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After this lecture, you’ll...

▪ Know different methods for evaluating IR systems

▪ Understand advantages and shortcomings of certain metrics

▪ Learn how to annotate relevance 

▪ Understand what the pooling method is and how it is used in information 
retrieval evaluation
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Outline

▪ Evaluation in IR

▪ Evaluation Metrics

▪ Relevance Judgements and Pooling
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IR Evaluation

▪ Clash of the titans: which one is better?
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IR Evaluation

▪ There are different aspects through which we can evaluate IR systems: 
1. Retrieval effectiveness (standard IR evaluation)

▪ Relevance of search results

2. System quality
a) Indexing speed (e.g., how many documents per hour?)

b) Search speed (search latency as a function of index size)

c) Coverage (document collection size and diversity)

d) Expresiveness of the query language

3. User utility
▪ User happiness based on relevance, speed, and user interface

▪ User return rate, user productivity (difficult to measure)

▪ A/B test: slight change on a deployed system visible to a fraction of users

▪ Difference evaluated using clickthrough log analysis
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Test collections in IR

▪ Each IR test collection is comprised of: 
1. Document collection

2. Set of information needs (descriptions + queries)
▪ A common requirement is to have at least 50 information needs

3. Set of relevance judgements for each query-document pair
▪ Binary relevance judgements (document relevant or non-relevant)

▪ Graded relevance judgements (less common, more difficult for human annotators)

▪ Q: Is it feasible to annotate all query-document pairs for relevance?

▪ Test collections are used for
▪ Evaluating retrieval effectiveness w.r.t. different settings 

▪ Quantifying effects of e.g., different preprocessing methods, different ranking functions

▪ Comparing performance against other systems (usually in evaluation campaigns)

▪ Fine-tuning of system parameters, done on a development test collection
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Test collections in IR

▪ Some standard test collections:
▪ Cranfield – first IR test collection (from 1957)

▪ 1,398 abstracts of aerodynamics journal articles

▪ 225 queries, complete relevance judgements (1,398 x 225 annotations!)

▪ TREC collections – NIST Text Retrieval Conferences (1992 – today)
▪ Ad-hoc retrieval task: 1.89M docs, 450 inf. needs, incomplete rel. judg.

▪ Many other tasks: blog track, cross-lingual track, QA track, ...

▪ CLEF collections – Conference and Labs of the Evaluation Forum
▪ Focus on European languages

▪ Mono-lingual and cross-lingual ad-hoc retrieval tasks, QA tasks, ...
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Outline

▪ Evaluation in IR

▪ Evaluation Metrics

▪ Relevance Judgements and Pooling
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Evaluation metrics

▪ Compare retrieved documents against relevant documents

▪ Each document is either retrieved or not, and either relevant or not – this induces 
a 2x2 confusion matrix

▪ Accuracy is the fraction of correct decisions: 

Acc = 
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛

▪ Q: Is accuracy a good measure of performance of an IR system?

▪ A: No! For most queries, most documents (e.g., 98%) are irrelevant. A search 
engine that retrieves nothing will have accuracy of 98% for all queries!
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Precision, recall, and F-measure

▪ Irrelevant documents make most of collection → eliminate true negatives

▪ Precision (P) is a fraction of retrieved documents that are relevant

P = 
#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

#(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)
= 

𝑡𝑝

𝑡𝑝+𝑓𝑝

▪ Recall (R) is the fraction of relevant documents that are retrieved

R = 
#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

#(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)
= 

𝑡𝑝

𝑡𝑝+𝑓𝑛

▪ F-measure combines precision and recall (weighted harmonic mean)

F = 
1

α
1

𝑃
+ (1−α)

1

𝑅

= 
β2+1 𝑃𝑅

β2𝑃+𝑅
; β2 = 

1 − α

α

▪ If P and R are equally important, we set β to 1

▪ Q: What values for β would we use if precision is more important than recall?



11

4.7.2023Information Retrieval, Lecture 11: Evaluation in IR

Precision and recall – example

▪ For some query q, there are in total 4 relevant documents (R) documents in the 
collection, whereas all other documents are not relevant (N). 

▪ Some IR system returns 6 documents for the query q: 
▪ N, 

▪ R, 

▪ N, 

▪ R, 

▪ N, 

▪ N

▪ Compute precision, recall, and F1-measure
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Evaluation of ranked results

▪ Precision, recall, and F-score are good for evaluating performance of Boolean 
retrieval systems, but they cannot evaluate rankings
▪ According to P, R, AND F, ranking [N, R, N, R] is equally good as ranking [R, R, N, N]

▪ Most modern IR systems produce ranked results

▪ An ideal search engine ranks all relevant documents before all non-relevant
▪ Evaluation metrics should take into account ranks of relevant documents
▪ Rank-based metrics: 

▪ Precision-recall curve
▪ 11-point precision
▪ MAP
▪ P@k
▪ R-precision
▪ nDCG
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11-point precision

▪ Interpolated 11-point precision describes performance of an IR system through 
precision measured at 11 different levels of recall:
▪ Measuring precision at ranks where recall is: 

▪ 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

▪ For each recall level, average precisions measured over different queries
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Mean average precision

▪ We would like to have a single-figure measure of retrieval effectiveness across all 
recall levels

▪ Average precision (AP) for a query q with relevant documents {d1, ..., dm} is 
computed by averaging the precision scores measure at ranks of relevant docs:

▪ Rk is the rank at which we find the k-th relevant document

▪ Mean average precision is AP averaged over the set of queries Q:
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P@k and R-precision

▪ MAP takes into account all recall levels, even at very low ranks
▪ This is inappropriate for web search: 

▪ Less than 6% users look at the second page of results

▪ Precision at rank k (P@k) is precision at the fixed rank k in the ranking (e.g., P@5, 
P@10, P@20)

▪ R-precision is the P@k where k equals to the number of relevant documents for 
the query
▪ E.g., if there are 5 relevant documents for the query in total, then R-precision = P@5



16

4.7.2023Information Retrieval, Lecture 11: Evaluation in IR

Evaluation metrics – exercise

▪ You are given 3 different IR systems, r1, r2, and r3, and their 
rankings of documents for some query q

▪ The collection contains 20 documents
▪ Odd documents (d1, d3, ..., d19) are relevant fo the query q

▪ Even documents (d2, ..., d20) are not relevant for q

▪ For each of the three systems compute: 
▪ Precision, recall, and F1-measure

▪ Average Precision

▪ P@4, P@7, P@12

▪ R-precision
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Normalized Discounted Cumulative Gain (nDCG)

▪ All methods so far assumed that we have binary relevance annotations

▪ Sometimes we have graded relevance annotations

▪ E.g., from 1 (marginally relevant) to 5 (highly relevant). 

▪ Assumptions (in order to maximize nDCG)
▪ Highly relevant documents are more useful than marginally relevant documents

▪ Marginally relevant documents are more useful than irrelevant documents

▪ The higher the relevance of the document, the higher it should appear in the 
relevance ranking

▪ (Normalized Discounted) Cumulative Gain takes into account the graded 
relevances of documents when evaluating the ranking produced by IR systems
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Normalized Discounted Cumulative Gain (nDCG)

▪ First try: Cumulative Gain
▪ Let reli be the (true) relevance score of the document ranked at position i by the system

▪ Cumulative gain at rank k, CG(k) is then simply

CG(k) =  σ𝑖=1
𝑘 𝑟𝑒𝑙𝑖

▪ Q: What is the issue with using only CG(k) as defined above?

▪ A: Similar as using standard precision, recall, and F1 for binary relevances – ranks at 
which different scores appear are not taked into account
▪ Rankings: [0, 2, 4, 0, 1] and [4, 2, 1, 0, 0] will be considered equally good by CG(5)
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Normalized Discounted Cumulative Gain (nDCG)

▪ Discounted Cumulative Gain
▪ Idea: Normalize the relevance scores of documents at every position with the 

position itself
▪ That way, highly relevant but low-ranked documents contribute less to the overall 

score, i.e., they get penalized more

DCG k = 

𝑖=1

𝑘
𝑟𝑒𝑙𝑖

log2(𝑖 + 1)

▪ There is an alternative formulation of DCG, that places stronger emphasis on 
retrieving relevant documents (and a bit less on their mutual relative ranking)

DCG k = 

𝑖=1

𝑘
2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)
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Normalized Discounted Cumulative Gain (nDCG)

▪ Different queries generally have different numbers of relevant documents

▪ So, the DCG scores will generally be higher for queries that have more relevant 
documents (and with higher relevance scores) 

▪ To average DCG scores across different queries, we need to first normalize them

▪ Ideal DCG (IDCG) is the maximal DCG score any ranking can have

IDCG k = 

𝑖=1

|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|
2𝑟𝑒𝑙𝑖 − 1

log2(𝑖 + 1)

▪ Normalized nDCG is the DCG(k) score normalized with the IDCG(k), where k is the 
total number of  relevant documents

𝑛𝐷𝐶𝐺 =
𝐷𝐶𝐺(𝑘)

𝐼𝐷𝐶𝐺(𝑘)

▪ nDCG applied to binary scores (0 and 1) perfectly correlates with (M)AP
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Outline

▪ Evaluation in IR

▪ Evaluation Metrics

▪ Relevance Judgements and Pooling
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Pooling

▪ Annotating complete relevance judgements for larger test collections is infeasible
▪ Collection of 1000 documents and 50 queries requires 50000 relevance annotations

▪ It is feasible to annotate only a small subset of relevance judgements

▪ Luckily, for most queries, only a tiny fraction of all documents are relevant
▪ Say that, on average, we expect N relevant documents per query in our collection

▪ An ideal retrieval system would rank relevant documents on top positions

▪ Idea: Let’s annotate for relevance only the top N results of the IR system’s ranking
▪ This requires only N (<< number of documents) annotations per query

▪ Shortcoming: a real system will not rank all relevant documents on top, thus we will 
ignore (i.e., we will loose) some relevant documents when evaluating real IR systems
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Pooling

▪ In most IR evaluations, we are comparing the performance of different models (or 
different variants of the same model)

▪ Pooling is a method for reducing the number of required relevance judgement 
annotations in settings where we compare different IR models

▪ Example: evaluating models r1, ..., rK (expected N relevant docs for query q)

▪ Pooling involves the following steps: 
1. Rank all documents with each of the models r1, ..., rK

2. In each of the rankings R1, ..., RK, take only the top N results: R1,N, ..., RK,N

3. The documents in the union of retrieved top results are to be annotated for 
relevance for the given query: R1,N U ... U RK,N 

▪ Q: Is it still possible to ignore some truly relevant document for relevance 
judgements? If so, is that a problem?
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Now you...

▪ Know different methods for evaluating IR systems

▪ Understand advantages and shortcomings of certain metrics

▪ Learn how to annotate relevance 

▪ Understand what the pooling method is and how it is leveraged in information 
retrieval evaluation
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