

Homework Assignment #2

Approximation Algorithms (Winter Semester 2023/24)

Exercise 1 – MAXIMUM k-COVERAGE

In this exercise, we consider the MAXIMUM k-COVERAGE problem, which is a variant of the SET COVER problem introduced in the lecture. Let U be a set, let \mathcal{S} be a set of subsets of U , and let k be a natural number. The problem MAXIMUM k-COVERAGE asks for a subset $\mathcal{S}' \subseteq \mathcal{S}$ with $|\mathcal{S}'| = k$ such that the number $|\bigcup \mathcal{S}'|$ of elements covered by \mathcal{S}' is maximized.

For this problem, we consider a greedy algorithm that iteratively performs the following step: In each iteration, select a set from \mathcal{S} that contains the largest number of uncovered elements. The algorithm terminates when none of the remaining sets covers any uncovered elements. Let k be the number of iterations that the algorithm performs.

In the following, we analyze the quality of this algorithm. For $i \in \{1, \dots, k\}$, let ALG_i be the number of elements that are covered by the sets that have been selected in the steps up to and including step i . We set $\text{ALG}_0 = 0$.

- a) Show that $\text{ALG}_1 \geq \frac{1}{k} \cdot \text{OPT}$. In other words, show that the greedy algorithm covers at least OPT / k elements with the set selected in the first step. [4 points]
- b) Show by induction that for each $i \in \{0, \dots, k\}$, the following holds: $\text{OPT} - \text{ALG}_i \leq \left(1 - \frac{1}{k}\right)^i \cdot \text{OPT}$.
Hint: Use the fact that at the beginning of iteration i , there exist at least $\text{OPT} - \text{ALG}_{i-1}$ uncovered elements in the optimal solution. [8 points]
- c) Show that the greedy algorithm has approximation ratio $\left(1 - \frac{1}{e}\right) \approx 0.63$.
Hint: Use that, for any positive integer k , it holds that $\left(1 - \frac{1}{k}\right)^k \leq \frac{1}{e}$. [3 points]

Exercise 2 – Factor-h approximation for unweighted SET COVER

Let (U, \mathcal{S}) be an unweighted SET COVER instance in which each element from U is contained in at most h sets from \mathcal{S} . We refer to h as the *frequency*. (For frequency $h = 2$, we obtain VERTEXCOVER.)

Consider the following iterative algorithm:

Algorithm 1: SimpleGreedySetCover(U, \mathcal{S})

```

 $\mathcal{S}' \leftarrow \emptyset$ 
while  $U \neq \emptyset$  do
  mark an arbitrary element  $u \in U$ 
   $\mathcal{R} \leftarrow \{S \in \mathcal{S} \mid u \in S\}$ 
   $\mathcal{S}' \leftarrow \mathcal{S}' \cup \mathcal{R}$ 
   $U \leftarrow U \setminus \bigcup \mathcal{R}$  // remove all elements from  $U$  that are covered by  $\mathcal{R}$ 
return  $\mathcal{S}'$ 

```

Show that this algorithm yields a factor- h approximation and that the algorithm generalizes the factor-2 approximation algorithm for VERTEX COVER from the lecture.

Hint: Consider the set U_m of elements marked by the algorithm and find a relation of $|U_m|$ and OPT .

[5 points]