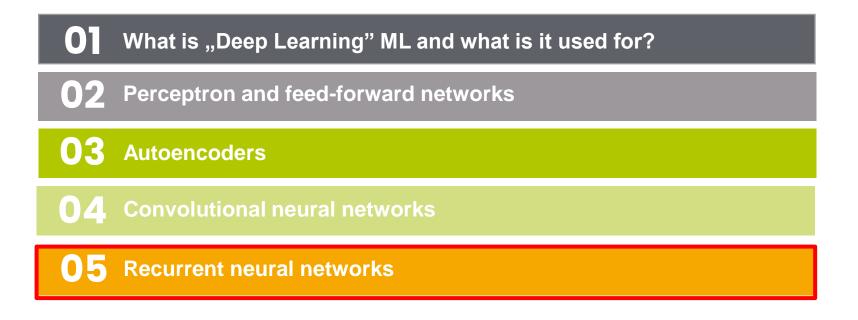
DATA SCIENCE FOR DIGITAL HUMANITIES 2

MACHINE LEARNING

PROF. DR. GORAN GLAVAŠ

Deep Learning – Detailed Overview



What is "Deep Learning" and what is it used for?

AI vs. ML vs. DL

Artificial Intelligence

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

313472

Image: © MIT 6.S191: Introduction to Deep Learning introtodeeplearning.com

"Traditional ML" vs. "Deep Learning"

Traditional machine learning:

- Manual design of features:
 - We decide what is good input data / data representation
- "Features": computed in a pre-processing step
- Model: characterize the data (classification or clustering) in terms of given fixed input representation / features
- more bias in the models, less data required

Deep/representation learning

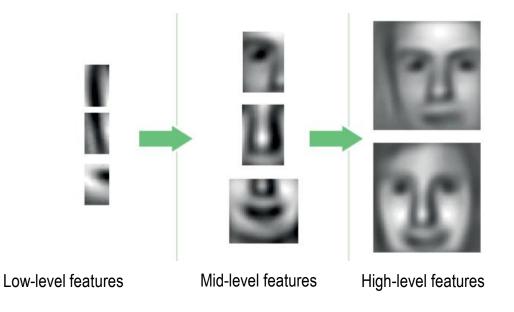
- Suitable representations of the input data are also learned
- "Deep" architectures: lower layers dedicated to learning data representations
- Less bias in the models, more data required

Why Deep Learning?

- Feature engineering is:
 - Time consuming
 - Tedious
 - Not scalable (some feature computations can be complex)
- Deep Learning is a paradigm in which we learn the underlying features useful for the task directly from data
 - Deep = multiple layers, each capturing a different level of abstraction
 - Lower layers capture finer-grained features
 - > E.g., in CV, lines, contures; in NLP word meaning and syntax
 - Higher layers capture coarser features
 - > E.g., CV: surfaces, shapes or objects; NLP: semantics (word meaning interactions)

Why Deep Learning?

Useful features automatically recognized as patterns in the raw data



Deep Learning

Manual feature engineering

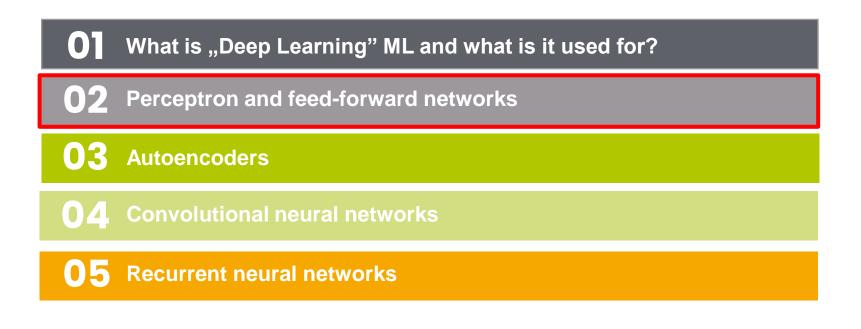
- Encoding domain/expert knowledge into the features
- Reduces the amount of domain knowledge that needs to be learned from data

Deep Learning

- No prior domain/expert knowledge: we learn everything from the data
- We need more data!
 - > To learn the mappings from raw input into features
- We need to learn more parameters (more complex models)
 - learning the mappings from raw input into features and then from features to prediction
 - > We need more computational power!

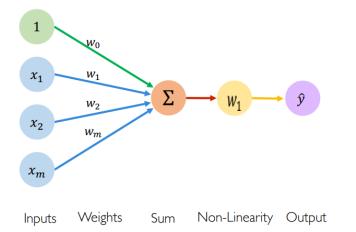
Commonly used DL models

Deep Learning – Detailed Overview



Perceptron

- Takes inputs ("features") x = [1, x₁, x₂, ..., x_m] and computes a dotproduct with weights (parameters) w = [w₀, w₁, ..., w_m]
- Applies a non-linear activation function g on w^Tx



$$\hat{y} = g\left(w_0 + \sum_{i=1}^m x_i w_i\right)$$
$$\hat{y} = g\left(w_0 + X^T W\right)$$
where: $X = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$ and $W = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Image from 6.S191 Introduction to Deep Learning introtodeeplearning.com

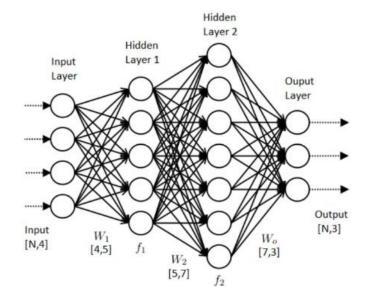
Feed-forward network (FFDN)

- Also known as the multilayer perceptron (MLP)
- Layers of perceptrons
 - Outputs from previous = inputs for perceptrons of the next layer
 - Parameters of each layer (i.e., weights of perceptrons) can be written in the matrix form

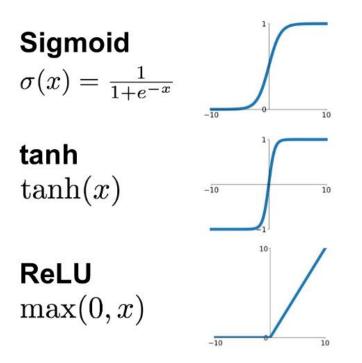
In image:

 $\mathbf{y} = \mathbf{W}_0 \ f_2(\mathbf{W}_2 f_1(\mathbf{W}_1 \mathbf{x}))$

Input: **x**, output: **y**, parameters: W_0 , W_1 , W_2 Activation functions: f_1 , f_2



Common Activation Functions



Training Neural Networks

- We need to define some loss function
 - Remember the three components of each ML algorithm!
- For example, square loss/error or cross-entropy error (as for LR)
- Then, we need to minimize the loss on the training data!

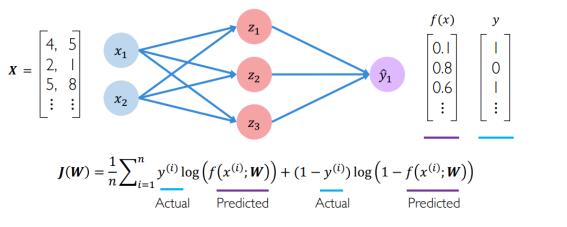


Image from 6.S191 Introduction to Deep Learning, introtodeeplearning.com

Training Neural Networks

We need to minimize the loss on the training data!

- Randomly initialize all network parameters W
- Solve:

 $W^* = \underset{W}{\operatorname{argmin}} J(W)$

- The above equation has no closed-form solution => iterative gradient-based optimization (gradient descent and similar algorithms)
- Gradient descent: $W \leftarrow W \eta \frac{\partial J(W)}{\partial W}$
- Backpropagation algorithm: sequential computation of gradients in the reverse order (in the backward direction)

Training Neural Networks

- Backpropagation algorithm: sequential computation of gradients in the reverse order (in the backward direction)
- Based on the chain rule of differentiation

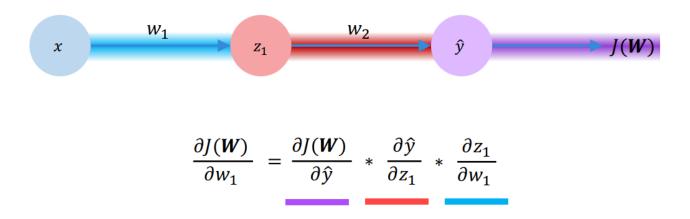
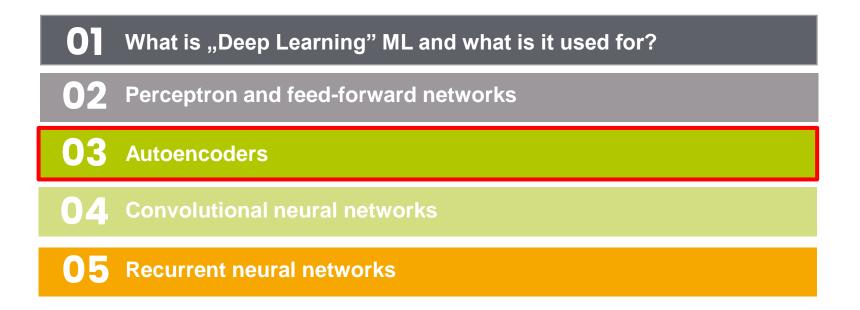


Image from 6.S191 Introduction to Deep Learning, introtodeeplearning.com

Deep Learning – Detailed Overview



Autoencoders

Unsupervised (sometimes called self-supervised) DL paradigm

- We encode the raw input into a lower-dimensional space
- Hoping to capture the patterns/regularities in raw data
- Trying to learn latent features
- Commonly a pre-processing step for supervised learning

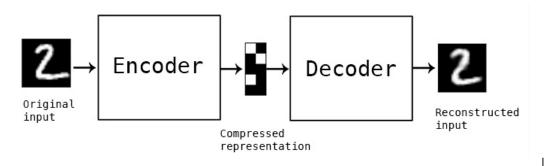


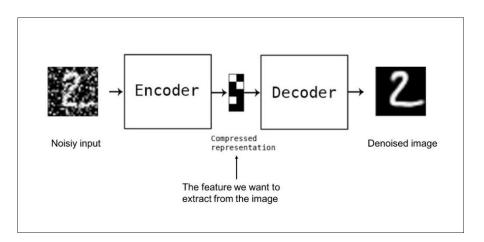
Image from https://blog.keras.io

Autoencoders

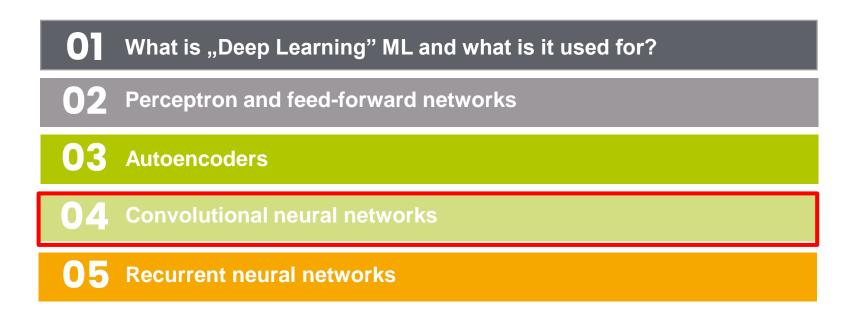
- Autoencoding is effectively a data compression algorithm
 - Compression: Encoder
 - Decompression: Decoder
 - Both neural networks' parameters are learned from the data
- Autoencoders are data-specific
 - Learn from data: they can only compress data similar (same distribution!) as that they were trained on
- But, autoencoders are **not** used for data compression
 - Lossless reconstruction cannot be guaranteed
- They are used for self-supervised dimensionality reduction as a preprocessing step for supervised learning with limited training data
- A type of "continuous clustering"

Denoising Autoencoders

- Learning to reconstruct the input is often not <u>stimulating enough</u> for the encoder network to learn useful latent features
- Some manipulation of the input (introducing noise)
- Reconstructing the clean input (i.e., without the noise)
- Encoder forced to learn to remove the noise: that way learns more useful latent representations

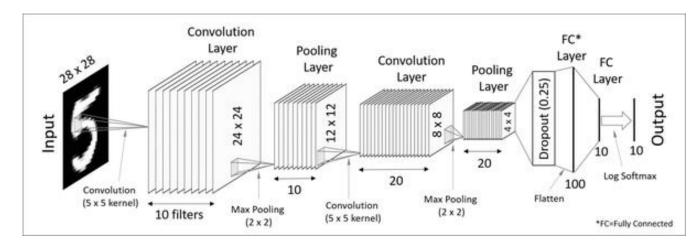


Deep Learning – Detailed Overview



Convolutional Neural Networks

- Originate from Computer Vision
 - Biological inspiration: human eye and its receptive field mechanisms
- Gradually reducing the resolution of the image with convolutional layers and pooling layers



Convolutional Neural Networks

- Convolution:
 - Operation between a slice/area of the input and the <u>"filter matrix</u>" (also known as <u>"kernel</u>")
- Filter matrix is typically much smaller in dimensions than the input
 - E.g., an image is 28x28, but a filter can be, e.g., 3x3 or 5x5
- There are typically multiple filters of the same size

 $Conv(A, B) = \sum_{i=1}^{M} \sum_{j=1}^{N} A_{ij} * Bij$

- Pooling:
 - Reducing an area of some size (e.g., 3X3) to a single value
 - Different types of pooling: max-pooling, average-pooling

Convolutional Neural Network

- Filter matrices (aka kernels) are the parameters of the CNN
- CNN by itself is not a classifier, it just encodes the input representation into a smaller-dimensional feature vector
- CNN is commonly coupled with a feed-forward classification net

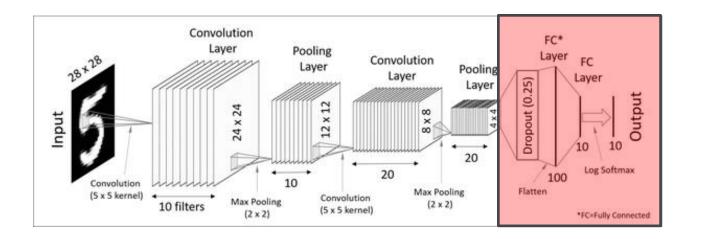
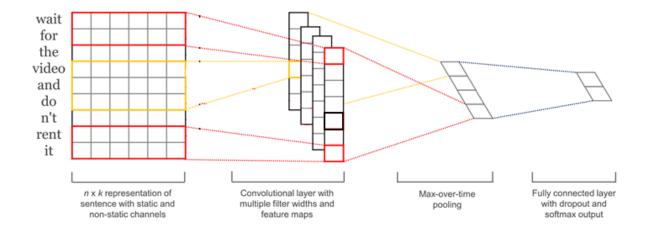


Image from: https://codetolight.files.wordpress.com

Convolutional Neural Networks for Text

- Although they come from the Computer Vision world, CNNs have been useful in many text classification tasks as well
- For text classification, we use 1-D CNNs (we stride over only 1 dim.)



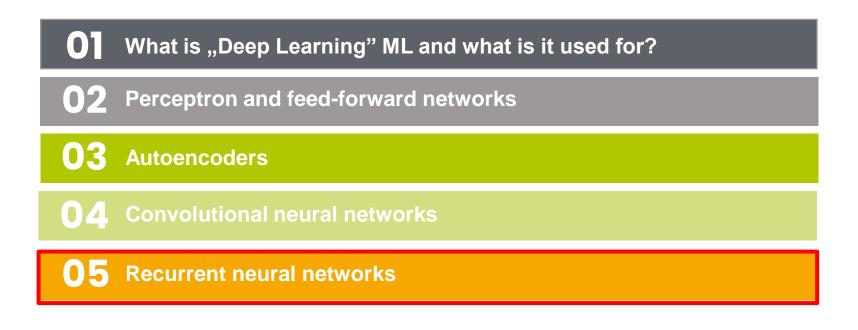
Convolutional Neural Networks for Text

- Let d be the length of word embedding vectors
- Filters are CNN parameter matrices of size K x d, where K is small number, typically between 3 and 5
 - K is called the size of the filter
- One CNN typically has many filters, often of different sizes
 - E.g., 32 filters of size 3, 64 filters of size 4, and 32 filters of size 5
- Convolution layer:
 - Each filter strides down the input sequence and produces a convolution score with each input subsequence of size K
- Let F_{K} be one filter (matrix) od size K (i.e., dimensions K x d)
- Let X_[a:b] be the submatrix of the input matrix X consisting of rows a to b
- We then compute the vector of following convolutions $C(F_{K}) = [Conv(X_{[1:K]}, F_{K}); Conv(X_{[2:K+1]}, F_{K}); Conv(X_{[3:K+2]}, F_{K}); ...; Conv(X_{[N-K+1:N]}, F_{K})]$

Convolutional Neural Networks for Text

- Pooling layer:
 - Each filter F_K will produce a vector of convolution scores C(F_K) over the input sequence
 - We want to keep only the "most salient" local sequences
- That's why we tipically select only k largest values from the convolution vector of each filter – this is called k-max pooling
- Most often 1-max pooling is used (only the largest value is kept)
- Latent text representation:
 - We concatenate the results of pooling for each of the filters into a single vector which is the latent representation of the text

Deep Learning – Detailed Overview



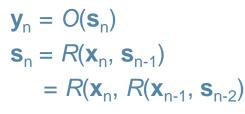
Recurrent neural networks

- Recurrent neural networks are neural models that explicitly model sequences / time series
- RNNs represent "arbitrarily" long sequences into a fixed-size vector
- But unlike CNNs, which capture only local sequences of small length (3-5), RNNs aim encode dependencies over entire sequences
- General RNN model:
 - Input: sequence of input vectors x₁, ..., x_n
 - RNN is a function that converts an arbitrary size sequence x₁, ..., x_n into a fixed size output vector y_n
 - Analogously, the subsequence x₁, ..., x_i will produce the output y_i
 - The output vector y_{i-1} of the previous step (i-1) is combined with the current input x_i to produce the output y_i
- The RNN network is, at time step i, represented with its current state s_i

Recurrent neural networks

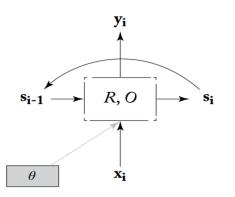
General RNN model:

- Defined by two functions:
- Function R defines how the next state s_i is computed from the previous state s_{i-1} and current input x_i
- Function O defines how the current output y_i is computed from the current state s_i
- Obviously, RNN is defined recursively



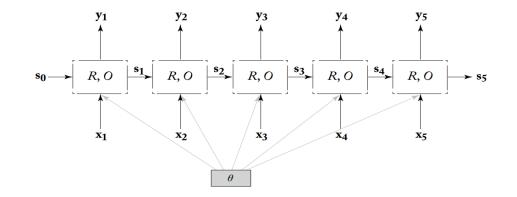
. . .

- $= R(\mathbf{x}_{n}, R(...(R(\mathbf{x}_{1}, \mathbf{s}_{0})))$
- e are RNN parameters (in R)



Recurrent neural networks

For some input sequence of finite length, we can "unroll" the RNN recursion



s_n (and y_n) can be thought of as the encoding of the whole sequence
 This general RNN model is instantiated into concrete models by defining functions *R* and *O*

Simple (Elman) RNN

- The simplest RNN formulation that still captures the ordering of the elements in the sequence
- Model:
 - R = Non-linear transformation g (usually hyperbolic tangent or sigmoid) applied to a linear combination of the input and previous state

$$\mathbf{s}_{i} = R(\mathbf{x}_{i}, \mathbf{s}_{i-1})$$

= $g(\mathbf{x}_{i} \mathbf{W}^{\mathbf{x}} + \mathbf{s}_{i-1} \mathbf{W}^{\mathbf{s}} + \mathbf{b});$

• O = identity function

$$\mathbf{y}_{i} = O(\mathbf{s}_{i})$$
$$= \mathbf{s}_{i}$$

- Parameters
 - $\theta = (W^x, W^s, b)$ if inputs are fixed

Gated cell architectures in RNNs

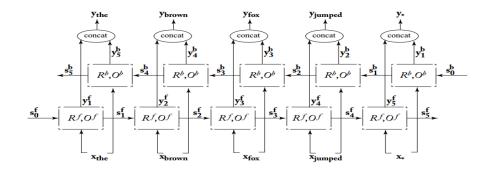
- Simple architecture suffers from a problem known as vanishing gradients
 - Error signals / gradients from later steps in the sequence diminish quickly in the backpropagation algorithm
 - The updates for early inputs that come from errors in later steps are very small
 - > Esentially, Simple RNN has difficulties capturing long-distance dependencies
 - At each step, the whole RNN state is rewritten

Gated architectures idea

- Do not update the whole state at every step
- Introduce parameters that decide which parts of the state to update
- Introducing gate vectors:
 - They define which parts of the new state are taken from previous state and which from the current input
- Models: Long short-term memory (LSTM), Gated Recurrent Unit

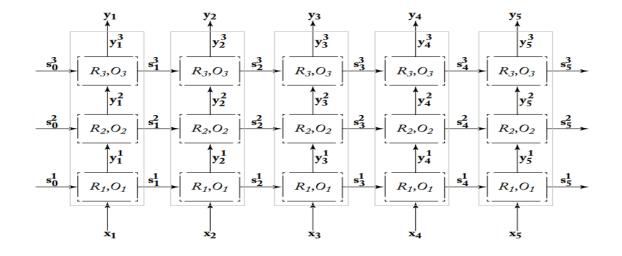
Bi-directional RNNs

- Standard RNN at each step only encodes the sequence from one side of the current token
- For many time-series and sequence labeling tasks we want to incorporate knowledge about the context from both sides
- Bidirectional RNN is a model that combines two uni-directional RNNs encoding in opposite directions
- Output at step *i* is the concatenation of output vectors of both RNNs



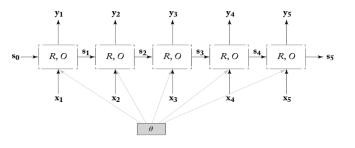
Multi-Layer (Stacked) RNNs

- RNNs can be stacked in layers, forming a grid
- The input for the first RNN are the actual input x₁, ..., x_n
- The input for all other layers are the outputs of previous layer RNN
- This architecture is called Deep RNN



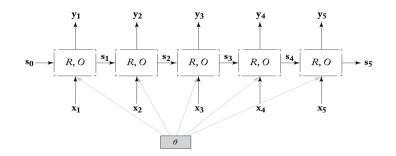
RNN training

- As "unrolled", an RNN is just a (very deep) feed-forward network
- Same parameters are shared across layers
- Additional input added at each layer



- To train an RNN network, we need to
 - 1. Create an unrolled computation graph for a given input sequence
 - 2. Add a loss function node to the unrolled computation graph
 - 3. Compute the loss (i.e., error) for a given input sequence
 - Update the RNN parameters (W matrices and b bias vectors) to minimize the loss

- Q: What is the loss function for an RNN?
- A: That depends on the type of task for which we are performing



- Type of tasks addressed using RNNs (i.e., RNN usage patterns):
 - **1.** Encoder a prediction for the whole sequence
 - Loss based only on the last state (encoding the whole sequence)
 - Classification of the whole sequence
 - 2. **Transducer** one prediction made at every position in the sequence
 - This is the **sequence labelling** usage of RNNs

RNN as encoder

- Assumptions:
- the last state vector (s_n)
 encodes the whole sequence

- $s_{0} \rightarrow \overbrace{R, 0}^{s_{1}} \overbrace{R, 0}^{s_{2}} \overbrace{R, 0}^{s_{2}} \overbrace{R, 0}^{s_{3}} \overbrace{R, 0}^{s_{4}} \overbrace{R, 0}^{s_{4}} \rightarrow s_{5} \rightarrow \overbrace{(\theta_{c})}^{y_{5}} \overbrace{Classifier}_{(\theta_{c})}^{y_{5}}$
- Thus, if we need to make a prediction

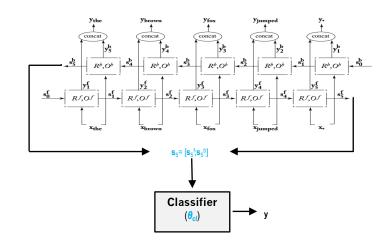
for the whole sequence, we can use the last state as its representation

- The representation of the whole sequence, the last state, is fed into a classifier
 - E.g., a ternary classifier determining whether the sentence has positive, negative, or neutral sentiment
 - The classifier is usually a feed-forward network with its own set of parameters (θ_{cl})

 $\mathbf{y} = \operatorname{softmax}(\mathbf{s}_{n}\mathbf{W}_{cl} + \mathbf{b})$

RNNs as encoders

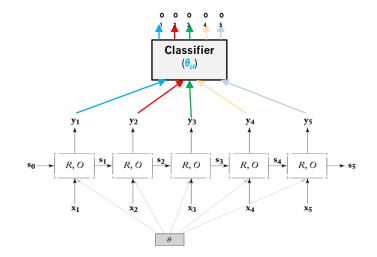
- Bidirectional RNN consists of two unidirectional RNN
- We have two states (s_n^f, s_n^b) that encode the whole sequence
- s^f encodes left-to-right
- s^b encodes right-to-left



- Q: How do we create a sequence representation for classification?
- A: We concatenate the two final states: $\mathbf{s}_n = [\mathbf{s}_n^{f}; \mathbf{s}_n^{b}]$

RNN as transducer

- When RNN is used for sequence labelling
- We need to predict the class at every time step of the RNN



- Again, we couple the RNN with a feed-forward classifier
- But now we predict the class at every position in the sequence, instead of only from the final sequence state as in the encoder usage pattern
- The prediction loss for the whole sequence is simply the sum of prediction losses of all token-level predictions

Key Takeaways

