

**Prof. Dr. Goran Glavaš,
M.Sc. Fabian David Schmidt
M.Sc. Benedikt Ebing**

Lecture Chair XII for Natural Language Processing, Universität Würzburg

5. Exercise for “Algorithmen, KI & Data Science 1”

1 Breadth first search (BFS)

1. What is the running time of BFS if we represent its input graph by an adjacency matrix and modify the algorithm to handle this form of input?
2. Does the BFS tree (see L10-slide 24) depend on the ordering of the adjacency lists? Explain by giving an example.

2 Depth First Search (DFS)

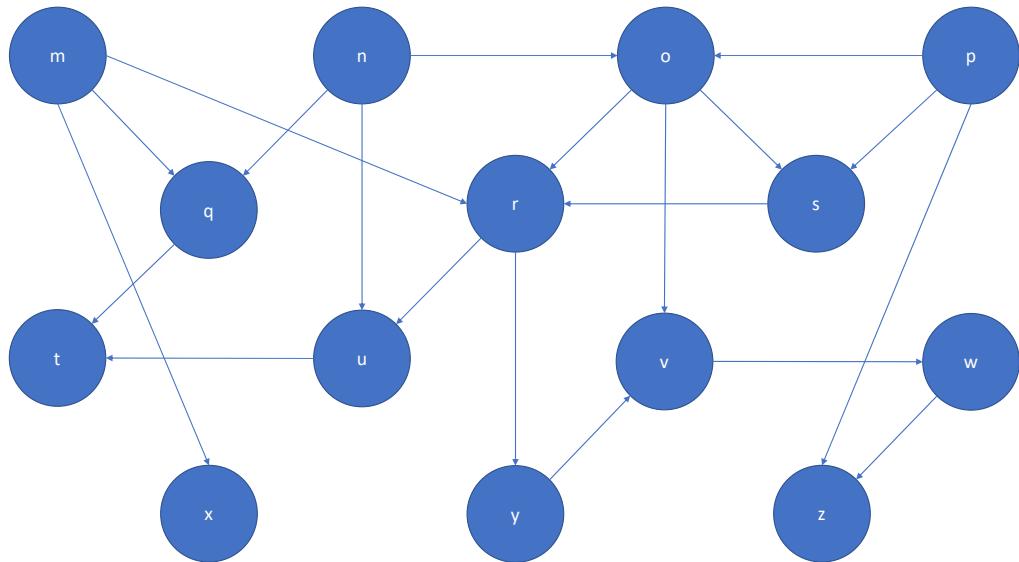
1. Give a counterexample to the conjecture that if a directed graph G contains a path from u to v , and if $u.vt < v.vt$ in a depth-first search of G , then v is a descendant of u in the depth-first tree/forest produced. Use the pseudocode of the recursive DFS shown in "L11 - Graph Algorithms".

Explanation *DFS forest*: As the recursive variant of DFS (as shown in the lecture) might start from different roots, it possibly produces multiple DFS trees (i.e., a forest).

2. Give a counterexample to the conjecture that if a directed graph G contains a path from u to v , then any depth-first search must result in $v.vt \leq u.ft$. Use the pseudocode of the recursive DFS shown in "L11 - Graph Algorithms".
3. Implement the recursive DFS as shown in L11 - slide 6. More precisely, implement the methods $dfs(G)$ and $dfs_visit(G, u)$ in the provided *.ipynb*-file. Vertices and adjacency lists should be processed in lexicographical order.

3 Topological Sort

1. Show the ordering of vertices produced by topological-sort when it is run on the below graph. Include start and finish times for each vertex. Assume that the DFS procedure considers the vertices in alphabetical order, and assume that each adjacency list is ordered alphabetically.



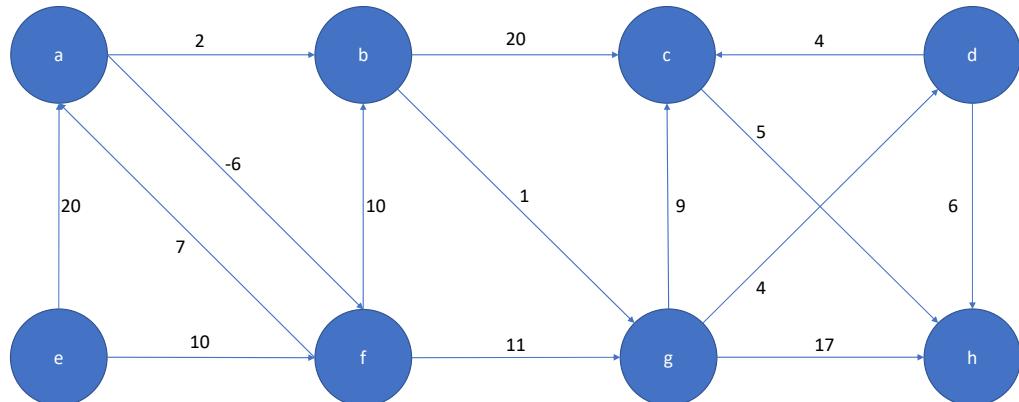
2. Optional: Give a linear-time algorithm (pseudocode) that, given a directed acyclic graph $G = (V, E)$ and two vertices $a, b \in V$, returns the number of simple paths from a to b in G . For example, the directed acyclic graph of exercise 3.1 contains exactly four simple paths from vertex p to vertex v : $\langle p, o, v \rangle$, $\langle p, o, r, y, v \rangle$, $\langle p, o, s, r, y, v \rangle$, and $\langle p, s, r, y, v \rangle$. Your algorithm needs only to count the simple paths, not list them.

4 Strongly Connected Component

1. How can the number of strongly connected components of a graph change (increase, decrease or stay the same) if a new edge is added?
2. Teaching Assistant Benedikt rewrites Kosaraju's algorithm for strongly connected components to use the original (instead of the transpose) graph in the second depth-first search and scan the vertices in order of increasing finish times. Give a counterexample to show that the algorithm is not correct.

5 Bellman Ford

1. Consider the following graph:



Find the shortest path from vertex e to vertex h using Bellman-Ford algorithm based on the following edge order:

$$\frac{(a,b)}{2}, \frac{(a,f)}{-6}, \frac{(b,c)}{20}, \frac{(b,g)}{1}, \frac{(c,h)}{5}, \frac{(d,c)}{4}, \frac{(d,h)}{6}, \frac{(e,a)}{20}, \frac{(e,f)}{10}, \frac{(f,a)}{7}, \frac{(f,b)}{10}, \frac{(f,g)}{11}, \frac{(g,c)}{9}, \frac{(g,d)}{4}, \frac{(g,h)}{17}$$

To do so, complete the following table. Note that the not all columns may be needed.

	I		R ₁		R ₂		R ₃		R ₄		R ₅		R ₆	
	v.dist	v.prev	v.dist	v.prev	v.dist	v.prev	v.dist	v.prev	v.dist	v.prev	v.dist	v.prev	v.dist	v.prev
a														
b														
c														
d														
e														
f														
g														
h														

6 Dijkstra

1. Implement the Dijkstra algorithm as shown in L11. More precisely, implement the method *dijkstra(G, s)* in the provided *.ipynb*-file.