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Revelance Feedback



Task  1
Suppose that a user’s initial query is cheap CDs cheap DVDs extremely cheap CDs. The user examines two 
documents, d1 and d2. She judges d1, with the content CDs cheap software cheap CDs relevant and d2 with 
the content cheap thrills DVDs nonrelevant. Assume that we are using direct term frequency (with no scaling 
and no document frequency). There is no need to length-normalize vectors. Using Rocchio relevance feedback 
what would the revised query vector be after relevance feedback? Assume α = 1, β = 0.75, γ = 0.25.
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word query q d1 d2
CDs 2 2 0

cheap 3 2 1
DVDs 1 0 1

extremely 1 0 0
software 0 1 0

thrills 0 0 1

Task  2
In Rocchio’s algorithm, what weight setting for α/β/γ does a “Find pages like this one” search correspond to?

“Find pages like this one” ignores the query, also no negative judgements are used here. Hence the values are 
α = γ = 0, which implies β = 1.



Task  3
Omar has implemented a relevance feedback web search system, where he is going to do relevance feedback 
based only on words in the title text returned for a page (for efficiency). The user is going to rank 3 results. The 
first user, Jinxing, queries for:

       banana  slug

and the top three titles returned are:

banana  slug  Ariolimax  columbianus 
Santa  Cruz  mountains  banana  slug
    Santa  Cruz  Campus  Mascot

Jinxing judes the first two documents Relevant, and the third Not Relevant. Assume that Omar’s search engine 
uses term frequency but no length normalization nor IDF. Assume that he is using the Rocchio relevance 
feedback mechanism, with α = β = γ = 1. Show the final revised query that would be run. (Please list the vector 
elements in alphabetical order.)
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word q d1 d2 d3
Ariolimax 0 1 0 0
banana 1 1 1 0
Campus 0 0 0 1

columbianus 0 1 0 0
Cruz 0 0 1 1

Mascot 0 0 0 1
mountains 0 0 1 0

Santa 0 0 1 1
slug 1 1 1 0

.



Semantic Retrieval
-

Latent Semantic Analysis



Task 1
Consider the following collection of documents: 

● Document 1: Frodo and Sam were trembling in the darkness, surrounded in darkness by hundreds of 
blood-thirsty orcs. Sam was certain these beasts were about to taste the scent of their flesh.

● Document 2: The faceless black beast then stabbed Frodo. He felt like every nerve in his body was 
hurting. Suddenly, he thought of Sam and his calming smile. Frodo had betrayed him. 

● Document 3: Frodo’s sword was radiating blue, stronger and stronger every second. Orcs were getting 
closer. And these weren’t just regular orcs either, Uruk-Hai were among them. Frodo had killed regular orcs 
before, but he had never stabbed an Uruk-Hai, not with the blue stick. 

● Document 4: Sam was carrying a small lamp, shedding some blue light. He was afraid that orcs might 
spot him, but it was the only way to avoid deadly pitfalls of Mordor.

Your vocabulary consists of the following terms: Frodo, Sam, beast, orc, and blue. Compute the TF-IDF 
document-term occurrence matrix for given document collection and vocabulary terms.
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doc 1
doc 2
doc 3
doc 4

Frodo    Sam    beast   orc     blue

raw tf, idf=log10(N/df_t)



Task 2

Perform the singular value decomposition of the above matrix and write down the obtained factor matrices U, Σ, 
and V. You can use some existing programming library to perform the SVD (e.g., numpy.linalg.svd in Python).
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Frodo      Sam      beast    orc     blue

doc 1
doc 2
doc 3
doc 4

concept 1
concept 2
concept 3
concept 4



Task 3 

Reduce the rank of the factor matrices to K = 2, i.e., compute the 2-dimensional vectors for vocabulary terms and 
documents. Show terms and documents as points in a 2-dimensional graph.
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Task 4
You are given the query “Sam blue orc”. Compute the latent vector for the query and rank the documents 
according to similarity of their latent vectors with the obtained latent vector of the query.
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1. doc 4
2. doc 3
3. doc 1
4. doc 2

Query- and document-projections:

Similarities and Ranking:



Semantic Retrieval
- 

Representation Learning



Task 1 

For your semantic retrieval system you are training a CBOW model (windows size=2). Your vocabulary consists of 
the following terms:

[“Frodo”, “followed”, “Sam”, “into”, “the”, “dark”, “Mordor”, “Ring”]

You are currently processing the sentence “Frodo followed Sam into the dark”. Which (positive) training examples 
are derived from the sentence?
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Input x Output y

Frodo followed Sam into the dark followed, Sam Frodo
Frodo followed Sam into the dark Frodo, Sam, into followed
Frodo followed Sam into the dark Frodo, followed, into, the Sam
Frodo followed Sam into the dark followed, Sam, the, dark into
Frodo followed Sam into the dark Sam, into, dark the
Frodo followed Sam into the dark into, the dark



Task 2 
Which (positive) training examples are derived if we would consider the Skip-gram model?
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Input x Output y

Frodo followed Sam into the dark Frodo followed
Frodo Sam

Frodo followed Sam into the dark followed Frodo
followed Sam
followed into

Frodo followed Sam into the dark Sam Frodo
Sam followed
Sam into
Sam the

Frodo followed Sam into the dark into followed
into Sam
into the
into dark

Frodo followed Sam into the dark the Sam
the into

...



Task 3 

Your word vectors, i.e. CBOW model, is parameterized as follows:

Calculate the output of the last layer (softmax layer) for the current sentence in which Sam is the center word.
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Frodo
followed
Sam
into
the
dark
Mordor
Ring

(h = avg of context embeddings of Frodo, followed, into, the)

(softmax(logits))

*Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).
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Task 4 
What is the final document embedding if we represent it as the average of its constituent word embeddings?
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Task 5 
Name one shortcoming of representing documents and queries as average word embeddings and how to 
overcome it?

Every word embedding contributes an equal share to the sentence embedding, this can lead to noisy input 
due to stop words. If we use a parameterized aggregation function (e.g. Deep Learning Model) it can learn 
to focus on important features (cf. Learning to Rank).



Task 6 
Use your computed document embedding as a query vector and rank the four document documents from the 
previous task by their cosine similarities, use the following document embeddings:

● Document 1: [1.17 0.05 -1.69 0.15 1.87 -0.25 -0.92 0.84]
● Document 2: [-0.88 -0.65 -0.51 -1.08 -0.25 1.01 0.54 -0.7]
● Document 3: [2.93 -2.28 0.01 1.65 1.15 1.24 0.26 0.52]
● Document 4: [1.22 -1.04 0.11 0.97 0.74 0.08 -1.18 -0.11]
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Task 7 
After training your embedding model you obtain word representations for every word you observed (assuming you 
derived your vocabulary form the corpus). Why shouldn’t we use every available word embedding after training?

When training word embeddings we start with random vectors. Typically word frequencies follow Zipf‘s Law, hence 
many words occur only very few times (long tail). For those words we don‘t have reliable word vectors (infrequent 
updates during training). Including them would introduce noise. Because of this we limit the vocabulary to the top k 
most frequently seen words.

Ranking: d4, d1, d3, d2


