

Homework Assignment #7

Algorithms for Geographic Information Systems (SS 2023)

Exercise 1 – Polynomial fitting

Let $S = \{(0, -4), (1, 11), (-12, 1)\}$ be a set of points $(x, y) \in \mathbb{R}^2$. It seems as if the relation between the points is best described by a straight line, that is, a polynomial of the form $y = mx + b$ for some values m and b .

Model the problem of identifying m and b as a linear least-square problem. What are A and L ? Then solve the problem. What are m and b in the solution, and what is v ? [4 points]

Exercise 2 – Matrices with small rank

Let $A \in \mathbb{R}^{n \times u}$, and let $L \in \mathbb{R}^n$. In the lecture it was shown that if $\text{rank}(A) \geq n$, then there always exists a unique solution $X \in \mathbb{R}^u$ and a vector $v \in \mathbb{R}^n$ with $AX = L + v$ such that $v^T v$ is minimum.

Now assume that $\text{rank}(A) < u$. Prove or disprove:

- a) There always exist a least-squares solution X_0 for $AX = L$. [1 point]
- b) If there exists a least-squares solution $X_0 \in \mathbb{R}^u$ for $AX = L$, then this solution is unique. [2 points]

Exercise 3 – Orthogonal relations

Let $A \in \mathbb{R}^{n \times u}$, let $L \in \mathbb{R}^n$, let $X \in \mathbb{R}^u$, and let $v \in \mathbb{R}^n$ be a least-squares solution, that is, $AX = L + v$ and $v^T v$ is minimum. Show that v is orthogonal to the linear subspace $\text{Im}(A) = \{Ax \mid x \in \mathbb{R}^u\}$ of \mathbb{R}^n . [6 points]

Exercise 4 – Pairwise orthogonal vectors

- a) Let $A \in \mathbb{R}^{n \times u}$ be such that the columns $\{a_1, a_2, \dots, a_u\}$ of A are pairwise orthogonal, and let $L \in \mathbb{R}^n$. Let $X = \left(\frac{L \cdot a_1}{a_1 \cdot a_1}, \frac{L \cdot a_2}{a_2 \cdot a_2}, \dots, \frac{L \cdot a_u}{a_u \cdot a_u} \right)^T$, where \cdot denotes the scalar product.

Prove that $A^T AX = A^T L$ (meaning that X is a least-squares solution). [5 points]

- b) Let $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$, and let $L = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 4 \end{pmatrix}$. Find the least-squares solution of $AX = L$. [2 points]