
Algorithmen, KI & Data Science 1

Winter semester 2023/24

Prof. Dr. Goran Glavaš,
M.Sc. Fabian David Schmidt
M.Sc. Benedikt Ebing
Lecture Chair XII for Natural Language Processing, Universität Würzburg

2. Exercise for “Algorithmen, KI & Data Science 1”

1 Complexity

1. Complete the following table with the symbols O, Ω, Θ. Use O and Ω only if Θ
cannot be used.

Hint: Try plotting the functions if you are unsure (you can find a code snip-
pet in the provided .ipynb). You do not need to prove your solution mathematically.

Additional information:
Ω-notation characterizes a lower bound on the asymptotic behavior of a function
(similar as O-notation characterizes an upper bound). It says that a function grows
at least as fast as a certain rate. The formal definition is given by:

For a given function g(n), Ω(g(n)) denotes a set of functions: Ω(g(n)) = {f(n)
: there exists positive constants c, and n0 such that 0 ≤ cg(n) ≤ f(n) for all
n ≥ n0}

1



log(n) 2n/2
√
n 5 2n 1/n n en n2

log(n) O

2n/2

√
n

5

2n

1/n

n

en

n2

log(n) 2n/2
√
n 5 2n 1/n n en n2

log(n) Θ O O Ω O Ω O O O

2n/2 Ω Θ Ω Ω O Ω Ω O Ω
√
n Ω O Θ Ω O Ω O O O

5 O O O Θ O Ω O O O

2n Ω Ω Ω Ω Θ Ω Ω O Ω

1/n O O O O O Θ O O O

n Ω O Ω Ω O Ω Θ O O

en Ω Ω Ω Ω Ω Ω Ω Θ Ω

n2 Ω O Ω Ω O Ω Ω O Θ

2. For each of the following functions fi, provide a function gi having as few terms
as possible and satisfying fi ∈ Θ(gi).

Hint: Try plotting your solution if unsure.

• Example: f0(n) = 3n2 + 3 ∈ Θ(n2)

2



• f1(n) = n22n + 4n + 3n

• f2(n) = n(n− 1)/2

• f3(n) = log(n70)

• f4(n) = 9nlog(n) + 30n(log(n))2 + n

• f1(n) ∈ Θ(4n)

• f2(n) ∈ Θ(n2)

• f3(n) ∈ Θ(logn)

• f4(n) ∈ Θ(n(log(n))2)

3. Given Algorithm 1, explain in your own words, what the algorithm does. Determine
its time complexity in Big-O notation.
Assuming that nums is sorted. Implement the algorithm algo2(nums, v) in the
provided .ipynb that solves the problem in O(log(n)), where n is the length of
nums.

Algorithm 1 algo1(nums, v)
for i = 0 to nums.length− 1 do

if nums[i] == v then
return i

end if
end for
return NIL

The algorithm searches for the element v in the array nums. If v is in nums,
the index of v in nums is returned. Otherwise, the algorithm returns NIL. The
algorithm is known as linear search.

Its time complexity is O(n) (if we only look at worst-case running
time Θ(n) would be more precise).

If nums is sorted, binary search is an algorithm that performs the task
in O(log(n)).

3



2 Sorting

1. Illustrate each step of merge sort as shown in lecture 5 slides 16-17 on the following
sequence: <3, 9, 1, 2, 7, 3, 9, 6>.

3 9 1 2 7 3 9 6

3 9 1 2 7 3 9 6

3 9 1 2 7 3 9 6

3 9 1 2 57 69

3 9 1 2 3 7 6 9

1 2 3 9 3 6 7 9

1 2 3 3 6 7 9 9

2. What value does partition (as presented in the lecture slides) return when all
elements in the subarray A[p : r] have the same value?

The value r

3. Give a brief argument that running time of partition on a subarray of size n is
O(n) (Big-O notation).

In the loop, there are p − (r − 1) iterations that take constant time plus the
additional exchange outside the loop. This yields, r − p iterations that take at
most constant time. Since r − p is the size of the subarray partition is called

4



on, this yields O(n), if partition is called on a subarray of size n.

4. Implement the method insertsort(nums) in the corresponding .ipynb file. Given
a list of integers nums, the method should sort the list in descending order using
insertion sort. Sorting should be done in-place.

5. Implement the method quicksort(nums, p, r) and partition(nums, p, r) in the
corresponding .ipynb file. Given a list of integers nums, a starting index p, and an
end index r, the method quicksort should sort the list in descending order using
quicksort. Sorting should be done in-place.

5


	Complexity
	Sorting

