Julius-Maximilians-
UN'VERS”’AT Algorithmen, KI & Data Science 1
WU RZBURG Winter semester 2023/24

Prof. Dr. Goran Glavas,

M.Sc. Fabian David Schmidt

M.Sc. Benedikt Ebing

Lecture Chair XII for Natural Language Processing, Universitit Wiirzburg

5. Exercise for “Algorithmen, KI & Data Science 17

1 Breadth first search (BFS)

1. What is the running time of BFS if we represent its input graph by an adjacency

matrix and modify the algorithm to handle this form of input?

2. Does the BFS tree (see L10-slide 24) depend on the ordering of the adjacency

lists? Explain by giving an example.

2 Depth First Search (DFS)

1. Give a counterexample to the conjecture that if a directed graph GG contains a path
from u to v, and if u.vt < v.vt in a depth-first search of G, then v is a descendant
of u in the depth-first tree/forest produced. Use the pseudocode of the recursive

DFS shown in "L11 - Graph Algorithms".

Explanation DFS forest: As the recursive variant of DFS (as shown in the lecture)
might start from different roots, it possibly produces multiple DFS trees (i.e., a

forest).

2. Give a counterexample to the conjecture that if a directed graph G contains a
path from u to v, then any depth-first search must result in v.vt < u. ft. Use the

pseudocode of the recursive DFS shown in "L11 - Graph Algorithms".

3. Implement the recursive DFS as shown in L11 - slide 6. More precisely, implement
the methods df s(G) and df s_visit(G, u) in the provided .ipynb-file. Vertices and

adjacency lists should be processed in lexicographical order.

3 Topological Sort

1. Show the ordering of vertices produced by topological-sort when it is run on the
below graph. Include start and finish times for each vertex. Assume that the
DFS procedure considers the vertices in alphabetical order, and assume that each
adjacency list is ordered alphabetically.

2. Optional: Give a linear-time algorithm (pseudocode) that, given a directed acyclic
graph G = (V, E) and two vertices a, b € V, returns the number of simple paths
from a to b in G. For example, the directed acyclic graph of exercise 3.1 contains
exactly four simple paths from vertex p to vertex v: <p,o0,v>, <p,0,7,y, V>,
<p,o0,s,1,y,v>, and <p, s,r,y,v>. Your algorithm needs only to count the
simple paths, not list them.

4 Strongly Connected Component

1. How can the number of strongly connected components of a graph change (increase,
decrease or stay the same) if a new edge is added?

. Teaching Assistant Benedikt rewrites Kosaraju’s algorithm for strongly connected
components to use the original (instead of the transpose) graph in the second

depth-first search and scan the vertices in order of increasing finish times. Give a
counterexample to show that the algorithm is not correct.

5 Bellman Ford

1. Consider the following graph:

Find the shortest path from vertex e to vertex h using Bellman-Ford algorithm
based on the following edge order:

(a,0) (a.f) (b,c) (b,9) (c,h) (dic) (dh) (e,a) (e.f) (f,a) (£:0) (f,9) (9.0) (9.d) (g,h)
270 =620 1> 5 47 620 10 710 11 9 417

To do so, complete the following table. Note that the not all columns may be

needed.
I R R, R3 Ry Rs Rg
v.dist | v.prev | v.dist | v.prev | v.dist | v.prev | v.dist | v.prev | v.dist | v.prev | v.dist | v.prev | v.dist | v.prev
a
b
c
d
e
f
g
h

6 Dijkstra

1. Implement the Dijkstra algorithm as shown in L11. More precisely, implement the
method dijkstra(G, s) in the provided .ipynb-file.

	Breadth first search (BFS)
	Depth First Search (DFS)
	Topological Sort
	Strongly Connected Component
	Bellman Ford
	Dijkstra

