

Exercise Sheet #2

Advanced Algorithms (WS 2023/24)

Exercise 1 – Hamiltonian path

A *Hamiltonian path* is a path in a graph that visits each vertex exactly once.

a) Let G be a non-weighted, undirected graph. Describe an algorithm for deciding whether G contains a Hamiltonian path. Use dynamic programming.
What are the running time and space consumption of your algorithm? **5 Points**

b) How can we alter the algorithm such that it actually outputs the Hamiltonian path? **1 Point**

c) Now let G be an undirected graph that has, for each edge $e \in E(G)$, an edge weight $w(e) \in \mathbb{R}$. Show how to find a shortest Hamiltonian path, i.e., a Hamiltonian path P of smallest total weight $W = \sum_{e \in P} w(e)$. **2 Points**

Exercise 2 – Edge-branching INDEPENDENT SET

In the lecture we talked about a branching algorithm for MAXIMUM INDEPENDENT SET. The algorithm was based on the following properties:

(Vertex 1) If a vertex is in the independent set, then its neighbors are not in the independent set.

(Vertex 2) If a vertex is not in the independent set, then in a maximum independent set at least one of its neighbours is in the independent set.

Branching algorithms are often based on such observations about the properties of feasible and/or optimal solutions. We will now design an algorithm based on a different property of independent sets:

(Edge) Consider an edge (v, w) . An independent set does not contain both v and w .

a) Design a simple branching algorithm for MAXIMUM INDEPENDENT SET using a single *branching rule* based on the Edge property. Additionally, you can use a *reduction rule* based on the fact that isolated vertices belong to every maximum independent set. **4 Points**

b) Show that the algorithm you designed in (a) runs faster than $\mathcal{O}^*(2^n)$, where n is the number of vertices of the given graph.

Hint: Assume that the runtime is bounded by an exponential function in n . **3 Points**

c) Show that your running time analysis is tight by constructing a suitable family of worst-case instances.

Hint: Your graphs do not need to be connected. **2 Points**

Exercise 3 – Sweeping Plane

We generalize the sweep-line algorithm for solving the CLOSEST PAIR problem in three dimensions, this is, we are given a point set of n three-dimensional points and we want to find the pair of points having the smallest Euclidean distance by using a sweeping plane similar to the sweep line in two dimensions.

We adjust the algorithm from the lecture such that we now use a linked list \mathcal{L}_y and a balanced binary search tree \mathcal{T}_y for the y -dimension, and a linked list \mathcal{L}_z and a balanced binary search tree \mathcal{T}_z for the z -dimension.

Does the algorithm still run in $O(n \log n)$ time? Argue why or why not. **3 Points**