
Algorithmen, KI und Data
Science 1 (AKIDS 1):
Introduction to Python
Herbst- / Wintersemester 2023/24

Prof. Dr. Goran Glavaš

Benedikt Ebing

Fabian David Schmidt

adapted from https://web.stanford.edu/class/cs224n/readings/cs224n-python-review.pdf

Disclaimer

• Expectations: Learning & Master Python in 1.5 hours

• Reality
• Overview on setup & tooling

• Quick rundown of language basics to cover barebone essentials as
quickly as possible

Topics

1. Why Python?

2. Setup

3. Language Basics

4. Practical Python Tips

5. Other Great References

Topics

1. Why Python?

2. Setup

3. Language Basics

4. Practical Python Tips

5. Other Great References

Why Python?

● Rich standard library: Python is a widely used, general purpose
programming language with batteries included

● Simple Semantics & Syntax: Easy to start working with.

● Ecosystem: packages for anything available as Python is amongst most
popular languages

● Machine Learning:
Scientific computation functionality similar to Matlab and Octave.
Used by major deep learning frameworks such as PyTorch and
TensorFlow.

Topics

1. Why Python?

2. Setup

3. Language Basics

4. Practical Python Tips

5. Other Great References

Jupyter Notebook / Google Colab

● Jupyter Notebook: https://jupyter.org/install
○ A Jupyter notebook lets you write and execute Python code locally in your web

browser

○ Interactive, code re-execution, result storage, can interleave text, equations, and
images

○ Can add conda environments to Jupyter notebook

● Google Colab: https://colab.research.google.com/
○ Google’s hosted Jupyter notebook service, runs in the cloud, requires no setup to

use, provides free access to computing resources including GPUs

○ Comes with many Python libraries pre-installed

https://jupyter.org/install
https://colab.research.google.com/

Environment Management

● Problem
○ Different versions of Python

○ Countless Python packages and their dependencies

○ Different projects require different packages

■ Even worse, different versions of the same package!

● Solution
○ Keep multiple Python environments that are isolated from each other

○ Each environment

■ Can use different Python version

■ Keeps its own set of packages (can specify package versions)

■ Can be easily replicated

Anaconda
● Anaconda is a popular Python environment/package manager

○ Install from https://www.anaconda.com/download/

○ Or better yet, mamba, a much faster drop-in replacement for conda, https://github.com/conda-forge/miniforge

○ Supports Windows, Linux, MacOS

○ Can create and manage different isolated environments

Create a new environment
$ conda create –n <environment_name>

$ conda create -n <environment_name> python=3.10

$ conda env create -f <environment.yml>

Activate/deactivate environment
$ conda activate <environment_name>

<...do stuff...>

$ conda deactivate

Export environment
$ conda activate <environment_name>

$ conda env export > environment.yml

With specific Python version

From environment file

Basic workflow

https://www.anaconda.com/download/
https://github.com/conda-forge/miniforge

IDEs / text editors for Python

● PyCharm: tailored to Python, comparably heavy but fully loaded

● VS Code: lighter, language agnostic alternative though not as Python-specific

● Jupyterlab: interactive out-of-the-box and great for presenting code

● Sublime Text: very lightweight and fast editor

● Emacs / Vim: extremely extensible editors that are “lifetime tools”

• Write a Python program in your IDE or text editor of choice.

• In terminal, activate conda environment and run program with command:

• $ python <filename.py>

Recommendations

• Jupyter Notebooks are very limited:
Pick up an IDE and learn the basics quickly!

• Get as much practice as possible with Python:
Do the class exercises by yourself;
implement something useful to you personally;
contribute to open-source

• Learn commandline basics (eg https://missing.csail.mit.edu/)
Programming continues to be centered around CLI;
Extremely valuable in the long-run to acquire familiarity with git, grep
(ripgrep), bash (process management, shell scripting);
Any compute infrastructure will run on a Linux distribution

https://missing.csail.mit.edu/

Topics

1. Why Python?

2. Setup

3. Language Basics

4. Practical Python Tips

5. Other Great References

Common Operations

x = 10 # Declaring two integer variables

y = 3 # Comments start with hash

x + y >> 13 # Arithmetic operations

x ** y >> 1000 # Exponentiation

x / y >> 3 # Dividing two integers

x / float(y) >> 3.333… # Type casting for float division

str(x) + “+”

+ str(y)

>> “10 + 3” # Casting integer as string and

string concatenation

Built-in Values (1/2)

Usual true/false values

Represents the absence of something

Variables can be assigned None

Lists can contain None

Functions can return None

True, False

None

x = None

array = [1, 2, None]

def func():

return None

Built-in Values (2/2)

Boolean operators in Python written

as plain English, as opposed to

&&,||, ! in C++

Comparison operators == and != check

for equality/inequality, return

true/false values

and

or

not

if [] != [None]:

print(“Not equal”)

Brackets → Indents

● Code blocks are created using indents, instead of brackets like in C++

● Indents can be 2 or 4 spaces, but should be consistent throughout file

def sign(num):

Indent level 1: function body

if num == 0:

Indent level 2: if statement body

print(“Zero”)

elif num > 0:

Indent level 2: else if statement body

print(“Positive”)

else:

Indent level 2: else statement body

print(“Negative”)

Language Basics (1/3)
Python is a strongly-typed and dynamically-typed language.

• Strongly-typed: Interpreter always “respects” the types of each
variable. [1]

• Dynamically-typed: “A variable is simply a value bound to a
name.” [1]

• Execution: Python is first interpreted into bytecode (.pyc) and

then compiled by a VM implementation into machine

instructions. (Most commonly using C.)

Language Basics (2/3)
Python is a strongly-typed and dynamically-typed language.

• Strongly-typed: Types will not be coerced silently like in
JavaScript.

• Dynamically-typed: Variables are names for values or object
references. Variables can be reassigned to values of a different
type.

• Execution: Python is “slower”, but it can run highly optimized
C/C++ subroutines which make scientific computing (e.g. matrix
multiplication) really fast.

• Strongly-typed:
1 + ‘1’ → Error!

• Dynamically-typed:
foo = [1,2,3] # initial declaration

foo = ‘hello!’ # later redeclaration

• Execution:
np.dot(x, W) + b → Fast!

Language Basics (3/3)
Python is a strongly-typed and dynamically-typed language.

names

names

=

=

[] # Creates an empty list

list() # Also creates an empty list
stuff = [1, [‘hi’,’bye’], -0.12, None] # Can mix types

Lists are mutable arrays

names = [‘Zach’, ‘Jay’] names[0] == ‘Zach’

names.append(‘Richard’) print(len(names) ==

3) >> True

print(names) >> [‘Zach’, ‘Jay’, ‘Richard’] names +=

[‘Abi’, ‘Kevin’]

print(names) >> [‘Zach’, ‘Jay’, ‘Richard’, ‘Abi’, ‘Kevin’]

Collections (1/3): List

Collections (2/3): Tuples

Tuples are immutable arrays.

names = (‘Zach’, ‘Jay’) # Note the parentheses

names[0] == ‘Zach’

print(len(names) == 2) >> True

print(names) >> (‘Zach’, ‘Jay’)

names[0] = ‘Richard’ >> TypeError: 'tuple' object does not

support item assignment

empty = tuple() # Empty tuple

single = (10,) # Single-element tuple. Comma matters!

Collections (3/3): Dictionary

Dictionaries are hash maps.

phonebook = {} # Empty dictionary

phonebook = dict() # Also creates an empty dictionary
phonebook = {‘Zach’: ‘12-37’} # Dictionary with one item
phonebook[‘Jay’] = ‘34-23’ # Add another item
print(‘Zach’ in phonebook) >> True
print(‘Kevin’ in phonebook) >> False
print(phonebook[‘Jay’]) >> ‘34-23’
del phonebook[‘Zach’] # Delete an item
print(phonebook) >> {‘Jay’ : ‘34-23’}

Loops (1/3): simple looping

Instead of for (i=0; i<10; i++) syntax in languages like C++, use range()

for i in range(10):

print(i)

>> 1

2…

9

10

Loops (2/3): Iterating Over Lists

To iterate over a list
names = [‘Zach`, `Jay`, `Richard`]
for name in names:

print(`Hi ` + name + `!`)

>> Hi
Hi
Hi

Zach!
Jay!
Richard!

To iterate over indices and values
One way >> 1 Zach
for i in range(len(names)): 2 Jay

print(i, names[i]) 3 Richard

A different way

for i, name in enumerate(names):

print(i, name)

Loops (3/3): Iterating Over Dictionaries

To iterate over a dictionary
phonebook = {‘Zach’: ‘12-37’, ‘Jay’: ‘34-23’}

for name in phonebook:

print(name)

>> Jay

Zach

for number in phonebook.values():

print(number)

for name, number in phonebook.items():

print(name, number)

>> 12-37

34-23

>> Zach 12-37

Jay 34-23

Classes

class Animal:

def init (self, species, age):

self.species = species

self.age = age

def is_person(self):

return self.species

def age_one_year(self):

self.age += 1

class Dog(Animal):

def age_one_year(self):

self.age += 7

Constructor `a =

Animal(‘human’, 10)`

Refer to instance with `self` #

Instance variables are public

Invoked with `a.is_person()`

Inherits Animal’s methods

Override for dog years

Topics

1. Why Python?

2. Setup

3. Language Basics

4. Practical Python Tips

5. Other Great References

List Comprehensions

● Similar to map() from functional programming languages.
● Can improve readability & make the code succinct.
● Format: [func(x) for x in some_list]

squares = []

for i in range(10):

squares.append(i**2)

—
squares = [i**2 for i in range(10)]

Can be conditional:
odds = [i**2 for i in range(10) if i%2 == 1]

power = [i**2 if i%2 == 1 else i ** 3 for i in range(10)]

Convenient Syntax

Multiple assignment / unpacking iterables:
age, name, pets = 20, ‘Joy’, [‘cat’]
x, y, z = (‘Tensorflow’, ‘PyTorch’, ‘Chainer’)

Returning multiple items from a function

def some_func():
return 10, 1

ten, one = some_func()

Joining list of strings with a delimiter

“, ”.join([1, 2, 3]) == ‘1, 2, 3’

String literals with both single and double quotes
message = ‘I like “single” quotes.’ reply = “I
prefer ‘double’ quotes.”

Installing Packages

pip installs Python packages, conda installs packages which may contain software written in any language

Issues may arise when using pip and conda together. It is best practice to first use conda to install as many
packages as possible and use pip to install remaining packages after. [1]

conda install -n myenv [package_name][=optional version number]

Install packages using pip in a conda environment (necessary when package not available through conda)

conda install -n myenv pip

conda activate myenv

pip install

[package_name][==optional version number]

Install pip in environment

Activate environment

Install package

pip install -r <requirements.txt> # Install packages from file

[1] https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#using-pip-in-an-environment

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#using-pip-in-an-environment

Importing Package Modules

Import ‘os’ and ‘time’ modules

import os, time

Import under an alias

import numpy as np

np.dot(x, y) # Access components with pkg.fn

Import specific submodules/functions

from numpy import linalg as la, dot as matrix_multiply

Can result in namespace collisions...

Topics

1. Why Python?

2. Setup

3. Language Basics

4. Practical Python Tips

5. Other Great References

References

• Official Python 3 documentation:
https://docs.python.org/3/

• Official Anaconda user guide:
https://docs.conda.io/projects/conda/en/latest/user-
guide/index.html

• Practice, practice, practice:
https://automatetheboringstuff.com/

• Program a lot of useful (personal projects) or required
(exercises) stuff: there are no shortcuts!

https://docs.python.org/3/
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
https://automatetheboringstuff.com/

Orga

• Try to upload the exercise sheets by Thursday EoD

• Exercise sheets are solved in groups of 3

• Two parts:
• Pen & paper

• Implementation

• Submit solutions on WueCampus until Friday 10:00 am before the exercise
• Upload a .zip file containing the following three files:

• .pdf with solutions for the pen & paper exercises

• .ipynb with solutions for the implementation exercises

• .txt with the names and matriculation number of your team members

	Slide 1: Algorithmen, KI und Data Science 1 (AKIDS 1): Introduction to Python
	Slide 2: Disclaimer
	Slide 3: Topics
	Slide 4: Topics
	Slide 5: Why Python?
	Slide 6: Topics
	Slide 7: Jupyter Notebook / Google Colab
	Slide 8: Environment Management
	Slide 9: Anaconda
	Slide 10: IDEs / text editors for Python
	Slide 11: Recommendations
	Slide 12: Topics
	Slide 13: Common Operations
	Slide 14: Built-in Values (1/2)
	Slide 15: Built-in Values (2/2)
	Slide 16: Brackets → Indents
	Slide 17: Language Basics (1/3) Python is a strongly-typed and dynamically-typed language.
	Slide 18: Language Basics (2/3) Python is a strongly-typed and dynamically-typed language.
	Slide 19: Language Basics (3/3) Python is a strongly-typed and dynamically-typed language.
	Slide 20: Collections (1/3): List
	Slide 21: Collections (2/3): Tuples
	Slide 22: Collections (3/3): Dictionary
	Slide 23: Loops (1/3): simple looping
	Slide 24: Loops (2/3): Iterating Over Lists
	Slide 25: Loops (3/3): Iterating Over Dictionaries
	Slide 26: Classes
	Slide 27: Topics
	Slide 28: List Comprehensions
	Slide 29: Convenient Syntax
	Slide 30: Installing Packages
	Slide 31: Importing Package Modules
	Slide 32: Topics
	Slide 33: References
	Slide 34: Orga

