
DATA SCIENCE FOR DIGITAL HUMANITIES 2

MACHINE LEARNING

PROF. DR. GORAN GLAVAŠ

Deep Learning – Detailed Overview

2

01
Perceptron and feed-forward networks

Autoencoders

Convolutional neural networks

Recurrent neural networks

02
03
04
05

What is „Deep Learning” ML and what is it used for?

Model selection, validation, and fair evaluation

Classification evaluation measures

Click to edit Master title style

What is „Deep Learning” and what is
it used for?

TO

Image: © MIT 6.S191: Introduction to Deep Learning

introtodeeplearning.com

AI vs. ML vs. DL

Traditional machine learning:
▪ Manual design of features:

• We decide what is good input data / data representation

▪ „Features”: computed in a pre-processing step

▪ Model: characterize the data (classification or clustering) in terms of given

fixed input representation / features

▪ more bias in the models, less data required

Deep/representation learning
▪ Suitable representations of the input data are also learned

▪ „Deep” architectures: lower layers dedicated to learning data representations

▪ Less bias in the models, more data required

„Traditional ML” vs. „Deep Learning”

▪ Feature engineering is:

• Time consuming

• Tedious

• Not scalable (some feature computations can be complex)

▪ Deep Learning is a paradigm in which we learn the underlying features useful

for the task directly from data

• Deep = multiple layers, each capturing a different level of abstraction

• Lower layers capture finer-grained features

› E.g., in CV, lines, contures; in NLP word meaning and syntax

• Higher layers capture coarser features

› E.g., CV: surfaces, shapes or objects; NLP: semantics (word

meaning interactions)

Why Deep Learning?

▪ Useful features automatically recognized as patterns in the raw data

Why Deep Learning?

Low-level features Mid-level features High-level features

▪ Manual feature engineering

• Encoding domain/expert knowledge into the features

• Reduces the amount of domain knowledge that needs to be learned

from data

▪ Deep Learning

• No prior domain/expert knowledge: we learn everything from the data

• We need more data!

› To learn the mappings from raw input into features

• We need to learn more parameters (more complex models)

› learning the mappings from raw input into features and then

from features to prediction

› We need more computational power!

Deep Learning

Click to edit Master title style

Commonly used DL models

TO

Deep Learning – Detailed Overview

10

01
Perceptron and feed-forward networks

Autoencoders

Convolutional neural networks

Recurrent neural networks

02
03
04
05

What is „Deep Learning” ML and what is it used for?

Model selection, validation, and fair evaluation

Classification evaluation measures

▪ Takes inputs („features”) x = [1, x1, x2, ..., xm] and computes a dot-

product with weights (parameters) w = [w0, w1, ..., wm]

▪ Applies a non-linear activation function g on wTx

Image from 6.S191 Introduction to Deep Learning

introtodeeplearning.com

Perceptron

▪ Also known as the multilayer

perceptron (MLP)

▪ Layers of perceptrons
• Outputs from previous = inputs for

perceptrons of the next layer

• Parameters of each layer (i.e.,

weights of perceptrons) can be

written in the matrix form

In image:

y = W0 f2(W2f1(W1x))

Input: x, output: y, parameters: W0, W1, W2

Activation functions: f1, f2

Feed-forward network (FFDN)

Common Activation Functions

▪ We need to define some loss function

• Remember the three components of each ML algorithm!

▪ For example, square loss/error or cross-entropy error (as for LR)

▪ Then, we need to minimize the loss on the training data!

Training Neural Networks

Image from 6.S191 Introduction to

Deep Learning, introtodeeplearning.com

▪ We need to minimize the loss on the training data!

• Randomly initialize all network parameters W

▪ Solve:

▪ The above equation has no closed-form solution => iterative gradient-based

optimization (gradient descent and similar algorithms)

▪ Gradient descent:

▪ Backpropagation algorithm: sequential computation of gradients in the

reverse order (in the backward direction)

Training Neural Networks

▪ Backpropagation algorithm: sequential computation of gradients in the

reverse order (in the backward direction)

▪ Based on the chain rule of differentiation

Training Neural Networks

Image from 6.S191 Introduction to

Deep Learning, introtodeeplearning.com

Deep Learning – Detailed Overview

17

01
Perceptron and feed-forward networks

Autoencoders

Convolutional neural networks

Recurrent neural networks

02
03
04
05

What is „Deep Learning” ML and what is it used for?

Model selection, validation, and fair evaluation

Classification evaluation measures

▪ Unsupervised (sometimes called self-supervised) DL paradigm

• We encode the raw input into a lower-dimensional space

• Hoping to capture the patterns/regularities in raw data

• Trying to learn latent features

▪ Commonly a pre-processing step for supervised learning

Autoencoders

Image from https://blog.keras.io

https://blog.keras.io/

▪ Autoencoding is effectively a data compression algorithm

• Compression: Encoder

• Decompression: Decoder

• Both neural networks’ parameters are learned from the data

▪ Autoencoders are data-specific

• Learn from data: they can only compress data similar (same

distribution!) as that they were trained on

▪ But, autoencoders are not used for data compression

• Lossless reconstruction cannot be guaranteed

▪ They are used for self-supervised dimensionality reduction as a pre-

processing step for supervised learning with limited training data

▪ A type of „continuous clustering”

Autoencoders

▪ Learning to reconstruct the input is often not „stimulating enough” for the

encoder network to learn useful latent features

▪ Some manipulation of the input (introducing noise)

▪ Reconstructing the clean input (i.e., without the noise)

▪ Encoder forced to learn to remove the noise: that way learns more useful

latent representations

Denoising Autoencoders

Deep Learning – Detailed Overview

21

01
Perceptron and feed-forward networks

Autoencoders

Convolutional neural networks

Recurrent neural networks

02
03
04
05

What is „Deep Learning” ML and what is it used for?

Model selection, validation, and fair evaluation

Classification evaluation measures

▪ Originate from Computer Vision

• Biological inspiration: human eye and its receptive field mechanisms

▪ Gradually reducing the resolution of the image with convolutional layers and

pooling layers

Convolutional Neural Networks
Im

age from
:

https://codetolight.files.w
ordpress.com

https://codetolight.files.wordpress.com/

▪ Convolution:

• Operation between a slice/area of the input and the „filter matrix”

(also known as „kernel”)

▪ Filter matrix is typically much smaller in dimensions than the input

• E.g., an image is 28x28, but a filter can be, e.g., 3x3 or 5x5

▪ There are typically multiple filters of the same size

Conv(A, B) = σ𝑖=1
𝑀 σ𝑗=1

𝑁 𝐴𝑖𝑗 ∗ 𝐵𝑖𝑗

▪ Pooling:

• Reducing an area of some size (e.g., 3X3) to a single value

• Different types of pooling: max-pooling, average-pooling

Convolutional Neural Networks

▪ Filter matrices (aka kernels) are the parameters of the CNN

▪ CNN by itself is not a classifier, it just encodes the input representation into a

smaller-dimensional feature vector

▪ CNN is commonly coupled with a feed-forward classification net

Convolutional Neural Network

Im
age from

:
https://codetolight.files.w

ordpress.com

https://codetolight.files.wordpress.com/

▪ Although they come from the Computer Vision world, CNNs have been useful

in many text classification tasks as well

▪ For text classification, we use 1-D CNNs (we stride over only 1 dim.)

Convolutional Neural Networks for Text

Convolutional Neural Networks for Text

▪ Let d be the length of word embedding vectors

▪ Filters are CNN parameter matrices of size K x d, where K is small number,

typically between 3 and 5

• K is called the size of the filter

▪ One CNN typically has many filters, often of different sizes

• E.g., 32 filters of size 3, 64 filters of size 4, and 32 filters of size 5

▪ Convolution layer:

• Each filter strides down the input sequence and produces a convolution

score with each input subsequence of size K

▪ Let FK be one filter (matrix) od size K (i.e., dimensions K x d)

▪ Let X[a:b] be the submatrix of the input matrix X consisting of rows a to b

▪ We then compute the vector of following convolutions

C(FK) = [Conv(X[1:K], FK); Conv(X[2:K+1], FK); Conv(X[3:K+2], FK); ...; Conv(X[N-K+1:N], FK)]

Convolutional Neural Networks for
Text

▪ Pooling layer:

• Each filter FK will produce a vector of convolution scores C(FK)

over the input sequence

• We want to keep only the „most salient” local sequences

▪ That’s why we tipically select only k largest values from the convolution

vector of each filter – this is called k-max pooling

▪ Most often 1-max pooling is used (only the largest value is kept)

▪ Latent text representation:

• We concatenate the results of pooling for each of the filters into a

single vector which is the latent representation of the text

Deep Learning – Detailed Overview

28

01
Perceptron and feed-forward networks

Autoencoders

Convolutional neural networks

Recurrent neural networks

02
03
04
05

What is „Deep Learning” ML and what is it used for?

Model selection, validation, and fair evaluation

Classification evaluation measures

Recurrent neural networks

▪ Recurrent neural networks are neural models that explicitly model

sequences / time series

▪ RNNs represent „arbitrarily” long sequences into a fixed-size vector

▪ But unlike CNNs, which capture only local sequences of small length (3-5),

RNNs aim encode dependencies over entire sequences

▪ General RNN model:

• Input: sequence of input vectors x1, ..., xn

• RNN is a function that converts an arbitrary size sequence x1, ..., xn

into a fixed size output vector yn

• Analogously, the subsequence x1, ..., xi will produce the output yi

• The output vector yi-1 of the previous step (i-1) is combined with the

current input xi to produce the output yi

▪ The RNN network is, at time step i, represented with its current state si

General RNN model:

▪ Defined by two functions:

▪ Function R defines how the next state si is computed from the previous state

si-1 and current input xi

▪ Function O defines how the current output yi is computed from the current

state si

▪ Obviously, RNN is defined recursively

yn = O(sn)

sn = R(xn, sn-1)

= R(xn, R(xn-1, sn-2)

...

= R(xn, R(...(R(x1, s0))

▪ θ are RNN parameters (in R)

Recurrent neural networks

Recurrent neural networks

▪ For some input sequence of finite length, we can „unroll” the RNN recursion

▪ sn (and yn) can be thought of as the encoding of the whole sequence

▪ This general RNN model is instantiated into concrete models by defining

functions R and O

Simple (Elman) RNN

▪ The simplest RNN formulation that still captures the ordering of the elements in

the sequence

▪ Model:

• R = Non-linear transformation g (usually hyperbolic tangent or sigmoid)

applied to a linear combination of the input and previous state

si = R(xi, si-1)

= g(xi W
x + si-1 W

s + b);

▪ O = identity function

yi = O(si)

= si

▪ Parameters

• θ = (Wx, Ws, b) if inputs are fixed

Gated cell architectures in RNNs

▪ Simple architecture suffers from a problem known as vanishing gradients

• Error signals / gradients from later steps in the sequence diminish quickly

in the backpropagation algorithm

• The updates for early inputs that come from errors in later steps are very

small

› Esentially, Simple RNN has difficulties capturing long-distance dependencies

• At each step, the whole RNN state is rewritten

▪ Gated architectures idea

• Do not update the whole state at every step

• Introduce parameters that decide which parts of the state to update

• Introducing gate vectors:

› They define which parts of the new state are taken from previous state and which

from the current input

• Models: Long short-term memory (LSTM), Gated Recurrent Unit

Bi-directional RNNs

▪ Standard RNN at each step only encodes the sequence from one side of the

current token

▪ For many time-series and sequence labeling tasks we want to incorporate

knowledge about the context from both sides

▪ Bidirectional RNN is a model that combines two uni-directional RNNs

encoding in opposite directions

▪ Output at step i is the concatenation of output vectors of both RNNs

Multi-Layer (Stacked) RNNs

▪ RNNs can be stacked in layers, forming a grid

▪ The input for the first RNN are the actual input x1, ..., xn

▪ The input for all other layers are the outputs of previous layer RNN

▪ This architecture is called Deep RNN

RNN training

▪ As „unrolled”, an RNN is just a (very deep) feed-forward network

▪ Same parameters are shared across layers

▪ Additional input added at each layer

▪ To train an RNN network, we need to

1. Create an unrolled computation graph for a given input sequence

2. Add a loss function node to the unrolled computation graph

3. Compute the loss (i.e., error) for a given input sequence

4. Update the RNN parameters (W matrices and b bias vectors) to minimize

the loss

RNN usage patterns

▪ Q: What is the loss function for an RNN?

▪ A: That depends on the type

of task for which we are performing

▪ Type of tasks addressed using RNNs (i.e., RNN usage patterns):

1. Encoder – a prediction for the whole sequence

• Loss based only on the last state (encoding the whole sequence)

• Classification of the whole sequence

2. Transducer – one prediction made at every position in the sequence

• This is the sequence labelling usage of RNNs

RNN usage patterns

RNN as encoder

▪ Assumptions:

▪ the last state vector (sn)

encodes the whole sequence

▪ Thus, if we need to make a prediction

for the whole sequence, we can use the last state as its representation

▪ The representation of the whole sequence, the last state, is fed into a classifier

▪ E.g., a ternary classifier determining whether the sentence has positive,

negative, or neutral sentiment

▪ The classifier is usually a feed-forward network with its own set of parameters

(θcl)

y = softmax(snWcl + b)

Classifier
(θcl)

y

RNN usage patterns

RNNs as encoders

▪ Bidirectional RNN consists of

two unidirectional RNN

▪ We have two states (sn
f, sn

b)

that encode the whole sequence

▪ sn
f encodes left-to-right

▪ sn
b encodes right-to-left

▪ Q: How do we create a sequence representation for classification?

▪ A: We concatenate the two final states: sn= [sn
f;sn

b]

s5= [s5
f;s5

b]

Classifier
(θcl) y

RNN usage patterns

RNN as transducer

▪ When RNN is used for

sequence labelling

▪ We need to predict the class

at every time step of the RNN

▪ Again, we couple the RNN with a

feed-forward classifier

▪ But now we predict the class at every position in the sequence, instead of only

from the final sequence state as in the encoder usage pattern

▪ The prediction loss for the whole sequence is simply the sum of prediction

losses of all token-level predictions

Classifier
(θcl)

o
1

o
2

o
3

o
4

o
5

43

Key Takeaways

Traditional ML:

precomputed

features =

modeling bias

Numeric parameter

optimization, via

backpropagation

Deep Learning: raw

data as input, lower

layers induce

representations for

classification
Prominent DL

architectures:

autoencoders,

convolutional, and

recurrent networks

Main application

areas: text/language

and vision (images /

videos)

	Standardabschnitt
	Slide 1: Data SCIENCE FOR DIGITAL HUMANITIES 2 Machine Learning
	Slide 2: Deep Learning – Detailed Overview
	Slide 3: What is „Deep Learning” and what is it used for?
	Slide 4: AI vs. ML vs. DL
	Slide 5: „Traditional ML” vs. „Deep Learning”
	Slide 6: Why Deep Learning?
	Slide 7: Why Deep Learning?
	Slide 8: Deep Learning
	Slide 9: Commonly used DL models
	Slide 10: Deep Learning – Detailed Overview
	Slide 11: Perceptron
	Slide 12: Feed-forward network (FFDN)
	Slide 13: Common Activation Functions
	Slide 14: Training Neural Networks
	Slide 15: Training Neural Networks
	Slide 16: Training Neural Networks
	Slide 17: Deep Learning – Detailed Overview
	Slide 18: Autoencoders
	Slide 19: Autoencoders
	Slide 20: Denoising Autoencoders
	Slide 21: Deep Learning – Detailed Overview
	Slide 22: Convolutional Neural Networks
	Slide 23: Convolutional Neural Networks
	Slide 24: Convolutional Neural Network
	Slide 25: Convolutional Neural Networks for Text
	Slide 26: Convolutional Neural Networks for Text
	Slide 27: Convolutional Neural Networks for Text
	Slide 28: Deep Learning – Detailed Overview
	Slide 29: Recurrent neural networks
	Slide 30: Recurrent neural networks
	Slide 31: Recurrent neural networks
	Slide 32: Simple (Elman) RNN
	Slide 33: Gated cell architectures in RNNs
	Slide 36: Bi-directional RNNs
	Slide 37: Multi-Layer (Stacked) RNNs
	Slide 38: RNN training
	Slide 39: RNN usage patterns
	Slide 40: RNN usage patterns
	Slide 41: RNN usage patterns
	Slide 42: RNN usage patterns
	Slide 43: Key Takeaways

