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AI vs. ML vs. DL



Traditional machine learning:
▪ Manual design of features: 

• We decide what is good input data / data representation 

▪ „Features”: computed in a pre-processing step

▪ Model: characterize the  data (classification or clustering) in terms of given 

fixed input representation / features

▪ more bias in the models, less data required

Deep/representation learning
▪ Suitable representations of the input data are also learned

▪ „Deep” architectures: lower layers dedicated to learning data representations

▪ Less bias in the models, more data required

„Traditional ML” vs. „Deep Learning”



▪ Feature engineering is:

• Time consuming

• Tedious

• Not scalable (some feature computations can be complex)

▪ Deep Learning is a paradigm in which we learn the underlying features useful 

for the task directly from data

• Deep = multiple layers, each capturing a different level of abstraction

• Lower layers capture finer-grained features 

› E.g., in CV, lines, contures; in NLP word meaning and syntax

• Higher layers capture coarser features

› E.g., CV: surfaces, shapes or objects; NLP: semantics (word 

meaning interactions)

Why Deep Learning?



▪ Useful features automatically recognized as patterns in the raw data

Why Deep Learning?

Low-level features Mid-level features High-level features



▪ Manual feature engineering

• Encoding domain/expert knowledge into the features

• Reduces the amount of domain knowledge that needs to be learned 

from data

▪ Deep Learning

• No prior domain/expert knowledge: we learn everything from the data

• We need more data! 

› To learn the mappings from raw input into features

• We need to learn more parameters (more complex models)

› learning the mappings from raw input into features and then 

from features to prediction

› We need more computational power!

Deep Learning
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▪ Takes inputs („features”) x = [1, x1, x2, ..., xm] and computes a dot-

product with weights (parameters) w = [w0, w1, ..., wm] 

▪ Applies a non-linear activation function g on wTx

Image from 6.S191 Introduction to Deep Learning 

introtodeeplearning.com

Perceptron



▪ Also known as the multilayer 

perceptron (MLP)

▪ Layers of perceptrons
• Outputs from previous = inputs for 

perceptrons of the next layer

• Parameters of each layer (i.e., 

weights of perceptrons) can be 

written in the matrix form

In image: 

y = W0 f2(W2f1(W1x))

Input: x, output: y, parameters: W0, W1, W2

Activation functions: f1, f2

Feed-forward network (FFDN)



Common Activation Functions



▪ We need to define some loss function

• Remember the three components of each ML algorithm!

▪ For example, square loss/error or cross-entropy error (as for LR)

▪ Then, we need to minimize the loss on the training data!

Training Neural Networks

Image from 6.S191 Introduction to 

Deep Learning, introtodeeplearning.com



▪ We need to minimize the loss on the training data!

• Randomly initialize all network parameters W

▪ Solve:

▪ The above equation has no closed-form solution => iterative gradient-based 

optimization (gradient descent and similar algorithms) 

▪ Gradient descent:

▪ Backpropagation algorithm: sequential computation of gradients in the 

reverse order (in the backward direction)

Training Neural Networks



▪ Backpropagation algorithm: sequential computation of gradients in the 

reverse order (in the backward direction)

▪ Based on the chain rule of differentiation

Training Neural Networks

Image from 6.S191 Introduction to 

Deep Learning, introtodeeplearning.com
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▪ Unsupervised (sometimes called self-supervised) DL paradigm

• We encode the raw input into a lower-dimensional space

• Hoping to capture the patterns/regularities in raw data

• Trying to learn latent features

▪ Commonly a pre-processing step for supervised learning

Autoencoders

Image from https://blog.keras.io

https://blog.keras.io/


▪ Autoencoding is effectively a data compression algorithm

• Compression: Encoder

• Decompression: Decoder

• Both neural networks’ parameters are learned from the data

▪ Autoencoders are data-specific

• Learn from data: they can only compress data similar (same 

distribution!) as that they were trained on  

▪ But, autoencoders are not used for data compression

• Lossless reconstruction cannot be guaranteed

▪ They are used for self-supervised dimensionality reduction as a pre-

processing step for supervised learning with limited training data

▪ A type of „continuous clustering”

Autoencoders



▪ Learning to reconstruct the input is often not „stimulating enough” for the 

encoder network to learn useful latent features

▪ Some manipulation of the input (introducing noise)

▪ Reconstructing the clean input (i.e., without the noise)

▪ Encoder forced to learn to remove the noise: that way learns more useful 

latent representations

Denoising Autoencoders



Deep Learning – Detailed Overview

21

01
Perceptron and feed-forward networks

Autoencoders

Convolutional neural networks

Recurrent neural networks

02
03
04
05

What is „Deep Learning” ML and what is it used for?

Model selection, validation, and fair evaluation

Classification evaluation measures



▪ Originate from Computer Vision

• Biological inspiration: human eye and its receptive field mechanisms

▪ Gradually reducing the resolution of the image with convolutional layers and 

pooling layers 

Convolutional Neural Networks
Im

age from
: 

https://codetolight.files.w
ordpress.com

https://codetolight.files.wordpress.com/


▪ Convolution:

• Operation between a slice/area of the input and the „filter matrix” 

(also known as „kernel”)

▪ Filter matrix is typically much smaller in dimensions than the input

• E.g., an image is 28x28, but a filter can be, e.g., 3x3 or 5x5

▪ There are typically multiple filters of the same size

Conv(A, B) = σ𝑖=1
𝑀 σ𝑗=1

𝑁 𝐴𝑖𝑗 ∗ 𝐵𝑖𝑗

▪ Pooling:

• Reducing an area of some size (e.g., 3X3) to a single value

• Different types of pooling: max-pooling, average-pooling

Convolutional Neural Networks



▪ Filter matrices (aka kernels) are the parameters of the CNN

▪ CNN by itself is not a classifier, it just encodes the input representation into a 

smaller-dimensional feature vector

▪ CNN is commonly coupled with a feed-forward classification net

Convolutional Neural Network

Im
age from

: 
https://codetolight.files.w

ordpress.com

https://codetolight.files.wordpress.com/


▪ Although they come from the Computer Vision world, CNNs have been useful 

in many text classification tasks as well

▪ For text classification, we use 1-D CNNs (we stride over only 1 dim.)

Convolutional Neural Networks for Text



Convolutional Neural Networks for Text

▪ Let d be the length of word embedding vectors

▪ Filters are CNN parameter matrices of size K x d, where K is small number, 

typically between 3 and 5

• K is called the size of the filter

▪ One CNN typically has many filters, often of different sizes

• E.g., 32 filters of size 3, 64 filters of size 4, and 32 filters of size 5 

▪ Convolution layer: 

• Each filter strides down the input sequence and produces a convolution 

score with each input subsequence of size K

▪ Let FK be one filter (matrix) od size K (i.e., dimensions K x d)

▪ Let X[a:b] be the submatrix of the input matrix X consisting of rows a to b

▪ We then compute the vector of following convolutions

C(FK) = [Conv(X[1:K], FK); Conv(X[2:K+1], FK); Conv(X[3:K+2], FK); ...; Conv(X[N-K+1:N], FK)]



Convolutional Neural Networks for 
Text

▪ Pooling layer:

• Each filter FK will produce a vector of convolution scores C(FK)

over the input sequence

• We want to keep only the „most salient” local sequences

▪ That’s why we tipically select only k largest values from the convolution 

vector of each filter – this is called k-max pooling

▪ Most often 1-max pooling is used (only the largest value is kept)

▪ Latent text representation:

• We concatenate the results of pooling for each of the filters into a 

single vector which is the latent representation of the text
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Recurrent neural networks

▪ Recurrent neural networks are neural models that explicitly model 

sequences / time series

▪ RNNs represent „arbitrarily” long sequences into a fixed-size vector

▪ But unlike CNNs, which capture only local sequences of small length (3-5), 

RNNs aim encode dependencies over entire sequences

▪ General RNN model:

• Input: sequence of input vectors x1, ..., xn

• RNN is a function that converts an arbitrary size sequence x1, ..., xn

into a fixed size output vector yn

• Analogously, the subsequence x1, ..., xi will produce the output yi

• The output vector yi-1 of the previous step (i-1) is combined with the 

current input xi to produce the output yi

▪ The RNN network is, at time step i, represented with its current state si



General RNN model:

▪ Defined by two functions: 

▪ Function R defines how the next state si is computed from the previous state 

si-1 and current input xi

▪ Function O defines how the current output yi is computed from the current 

state si

▪ Obviously, RNN is defined recursively

yn = O(sn)

sn = R(xn, sn-1)

= R(xn, R(xn-1, sn-2)

...

= R(xn, R(...(R(x1, s0))

▪ θ are RNN parameters (in R) 

Recurrent neural networks



Recurrent neural networks

▪ For some input sequence of finite length, we can „unroll” the RNN recursion

▪ sn (and yn) can be thought of as the encoding of the whole sequence

▪ This general RNN model is instantiated into concrete models by defining 

functions R and O



Simple (Elman) RNN

▪ The simplest RNN formulation that still captures the ordering of the elements in 

the sequence

▪ Model: 

• R = Non-linear transformation g (usually hyperbolic tangent or sigmoid) 

applied to a linear combination of the input and previous state

si = R(xi, si-1)

= g(xi W
x + si-1 W

s + b);

▪ O = identity function

yi = O(si)

= si

▪ Parameters

• θ = (Wx, Ws, b) if inputs are fixed



Gated cell architectures in RNNs

▪ Simple architecture suffers from a problem known as vanishing gradients

• Error signals / gradients from later steps in the sequence diminish quickly

in the backpropagation algorithm

• The updates for early inputs that come from errors in later steps are very 

small

› Esentially, Simple RNN has difficulties capturing long-distance dependencies

• At each step, the whole RNN state is rewritten

▪ Gated architectures idea

• Do not update the whole state at every step

• Introduce parameters that decide which parts of the state to update

• Introducing gate vectors: 

› They define which parts of the new state are taken from previous state and which 

from the current input

• Models: Long short-term memory (LSTM), Gated Recurrent Unit



Bi-directional RNNs

▪ Standard RNN at each step only encodes the sequence from one side of the 

current token

▪ For many time-series and sequence labeling tasks we want to incorporate 

knowledge about the context from both sides

▪ Bidirectional RNN is a model that combines two uni-directional RNNs 

encoding in opposite directions

▪ Output at step i is the concatenation of output vectors of both RNNs



Multi-Layer (Stacked) RNNs

▪ RNNs can be stacked in layers, forming a grid

▪ The input for the first RNN are the actual input x1, ..., xn

▪ The input for all other layers are the outputs of previous layer RNN

▪ This architecture is called Deep RNN



RNN training

▪ As „unrolled”, an RNN is just a (very deep) feed-forward network 

▪ Same parameters are shared across layers

▪ Additional input added at each layer

▪ To train an RNN network, we need to 

1. Create an unrolled computation graph for a given input sequence

2. Add a loss function node to the unrolled computation graph

3. Compute the loss (i.e., error) for a given input sequence

4. Update the RNN parameters (W matrices and b bias vectors) to minimize 

the loss



RNN usage patterns

▪ Q: What is the loss function for an RNN?

▪ A: That depends on the type

of task for which we are performing

▪ Type of tasks addressed using RNNs (i.e., RNN usage patterns):

1. Encoder – a prediction for the whole sequence 

• Loss based only on the last state (encoding the whole sequence)

• Classification of the whole sequence

2. Transducer – one prediction made at every position in the sequence

• This is the sequence labelling usage of RNNs



RNN usage patterns

RNN as encoder

▪ Assumptions: 

▪ the last state vector (sn) 

encodes the whole sequence

▪ Thus, if we need to make a prediction 

for the whole sequence, we can use the last state as its representation

▪ The representation of the whole sequence, the last state, is fed into a classifier

▪ E.g., a ternary classifier determining whether the sentence has positive, 

negative, or neutral sentiment

▪ The classifier is usually a feed-forward network with its own set of parameters 

(θcl) 

y = softmax(snWcl + b) 

Classifier
(θcl)

y



RNN usage patterns

RNNs as encoders

▪ Bidirectional RNN consists of 

two unidirectional RNN 

▪ We have two states (sn
f, sn

b)

that encode the whole sequence

▪ sn
f encodes left-to-right

▪ sn
b encodes right-to-left

▪ Q: How do we create a sequence representation for classification? 

▪ A: We concatenate the two final states: sn= [sn
f;sn

b]

s5= [s5
f;s5

b]

Classifier
(θcl) y



RNN usage patterns

RNN as transducer

▪ When RNN is used for 

sequence labelling 

▪ We need to predict the class 

at every time step of the RNN

▪ Again, we couple the RNN with a 

feed-forward classifier

▪ But now we predict the class at every position in the sequence, instead of only 

from the final sequence state as in the encoder usage pattern

▪ The prediction loss for the whole sequence is simply the sum of prediction 

losses of all token-level predictions

Classifier
(θcl)

o
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Key Takeaways

Traditional ML: 

precomputed 

features = 

modeling bias

Numeric parameter 

optimization, via 

backpropagation 

Deep Learning: raw 

data as input, lower 

layers induce 

representations for 

classification
Prominent DL 

architectures: 

autoencoders, 

convolutional, and 

recurrent networks

Main application 

areas: text/language 

and vision (images / 

videos)
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