

**Prof. Dr. Goran Glavaš,
M.Sc. Fabian David Schmidt
M.Sc. Benedikt Ebing**

Lecture Chair XII for Natural Language Processing, Universität Würzburg

2. Exercise for “Algorithmen, KI & Data Science 1”

1 Complexity

1. Complete the following table with the symbols O , Ω , Θ . Use O and Ω only if Θ cannot be used.

Hint: Try plotting the functions if you are unsure (you can find a code snippet in the provided .ipynb). You do not need to prove your solution mathematically.

Additional information:

Ω -notation characterizes a lower bound on the asymptotic behavior of a function (similar as O -notation characterizes an upper bound). It says that a function grows at least as fast as a certain rate. The formal definition is given by:

For a given function $g(n)$, $\Omega(g(n))$ denotes a set of functions: $\Omega(g(n)) = \{f(n) : \text{there exists positive constants } c, \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0\}$

	$\log(n)$	$2^{n/2}$	\sqrt{n}	5	2^n	$1/n$	n	e^n	n^2
$\log(n)$							O		
$2^{n/2}$									
\sqrt{n}									
5									
2^n									
$1/n$									
n									
e^n									
n^2									

2. For each of the following functions f_i , provide a function g_i having as few terms as possible and satisfying $f_i \in \Theta(g_i)$.

Hint: Try plotting your solution if unsure.

- Example: $f_0(n) = 3n^2 + 3 \in \Theta(n^2)$
- $f_1(n) = n^2 2^n + 4^n + 3^n$
- $f_2(n) = n(n - 1)/2$
- $f_3(n) = \log(n^{70})$
- $f_4(n) = 9n\log(n) + 30n(\log(n))^2 + n$

3. Given Algorithm 1, explain in your own words, what the algorithm does. Determine its time complexity in Big-O notation.

Assuming that $nums$ is sorted. Implement the algorithm $algo2(nums, v)$ in the provided .ipynb that solves the problem in $O(\log(n))$, where n is the length of $nums$.

2 Sorting

1. Illustrate each step of merge sort as shown in lecture 5 slides 16-17 on the following sequence: $<3, 9, 1, 2, 7, 3, 9, 6>$.

Algorithm 1 algo1(nums, v)

```
for i = 0 to nums.length - 1 do
    if nums[i] == v then
        return i
    end if
end for
return NIL
```

2. What value does *partition* (as presented in the lecture slides) return when all elements in the subarray $A[p : r]$ have the same value?
3. Give a brief argument that running time of *partition* on a subarray of size n is $O(n)$ (Big- O notation).
4. Implement the method *insertsort(nums)* in the corresponding .ipynb file. Given a list of integers *nums*, the method should sort the list in **descending order** using insertion sort. Sorting should be done in-place.
5. Implement the method *quicksort(nums, p, r)* and *partition(nums, p, r)* in the corresponding .ipynb file. Given a list of integers *nums*, a starting index *p*, and an end index *r*, the method *quicksort* should sort the list in **descending order** using quicksort. Sorting should be done in-place.