
1

4.7.2023

Center for AI and Data Science (CAIDAS)

Fakultät für Mathematik und Informatik

Universität Würzburg

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

10. Neural Learning to Rank
Prof. Dr. Goran Glavaš

(Slides by Robert Litschko)

2

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

After this lecture, you’ll

▪ Have an overview of a range of Neural Rankers

▪ Understand Convolutional Neural Networks in the context of IR

▪ Understand how BERT is used in IR models

3

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Outline

▪ Recap of lecture #9: Learning to rank principles
▪ Position-Aware Convolutional Relevance Matching Model (PACRR)
▪ Multi-stage ranking with BERT

4

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Recap of the previous lecture

▪ Classification
▪ Q: Why is text classification relevant for IR?

▪ Q: What text representations can we use in text classification?

▪ Q: Common classifiers to use with sparse/dense text representations?

▪ Clustering
▪ Q: What are the use-cases for text/document clustering in IR?

▪ Q: How do we represent documents for IR clustering?

▪ Q: What are the components of (any) clustering algorithm?

▪ Learning to Rank
▪ Q: What is learning to rank and how does it relate to multi-criteria ranking?

▪ Q: What are the differences between pointwise, pairwise, and list-wise L2R?

▪ Q: Advantages and shortcomings of different L2R strategies?

5

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Learning to Rank

▪ So far, each IR model was ranking the documents according to a single similarity
function between the document and the query

▪ VSM: cosine between the (sparse) TF-IDF vectors of the document and query

▪ Latent/semantic IR: cosine between dense semantic vectors

▪ Probabilistic IR: P(d, q | relevance)

▪ Language modelling for IR: P(q | d)

▪ Idea: Combine different similarity scores as features of a supervised model
(traditional), or learn to match documents based on latent features (neural)

6

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Learning to Rank

▪ Learning to rank is a supervised information retrieval paradigm that
▪ Describes instances of document-query pairs (d, q) with a range of features

▪ Learns (with some ML algorithm) the mapping between these features and
relevance

▪ Three different learning-to-rank approaches:
1. Point-wise approach

▪ Classify a single document-query (d, q) pair for relevance

2. Pair-wise approach
▪ Classify, for a pair of documents, which one is more relevant for the query, i.e., whether
r(d1, q) > r(d2, q) or r(d1, q) < r(d2, q)

3. List-wise approach
▪ Classify the whole ranking as either correct or wrong

7

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Learning to Rank

▪ Point-wise learning to rank
▪ Train a supervised classifier that for a given query q classifies each document as

relevant or non-relevant

▪ Binary classification task: document is either relevant or non-relevant

▪ Training instances:
▪ Query-document pairs (q, d) with relevance annotations

▪ Issues with point-wise learning to rank
▪ Do not care about absolute relevance, but relative order of documents by relevance

▪ If pairs (q, d1) and (q, d2) are classified as relevant, which document to rank higher?
▪ Supervised classifiers usually have confidence/probability scores assigned to predictions

▪ Rank d1 higher than d2 if the classifier is more confident about relevance of pair (q, d1)

8

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Learning to Rank

▪ Pair-wise learning to rank
▪ Train a supervised classifier that for a given query q and two documents d1 and d2

predicts which document is more relevant for the query

▪ Binary classification task:
▪ Class 1: „d1 more relevant than d2”

▪ Class 2: „d1 less relevant than d2”

▪ Training instances:
▪ Triples (q, d1, d2) consisting of queries and document pairs

▪ We may need comparison features – compare d1 and d2 with respect to q

▪ E.g., binary feature: VSM(q, d1) > VSM(q, d2)

▪ Generating gold labels from relevance annotations:

▪ For query q we have: d1(r), d2(nr), d3(r), d4(nr)

▪ We create the following training instances:

▪ {(q, d1, d2), 1}, {(q, d1, d4), 1}, {(q, d2, d3), 2}, {(q, d3, d4), 1}

9

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Learning to Rank

▪ Issues with pair-wise learning to rank
▪ If we don’t use comparison features (but direct similarities of d1 and d2 with q as

features), the model may not generalize well for new queries!

▪ We only obtain independent pair-wise decisions
▪ Q: What if pair-wise decisions are mutually inconsistent?

▪ E.g., (q, d1, d2) -> 1, (q, d2, d3) -> 1, (q, d1, d3) -> 2

▪ We need an additional postprocessing step
▪ To turn the sorted pairs into a ranking, i.e., partial ordering into global ordering
▪ Inconsistencies need to be resolved

▪ E.g., In a set of conflicting decisions, the one with the lowest classifier confidence is discarded

▪ Another issue: we effectively treat pairs from the bottom of ranking same as those
from the top of the ranking (and eval. metrics don’t treat them equally!)

10

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Learning to Rank

▪ List-wise ranking approach
▪ Instead of learning decisions for individual documents or pairs of documents, learn

to classify entire rankings as correct or wrong

▪ Training instances: query and an entire ranking of documents (q, d1, ..., dn)

▪ Binary classification task:
▪ Class 1: the ranking (q, d1, ..., dn) is correct

▪ Class 2: the ranking (q, d1, ..., dn) is incorrect

▪ Advantage: optimization criteria for the machine learning algorithm can be the
concrete IR evaluation metric we’re looking to optimize

▪ Issues with list-wise approach
▪ Entire ranking just one training instance

▪ Difficult to collect many positive training instances

▪ Informative features for the whole ranking are difficult to design

11

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Outline

▪ Recap of lecture #9: Learning to rank principles
▪ Position-Aware Convolutional Relevance Matching Model (PACRR)
▪ Multi-stage ranking with BERT

12

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)

Position-Aware Convolutional Recurrent Relevance (PACRR):

▪ Position-Aware: Model learns to match n-gram patterns

▪ Convolutional: Architecture uses a CNN to learn features

▪ Recurrent: Long Short-Term Memory Network (LSTM) to summarize
features into matching score

Uses Inverse Document Frequency (IDF) as feature, rather than scaling

weights.

13

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)

Input representation

Term similarity matrix (cutting / zero-padding to max. seq. len.)

Each element describes semantic similarity (cosine) between embeddings of word and word

Captures unigram matching signals

Image based on Hui et al. 2017

14

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)

N-Gram Matching Signals: Modelling Positional Information

Apply multiple CNN layers to learn to match different n-gram sizes.

Each layer applies different filters to learn different matching patterns (cf. next slide).

Sliding each convolutional filter along the similarity matrix leads to feature tensors .

Image based on Hui et al. 2017

15

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Examples of n-Gram Matching Signals (Modelling Positional Information)

course

science

computer

course

science

computer

course

science

computer

Example taken from https://vimeo.com/238235171

Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)

https://vimeo.com/238235171

16

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

1-max pooling among filters

Accross all filters, keep for each n-gram kernel only the strongest signals.

Reduces feature tensors from to (one “feature image” for each n-gram).

Assumes there is only one true matching pattern in a given window.

Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)

Image based on Hui et al. 2017

17

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

-max pooling along query dimension

Keep strongest similarity signals (example above:).

Resulting tensor contains strongest signals for each query term and n-gram size across all filters.

Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)

Image based on Hui et al. 2017

18

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Final feature matrix and relevance score

Feature tensor is reshaped (flattened) into matrix (cf. example above).

Query terms’ normalized IDF-values are appended (concatenated).

Final representation is processed by a recurrent model (LSTM) to produce final relevance score.

Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)

Image based on Hui et al. 2017

19

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)

Recurrent Layer summarizes sequence of query token-wise matching information into final feature vector

Uses Long Shot-Term Memory Network (LSTM): RNN that maintains internal memory and summarizes sequential information

Relevance score is computed by (linearly) projecting feature vector to 1-d space.

Ranking loss same as in DRMM (pair-wise ranking):

LSTM .

LSTM LSTM LSTM Proj.

20

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Outline

▪ Recap of lecture #9: learning to rank principles
▪ Position-Aware Convolutional Relevance Matching Model (PACRR)
▪ Multi-stage ranking with BERT

21

4.7.2023

BERT and self-supervised pretraining of language encoders

▪ We have access to enormous amounts of raw unannotated texts
(at least for major languages)

▪ Can we somehow pre-train the encoder using raw text?
▪ Yes, via language modeling! Task is to predict the word from the text based

on the encoding of the surrounding context

▪ LM-pretraining
▪ Causal (unidirectional) language modeling: GPT (1, 2, 3, ...)

▪ Bidirectional language modeling: ELMo

▪ Masked language modeling: BERT

22

4.7.2023

Bidirectional Transformer (BERT)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, January). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. NAACL 2019.

▪ Pretraining: Masked language modeling, MLM (and next sentence prediction, NSP)

▪ Encoder architecture: deep Transformer (attention-based) network

▪ Encoder’s parameters (learned in pre-training) further updated in task-specific training (aka fine-tuning)

▪ After task-specific training (aka fine-tuning), we have a task-specific encoder

Image from [Devlin et al., NAACL 19]

23

4.7.2023

Bidirectional Transformer (BERT)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. NAACL 2019.

▪ Training instances: sentence pairs, with special tokens inserted
▪ Ca. 15% of tokens masked out (replaced with [MASK] token)
▪ Sequence start token [CLS] and sentence separation token [SEP]

▪ Pretraining: two self-supervised objectives
▪ Masked language modeling, MLM (predict the masked token from the

context)
▪ Next sentence prediction, NSP (if sentences adjacent or not)

Image from [Devlin et al., NAACL 19]

24

4.7.2023

Bidirectional Transformers for LU (BERT)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, January). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. NAACL 2019.

▪ Encoder architecture: deep Transformer (attention-based) network

▪ Deep architecture consisting of N transformer layers

▪ Each transformer layer:
▪ Multi-head attention layer

▪ Feed-forward layers

▪ Residual connection (representation before the layer added

to the result of the layer)

▪ Layer normalization

▪ All parameters of the Transformer: θTRANS

25

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Multi-stage ranking with BERT (Nogueira et al. 2019)

BERT as a point-wise ranker (monoBERT): binary relevance classifier

▪ Feeds concatenation of query and document to BERT
▪ Truncate query to at most 64 tokens
▪ Concatenate query with document ([SEP]-token)
▪ Truncate whole sequence to 512 tokens (max. seq. length)

▪ Obtain representation representation of [CLS]-token in last layer

▪ Feed [CLS] vector to single layered Feedforward Neural Network (FNN, binary
classification model) to obtain relevance score

Optimize the following loss:

J_pos/neg = set of indexes of relevant/non-relevant documents

Retrieval: Rank documents by their probability of being relevant[CLS] Query [SEP] Document

FNN

softmax

(probability of
document
being relevant)

(Image based on Devlin et al. 2019)

26

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Multi-stage ranking with BERT (Nogieura et al. 2019)

[CLS] Query [SEP] Document [SEP] Document

FNN

softmax

BERT as a pair-wise ranker (duoBERT):

▪ Truncate the query, candididate document and to 62, 223 and
223 tokens respectively

▪ Concatenate query and document pair into single sequence
▪ For a candidate list of documents, compute probabilities

Optimize the following loss:

Retrieval:
Aggregate pairwise scores into single score
Set of all (other) document indexes in ranking R1:

(Image based on Devlin et al. 2019)

(probability of
document being
more relevant than
document)

Relevance score as pair-wise agreement that is more relevant
than the rest of the candidates (other aggregation methods
possible too, cf. paper):

27

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Multi-stage ranking with BERT (Nogueira et al. 2019)

Combining monoBERT and duoBERT into a multi-stage ranking architecture

Stage 1: Retrieve top- documents using BM25 (in example above) → input to monoBERT

Stage 2: Re-rank top- documents with monoBERT (in example above) → input to duoBERT

Stage 3: Re-rank subset with duoBERT

Image source: Nogueira et al. 2019

28

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Multi-stage ranking with BERT (Nogueira et al. 2019)

Summary

It’s common practice to use neural rankers for re-ranking, ranking the full collection would be too slow for practical purpose

Arranging retrieval in a multi-stage pipeline allows for trading off quality against latency by controlling admission of candidates at each stage

Target Corpus Pre-training (Masked Language Modelling on document collection) before training monoBERT/duoBERT improves results

Challenges for pair-wise ranking revisited:

1. We only obtain independent pair-wise decisions (inconsistent ranking): Aggregate (all) possible pair-wise agreements into relevance
scores

2. We effectively treat pairs from the bottom of ranking same as those from the top of the ranking (and eval. metrics don’t treat them
equally!): Neural model only re-ranks top k documents (ignore bottom of ranking)

29

4.7.2023Information Retrieval, Lecture 10: Neural L2R 4.7.2023

Now you...

▪ Have an overview of a range of Neural Rankers

▪ Understand Convolutional Neural Networks in the context of IR

▪ Understand how BERT is used in recent IR models

	Slide 1: 10. Neural Learning to Rank
	Slide 2: After this lecture, you’ll
	Slide 3: Outline
	Slide 4: Recap of the previous lecture
	Slide 5: Learning to Rank
	Slide 6: Learning to Rank
	Slide 7: Learning to Rank
	Slide 8: Learning to Rank
	Slide 9: Learning to Rank
	Slide 10: Learning to Rank
	Slide 11: Outline
	Slide 12: Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)
	Slide 13: Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)
	Slide 14: Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)
	Slide 15: Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)
	Slide 16: Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)
	Slide 17: Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)
	Slide 18: Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)
	Slide 19: Position-Aware Convolutional Recurrent Relevance Matching (Hui et al. 2017)
	Slide 20: Outline
	Slide 21: BERT and self-supervised pretraining of language encoders
	Slide 22: Bidirectional Transformer (BERT)
	Slide 23: Bidirectional Transformer (BERT)
	Slide 24: Bidirectional Transformers for LU (BERT)
	Slide 25: Multi-stage ranking with BERT (Nogueira et al. 2019)
	Slide 26: Multi-stage ranking with BERT (Nogieura et al. 2019)
	Slide 27: Multi-stage ranking with BERT (Nogueira et al. 2019)
	Slide 28: Multi-stage ranking with BERT (Nogueira et al. 2019)
	Slide 29: Now you...

