11. Evaluation in Information Retrieval

Prof. Dr. Goran Glavaš

Center for AI and Data Science (CAIDAS) Fakultät für Mathematik und Informatik Universität Würzburg

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

After this lecture, you'll...

2

- Know different methods for evaluating IR systems
- Understand advantages and shortcomings of certain metrics
- Learn how to annotate relevance
- Understand what the pooling method is and how it is used in information retrieval evaluation

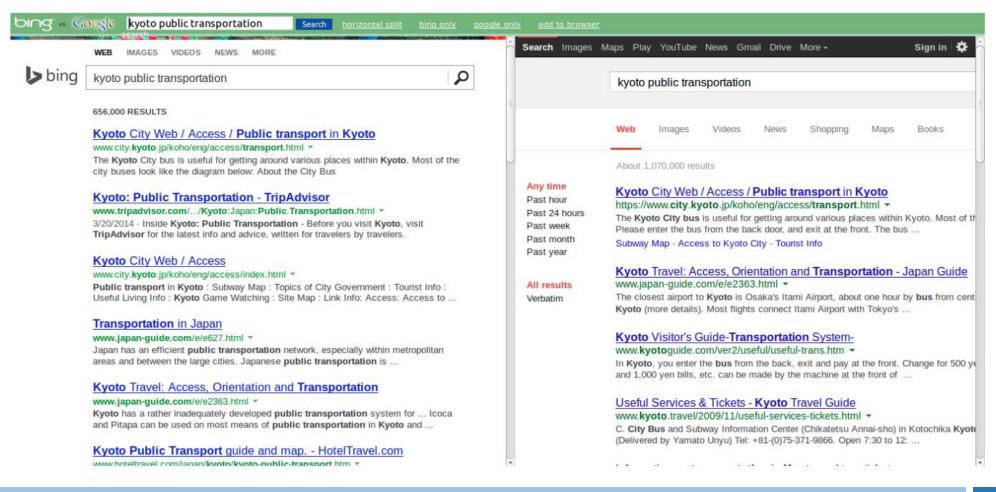
Outline

Evaluation in IR

- Evaluation Metrics
- Relevance Judgements and Pooling

IR Evaluation

Clash of the titans: which one is better?



Information Retrieval, Lecture 11: Evaluation in IR

IR Evaluation

- There are different aspects through which we can evaluate IR systems:
 - 1. Retrieval effectiveness (standard IR evaluation)
 - Relevance of search results
 - 2. System quality
 - a) Indexing speed (e.g., how many documents per hour?)
 - b) Search speed (search latency as a function of index size)
 - c) Coverage (document collection size and diversity)
 - d) Expresiveness of the query language
 - 3. User utility
 - User happiness based on relevance, speed, and user interface
 - User return rate, user productivity (difficult to measure)
 - A/B test: slight change on a deployed system visible to a fraction of users
 - Difference evaluated using clickthrough log analysis

Test collections in IR

- Each IR test collection is comprised of:
 - 1. Document collection
 - 2. Set of information needs (descriptions + queries)
 - A common requirement is to have at least 50 information needs
 - 3. Set of relevance judgements for each query-document pair
 - Binary relevance judgements (document relevant or non-relevant)
 - Graded relevance judgements (less common, more difficult for human annotators)
 - **Q:** Is it feasible to annotate all query-document pairs for relevance?
- Test collections are used for
 - Evaluating retrieval effectiveness w.r.t. different settings
 - Quantifying effects of e.g., different preprocessing methods, different ranking functions
 - Comparing performance against other systems (usually in evaluation campaigns)
 - Fine-tuning of system parameters, done on a development test collection

Test collections in IR

Some standard test collections:

- Cranfield first IR test collection (from 1957)
 - 1,398 abstracts of aerodynamics journal articles
 - 225 queries, complete relevance judgements (1,398 x 225 annotations!)
- TREC collections NIST Text Retrieval Conferences (1992 today)
 - Ad-hoc retrieval task: 1.89M docs, 450 inf. needs, incomplete rel. judg.
 - Many other tasks: blog track, cross-lingual track, QA track, ...
- CLEF collections Conference and Labs of the Evaluation Forum
 - Focus on European languages
 - Mono-lingual and cross-lingual ad-hoc retrieval tasks, QA tasks, ...

Outline

- Evaluation in IR
- Evaluation Metrics
- Relevance Judgements and Pooling

Evaluation metrics

- Compare retrieved documents against relevant documents
- Each document is either retrieved or not, and either relevant or not this induces a 2x2 confusion matrix

	relevant	not relevant
retrieved	$\int tp$	fp
not retrieved	fn	tn)

• Accuracy is the fraction of correct decisions:

 $Acc = \frac{tp+tn}{tp+tn+fp+fn}$

- **Q:** Is accuracy a good measure of performance of an IR system?
- A: No! For most queries, most documents (e.g., 98%) are irrelevant. A search engine that retrieves nothing will have accuracy of 98% for all queries!

Precision, recall, and F-measure

- Irrelevant documents make most of collection \rightarrow eliminate true negatives
- Precision (P) is a fraction of retrieved documents that are relevant

 $P = \frac{\#(relevant documents retrieved)}{\#(retrieved documents)} = \frac{tp}{tp+fp}$ • Recall (R) is the fraction of relevant documents that are retrieved $R = \frac{\#(relevant documents retrieved)}{\#(relevant documents)} = \frac{tp}{tp+fn}$

F-measure combines precision and recall (weighted harmonic mean)

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}; \quad \beta^2 = \frac{1 - \alpha}{\alpha}$$

• If P and R are equally important, we set β to 1

Q: What values for β would we use if precision is more important than recall?

Precision and recall – example

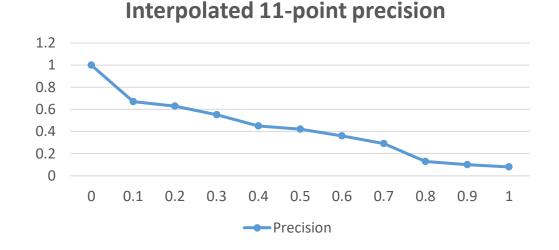
- For some query q, there are in total 4 relevant documents (R) documents in the collection, whereas all other documents are not relevant (N).
- Some IR system returns 6 documents for the query q:
 - N,
 R,
 N
 - N,
 - R,N,
 - = N
- Compute precision, recall, and F1-measure

Evaluation of ranked results

- Precision, recall, and F-score are good for evaluating performance of Boolean retrieval systems, but they cannot evaluate rankings
 - According to P, R, AND F, ranking [N, R, N, R] is equally good as ranking [R, R, N, N]
- Most modern IR systems produce ranked results
- An ideal search engine ranks all relevant documents before all non-relevant
 - Evaluation metrics should take into account ranks of relevant documents
 - Rank-based metrics:
 - Precision-recall curve
 - 11-point precision
 - MAP
 - P@k
 - R-precision
 - nDCG

11-point precision

- Interpolated 11-point precision describes performance of an IR system through precision measured at 11 different levels of recall:
 - Measuring precision at ranks where recall is:
 - **0**, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
 - For each recall level, average precisions measured over different queries



Mean average precision

- We would like to have a single-figure measure of retrieval effectiveness across all recall levels
- Average precision (AP) for a query q with relevant documents {d₁, ..., d_m} is computed by averaging the precision scores measure at ranks of relevant docs:

$$AP(q) = \frac{1}{m} \sum_{k=1}^{m} P(R_k)$$

- R_k is the rank at which we find the k-th relevant document
- Mean average precision is AP averaged over the set of queries Q:

MAP
$$= \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} P(R_{jk})$$

P@k and R-precision

- MAP takes into account all recall levels, even at very low ranks
 - This is inappropriate for web search:
 - Less than 6% users look at the second page of results
- Precision at rank k (P@k) is precision at the fixed rank k in the ranking (e.g., P@5, P@10, P@20)
- R-precision is the P@k where k equals to the number of relevant documents for the query
 - E.g., if there are 5 relevant documents for the query in total, then R-precision = P@5

Evaluation metrics – exercise

rank	r_1	r_2	r_3
1	d_1	d_1	d_1
2	d_2	d_2	d_2
3	d_5	d_4	d_4
4	d_6	d_5	d_5
5	d_{13}	d_6	d_9
6		d_7	d_{10}
7		d_8	d_{12}
8		d_9	d_{13}
9		d_{10}	d_{14}
10		d_{11}	d_{15}
11		d_{12}	d_{20}
12		d_{13}	
13		d_{19}	
14		d_{14}	
15		d_{17}	
16		d_3	
17		d_{15}	
18		d_{16}	
19		d_{18}	
20		d_{20}	

- You are given 3 different IR systems, r₁, r₂, and r₃, and their rankings of documents for some query q
- The collection contains 20 documents
 - Odd documents (d1, d3, ..., d19) are relevant fo the query q
 - Even documents (d2, ..., d20) are not relevant for q
- For each of the three systems compute:
 - Precision, recall, and F1-measure
 - Average Precision
 - P@4, P@7, P@12
 - R-precision

- 17
- All methods so far assumed that we have binary relevance annotations
- Sometimes we have graded relevance annotations
 - E.g., from 1 (marginally relevant) to 5 (highly relevant).
- Assumptions (in order to maximize nDCG)
 - Highly relevant documents are more useful than marginally relevant documents
 - Marginally relevant documents are more useful than irrelevant documents
 - The higher the relevance of the document, the higher it should appear in the relevance ranking
- (Normalized Discounted) Cumulative Gain takes into account the graded relevances of documents when evaluating the ranking produced by IR systems

- 18
- First try: Cumulative Gain
 - Let *rel*; be the (true) relevance score of the document ranked at position i by the system
 - Cumulative gain at rank k, CG(k) is then simply

 $CG(k) = \sum_{i=1}^{k} rel_i$

- **Q:** What is the issue with using only CG(k) as defined above?
- A: Similar as using standard precision, recall, and F1 for binary relevances ranks at which different scores appear are not taked into account
 - Rankings: [0, 2, 4, 0, 1] and [4, 2, 1, 0, 0] will be considered equally good by CG(5)

Discounted Cumulative Gain

- Idea: Normalize the relevance scores of documents at every position with the position itself
- That way, highly relevant but low-ranked documents contribute less to the overall score, i.e., they get penalized more

$$DCG(k) = \sum_{i=1}^{k} \frac{rel_i}{\log_2(i+1)}$$

 There is an alternative formulation of DCG, that places stronger emphasis on retrieving relevant documents (and a bit less on their mutual relative ranking)

DCG(k) =
$$\sum_{i=1}^{k} \frac{2^{rel_i} - 1}{\log_2(i+1)}$$

- Different queries generally have different numbers of relevant documents
- So, the DCG scores will generally be higher for queries that have more relevant documents (and with higher relevance scores)
- To average DCG scores across different queries, we need to first **normalize** them
- Ideal DCG (IDCG) is the maximal DCG score any ranking can have

$$IDCG(k) = \sum_{i=1}^{|relevant|} \frac{2^{rel_i} - 1}{\log_2(i+1)}$$

Normalized nDCG is the DCG(k) score normalized with the IDCG(k), where k is the total number of relevant documents

$$nDCG = \frac{DCG(k)}{IDCG(k)}$$

nDCG applied to binary scores (0 and 1) perfectly correlates with (M)AP

Outline

- Evaluation in IR
- Evaluation Metrics
- Relevance Judgements and Pooling

Pooling

- Annotating complete relevance judgements for larger test collections is infeasible
 - Collection of 1000 documents and 50 queries requires 50000 relevance annotations
 - It is feasible to annotate only a small subset of relevance judgements
- Luckily, for most queries, only a tiny fraction of all documents are relevant
 - Say that, on average, we expect N relevant documents per query in our collection
 - An ideal retrieval system would rank relevant documents on top positions
- Idea: Let's annotate for relevance only the top N results of the IR system's ranking
 - This requires only N (<< number of documents) annotations per query</p>
 - Shortcoming: a real system will not rank all relevant documents on top, thus we will ignore (i.e., we will loose) some relevant documents when evaluating real IR systems

- In most IR evaluations, we are comparing the performance of different models (or different variants of the same model)
- Pooling is a method for reducing the number of required relevance judgement annotations in settings where we compare different IR models
- Example: evaluating models r₁, ..., r_k (expected N relevant docs for query q)
- Pooling involves the following steps:
 - 1. Rank all documents with each of the models $r_1, ..., r_K$
 - 2. In each of the rankings $R_1, ..., R_K$, take only the top N results: $R_{1,N}, ..., R_{K,N}$
 - 3. The documents in the union of retrieved top results are to be annotated for relevance for the given query: $R_{1,N} \cup \dots \cup R_{K,N}$
- Q: Is it still possible to ignore some truly relevant document for relevance judgements? If so, is that a problem?

- Know different methods for evaluating IR systems
- Understand advantages and shortcomings of certain metrics
- Learn how to annotate relevance
- Understand what the pooling method is and how it is leveraged in information retrieval evaluation