# 10. Neural Learning to Rank

**Prof. Dr. Goran Glavaš** (Slides by Robert Litschko)

Center for AI and Data Science (CAIDAS) Fakultät für Mathematik und Informatik Universität Würzburg



CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

# After this lecture, you'll

- 2
- Have an overview of a range of Neural Rankers
- Understand Convolutional Neural Networks in the context of IR
- Understand how BERT is used in IR models

## Outline

- Recap of lecture #9: Learning to rank principles
- Position-Aware Convolutional Relevance Matching Model (PACRR)
- Multi-stage ranking with BERT

# Recap of the previous lecture

- Classification
  - **Q:** Why is text classification relevant for IR?
  - **Q:** What text representations can we use in text classification?
  - **Q**: Common classifiers to use with sparse/dense text representations?
- Clustering
  - **Q:** What are the use-cases for text/document clustering in IR?
  - **Q:** How do we represent documents for IR clustering?
  - **Q:** What are the components of (any) clustering algorithm?
- Learning to Rank
  - **Q:** What is learning to rank and how does it relate to multi-criteria ranking?
  - **Q:** What are the differences between pointwise, pairwise, and list-wise L2R?
  - **Q:** Advantages and shortcomings of different L2R strategies?

- 5
- So far, each IR model was ranking the documents according to a single similarity function between the document and the query
  - VSM: cosine between the (sparse) TF-IDF vectors of the document and query
  - Latent/semantic IR: cosine between dense semantic vectors
  - Probabilistic IR: P(d, q | relevance)
  - Language modelling for IR: P(q | d)
- Idea: Combine different similarity scores as features of a supervised model (traditional), or learn to match documents based on latent features (neural)

$$\vec{f}(d,q) = \begin{pmatrix} VSM_q(d) \\ P(q|d) \\ Jaccard(qterms, dterms) \end{pmatrix}$$

- 6
- Learning to rank is a supervised information retrieval paradigm that
  - Describes instances of document-query pairs (d, q) with a range of features
  - Learns (with some ML algorithm) the mapping between these features and relevance
- Three different learning-to-rank approaches:
  - 1. Point-wise approach
    - Classify a single document-query (d, q) pair for relevance
  - 2. Pair-wise approach
    - Classify, for a pair of documents, which one is more relevant for the query, i.e., whether r(d<sub>1</sub>, q) > r(d<sub>2</sub>, q) or r(d<sub>1</sub>, q) < r(d<sub>2</sub>, q)
  - 3. List-wise approach
    - Classify the whole ranking as either correct or wrong

- Point-wise learning to rank
  - Train a supervised classifier that for a given query q classifies each document as relevant or non-relevant
  - Binary classification task: document is either relevant or non-relevant
  - Training instances:
    - Query-document pairs (q, d) with relevance annotations
- Issues with point-wise learning to rank
  - Do not care about absolute relevance, but relative order of documents by relevance
  - If pairs (q, d<sub>1</sub>) and (q, d<sub>2</sub>) are classified as relevant, which document to rank higher?
    - Supervised classifiers usually have confidence/probability scores assigned to predictions
    - Rank d<sub>1</sub> higher than d<sub>2</sub> if the classifier is more confident about relevance of pair (q, d<sub>1</sub>)

- Pair-wise learning to rank
  - Train a supervised classifier that for a given query q and two documents d<sub>1</sub> and d<sub>2</sub> predicts which document is more relevant for the query
  - Binary classification task:
    - Class 1: "d1 more relevant than d2"
    - Class 2: "d1 less relevant than d2"
  - Training instances:
    - Triples (q, d<sub>1</sub>, d<sub>2</sub>) consisting of queries and document pairs
    - We may need comparison features compare d<sub>1</sub> and d<sub>2</sub> with respect to q
      - E.g., binary feature: VSM(q, d<sub>1</sub>) > VSM(q, d<sub>2</sub>)
    - Generating gold labels from relevance annotations:
      - For query q we have:  $d_1(r)$ ,  $d_2(nr)$ ,  $d_3(r)$ ,  $d_4(nr)$
      - We create the following training instances:
        - {(q, d<sub>1</sub>, d<sub>2</sub>), 1}, {(q, d<sub>1</sub>, d<sub>4</sub>), 1}, {(q, d<sub>2</sub>, d<sub>3</sub>), 2}, {(q, d<sub>3</sub>, d<sub>4</sub>), 1}

- Issues with pair-wise learning to rank
  - If we don't use comparison features (but direct similarities of d1 and d2 with q as features), the model may not generalize well for new queries!
  - We only obtain independent pair-wise decisions
  - **Q:** What if pair-wise decisions are mutually inconsistent?
    - E.g., (q, d1, d2) -> 1, (q, d2, d3) -> 1, (q, d1, d3) -> 2
  - We need an additional postprocessing step
    - To turn the sorted pairs into a ranking, i.e., partial ordering into global ordering
    - Inconsistencies need to be resolved
      - E.g., In a set of conflicting decisions, the one with the lowest classifier confidence is discarded
  - Another issue: we effectively treat pairs from the bottom of ranking same as those from the top of the ranking (and eval. metrics don't treat them equally!)

### List-wise ranking approach

- Instead of learning decisions for individual documents or pairs of documents, learn to classify entire rankings as correct or wrong
- Training instances: query and an entire ranking of documents (q, d<sub>1</sub>, ..., d<sub>n</sub>)
- Binary classification task:
  - Class 1: the ranking (q, d<sub>1</sub>, ..., d<sub>n</sub>) is correct
  - Class 2: the ranking (q, d<sub>1</sub>, ..., d<sub>n</sub>) is incorrect
- Advantage: optimization criteria for the machine learning algorithm can be the concrete IR evaluation metric we're looking to optimize
- Issues with list-wise approach
  - Entire ranking just one training instance
    - Difficult to collect many positive training instances
  - Informative features for the whole ranking are difficult to design

## Outline

- Recap of lecture #9: Learning to rank principles
- Position-Aware Convolutional Relevance Matching Model (PACRR)
- Multi-stage ranking with BERT

12

Position-Aware Convolutional Recurrent Relevance (PACRR):

- Position-Aware: Model learns to match n-gram patterns
- Convolutional: Architecture uses a CNN to learn features
- Recurrent: Long Short-Term Memory Network (LSTM) to summarize features into matching score

Uses Inverse Document Frequency (IDF) as feature, rather than scaling weights.

13



### Input representation

Term similarity matrix  $sim_{|q| \times |d|}$  (cutting / zero-padding to max. seq. len.  $sim_{l_q \times l_d}$ ) Each element  $sim_{i,j}$  describes semantic similarity (cosine) between embeddings of word i and word jCaptures unigram matching signals



14



**N-Gram Matching Signals: Modelling Positional Information** 

Apply multiple CNN layers  $CNN_{2\times 2} \dots CNN_{l_g \times l_g}$  to learn to match different n-gram sizes. Each layer applies  $n_f$  different filters to learn different matching patterns (cf. next slide). Sliding each convolutional filter along the similarity matrix leads to  $l_g - 1$  feature tensors  $C_{l_g \times l_d \times n_f}$ .



15



Examples of n-Gram Matching Signals (Modelling Positional Information)  $n_f = 3$ 



16



#### 1-max pooling among filters

Accross all filters, keep for each n-gram kernel only the strongest signals. Reduces feature tensors from  $C_{l_q \times l_d \times n_f}^{l_g}$  to  $C_{l_q \times l_d \times 1}^{l_g}$  (one "feature image" for each n-gram). Assumes there is only one true matching pattern in a given  $n \times n$  window.



17



 $n_s$  -max pooling along query dimension

Keep  $n_s$  strongest similarity signals (example above:  $n_s = 2$ ).

Resulting tensor  $P_{l_q \times n_s \times l_g}$  contains  $n_s$  strongest signals for each query term and n-gram size across all filters.

18



Final feature matrix and relevance score

Feature tensor  $P_{l_q \times n_s \times l_g}$  is reshaped (flattened) into matrix  $P_{l_q \times (n_s \cdot l_g)}$  (cf. example above). Query terms' normalized IDF-values are appended (concatenated).

Final representation is processed by a recurrent model (LSTM) to produce final relevance score.



Recurrent Layer summarizes sequence of query token-wise matching information into final feature vector

Uses Long Shot-Term Memory Network (LSTM): RNN that maintains internal memory and summarizes sequential information

Relevance score is computed by (linearly) projecting feature vector to 1-d space.

Ranking loss same as in DRMM (pair-wise ranking):  $\mathcal{L}(q, d^+, d^-; \Theta) = max(0, 1 - rel(q, d^+) + rel(q, d^-))$ 





Output Gate

Filter memory information

> Input Gate: Filter current

information

σ

## Outline

- Recap of lecture #9: learning to rank principles
- Position-Aware Convolutional Relevance Matching Model (PACRR)
- Multi-stage ranking with BERT

### BERT and self-supervised pretraining of language encoders

- We have access to enormous amounts of raw unannotated texts (at least for major languages)
- Can we somehow pre-train the encoder using raw text?
  - Yes, via language modeling! Task is to predict the word from the text based on the encoding of the surrounding context
- LM-pretraining

21

- Causal (unidirectional) language modeling: GPT (1, 2, 3, ...)
- Bidirectional language modeling: ELMo
- Masked language modeling: BERT



Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, January). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL 2019.

- Pretraining: Masked language modeling, MLM (and next sentence prediction, NSP)
- Encoder architecture: deep Transformer (attention-based) network
- Encoder's parameters (learned in pre-training) further updated in task-specific training (aka fine-tuning)
- After task-specific training (aka **fine-tuning**), we have a **task-specific encoder**



Image from [Devlin et al., NAACL 19]

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. **BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding**. *NAACL 2019*.

- Training instances: sentence pairs, with special tokens inserted
  - Ca. 15% of tokens masked out (replaced with [MASK] token)
  - Sequence start token [CLS] and sentence separation token [SEP]
- Pretraining: two self-supervised objectives
  - Masked language modeling, MLM (predict the masked token from the context)
  - Next sentence prediction, NSP (if sentences adjacent or not)



# Bidirectional Transformers for LU (BERT)

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, January). **BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding**. *NAACL 2019*.

- Encoder architecture: deep Transformer (attention-based) network
  - Deep architecture consisting of N transformer layers
  - Each transformer layer:

24

- Multi-head attention layer
- Feed-forward layers
- Residual connection (representation before the layer addec to the result of the layer)
- Layer normalization



### Multi-stage ranking with BERT (Nogueira et al. 2019)

25



### BERT as a point-wise ranker (monoBERT): binary relevance classifier

- Feeds concatenation of query and document to BERT
  - Truncate query to at most 64 tokens
  - Concatenate query with document ([SEP]-token)
  - Truncate whole sequence to 512 tokens (max. seq. length)
- Obtain representation representation of [CLS]-token in last layer
- Feed [CLS] vector to single layered Feedforward Neural Network (FNN, binary classification model) to obtain relevance score

#### **Optimize the following loss:**

 $\mathcal{L}_{mono} = -\sum_{j \in J_{pos}} \log(s_j) - \sum_{j \in J_{neg}} \log(1-s_j)$ 

J\_pos/neg = set of indexes of relevant/non-relevant documents

**Retrieval:** Rank documents by their probability of being relevant  $s_j$ 

## Multi-stage ranking with BERT (Nogieura et al. 2019)

26



[CLS] Query  $oldsymbol{q}$  [SEP] Document  $d_i$  [SEP] Document  $d_j$ 

BERT as a pair-wise ranker (duoBERT):

- Truncate the query, candididate document  $d_i$  and  $d_j$  to 62, 223 and 223 tokens respectively
- Concatenate query and document pair into single sequence
- For a candidate list of  $k_1$  documents, compute  $k_1(k_1 1)$  probabilities

#### **Optimize the following loss:**

$$\mathcal{L}_{duo} = -\sum_{i \in J_{pos}, j \in J_{neg}} \log(p_{i,j}) - \sum_{i \in J_{neg}, j \in J_{pos}} \log(1-p_{i,j})$$

#### **Retrieval:**

Aggregate pairwise scores  $p_{i,j}$  into single score  $S_i$ Set of all (other) document indexes in ranking R1:  $J_i = \{0 \le j \le |R_1|, j \ne i\}$ 

Relevance score as **pair-wise agreement** that  $d_i$  is more relevant than the rest of the candidates (other aggregation methods possible too, cf. paper):

$$s_i = \sum\limits_{j \in J_i} p_{i,j}$$

### Multi-stage ranking with BERT (Nogueira et al. 2019)

27



#### Combining monoBERT and duoBERT into a multi-stage ranking architecture

**Stage 1:** Retrieve top- $k_0 = 1000$  documents using BM25 ( $k_0 = 5$  in example above)  $\rightarrow$  input to monoBERT **Stage 2:** Re-rank top- $k_1 = 50$  documents with monoBERT ( $k_1 = 3$  in example above)  $\rightarrow$  input to duoBERT **Stage 3:** Re-rank subset with duoBERT

#### Image source: Nogueira et al. 2019

Information Retrieval, Lecture 10: Neural L2R

### Multi-stage ranking with BERT (Nogueira et al. 2019)

#### **Summary**

It's common practice to use neural rankers for re-ranking, ranking the full collection would be too slow for practical purpose Arranging retrieval in a multi-stage pipeline allows for trading off quality against latency by controlling admission of candidates at each stage Target Corpus Pre-training (Masked Language Modelling on document collection) before training monoBERT/duoBERT improves results

#### **Challenges for pair-wise ranking revisited:**

- 1. We only obtain independent pair-wise decisions (inconsistent ranking): Aggregate (all) possible pair-wise agreements into relevance scores
- 2. We effectively treat pairs from the bottom of ranking same as those from the top of the ranking (and eval. metrics don't treat them equally!): Neural model only re-ranks top k documents (ignore bottom of ranking)

## Now you...

- Have an overview of a range of Neural Rankers
- Understand Convolutional Neural Networks in the context of IR
- Understand how BERT is used in recent IR models