding a new edge can never remove an
existing connection between two vertices.

b) Decrease: This is possible. V = a, b, c and E = (a,b), (b, ¢). This graph
has three strongly connected components. Adding the edge (c, b) reduces

the number of strongly connected components to two.

c) Stay the same: This is possible. Consider the same graph as for the
decrease scenario and add edge (a, ¢). Adding this edge does not change
anything.

2. Teaching Assistant Benedikt rewrites Kosaraju’s algorithm for strongly connected
components to use the original (instead of the transpose) graph in the second
depth-first search and scan the vertices in order of increasing finish times. Give a
counterexample to show that the algorithm is not correct.

Consider Graph G with V' = a,b,cand E = (b,a), (b, ¢), (¢, b). The strongly
connected components are {a} and {b, c}. However, if DFS starts on b, it could
explore c before a. Hence, it holds that c. ft < a.ft < b. ft. Running the second
DFS starting on ¢ would reach all other vertices, resulting in a single strongly
connected component. This is clearly not correct.

5 Bellman Ford

1. Consider the following graph:

Find the shortest path from vertex e to vertex h using Bellman-Ford algorithm
based on the following edge order:

(a,0) (a.f) (bc) (bg) (c,h) (dic) (d:h) (e.a) (e.f) (f.a) (£:0) (£.9) (9:0) (9:d) (g:h)
20 =620 17 5 42 62 10 710 11 9 417

To do so, complete the following table. Note that the not all columns may be
needed.

v.dist

v.prev

R’
v.dist

v.prev

Ry
v.dist

v.prev

Ry
v.dist

v.prev

Ry
v.dist

v.prev

Ry
v.dist

v.prev

R
v.dist

v.prev

o

o

-

=]

I Ry Ry Rs R, R; Rg
v.dist | v.prev | v.dist | v.prev | v.dist | v.prev | v.dist | v.prev | v.dist | v.prev | v.dist | v.prev | v.dist | v.prev
a | oo 17 f
b | 20 f 19 a
c| oo 30 g 29 d 28 d
d| oo 25 g 24 g
e |0
f | oo 10 e
g | oo 21 f 20 b
h | oo 38 g 31 d 30 d

6 Dijkstra

e—>f—-a—=>b—g—>d—h

Distance from e to h:
30

Shortest path from e to h:

1. Implement the Dijkstra algorithm as shown in L11. More precisely, implement the
method dijkstra(G, s) in the provided .ipynb-file.

	Breadth first search (BFS)
	Depth First Search (DFS)
	Topological Sort
	Strongly Connected Component
	Bellman Ford
	Dijkstra

