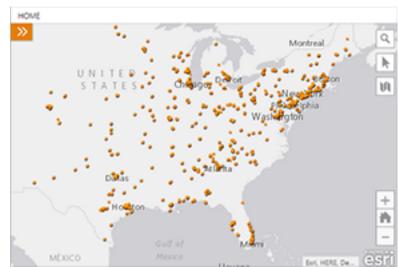
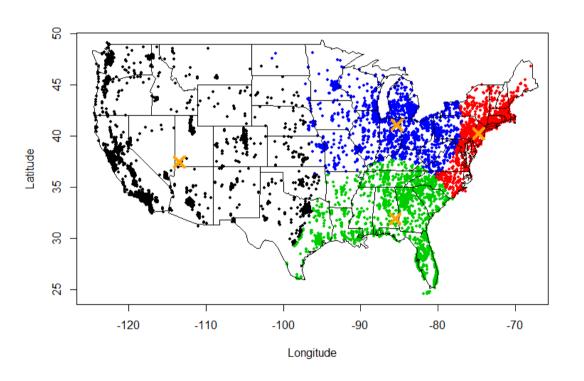
Algorithmen für geographische Informationssysteme

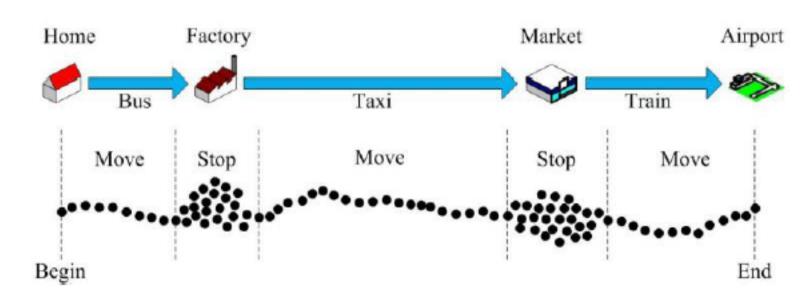
Clustering

Faster dbscan and Hdbscan in Low-Dimensional Euclidean Spaces

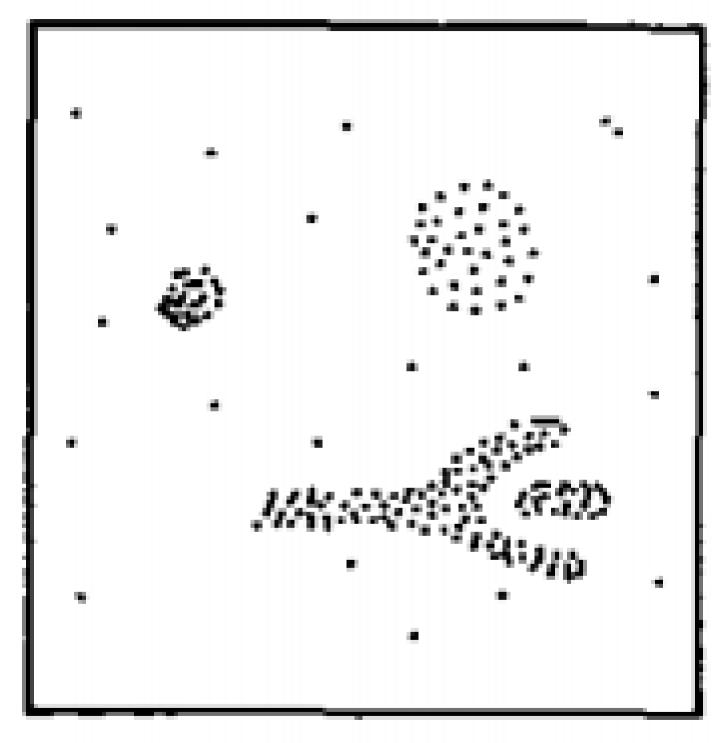
Alexander Wolff







Clustering



database 3

DBSCAN: Objectives

- **1.** "Minimal requirements of domain knowledge to determine the input parameters, because appropriate values are often not known in advance when dealing with large databases."
- 2. "Discovery of clusters with arbitrary shape, because the shape of clusters in spatial databases may be spherical, drawn-out, linear, elongated etc."
- **3.** "Good efficiency on large databases, i.e., on databases of significantly more than just a few thousand objects."

DBSCAN

Given: data points X, distance function $d(\cdot, \cdot)$, thresholds ε and k.

- **Def.** The ε -neighborhood of a point $p \in X$ is $N_{\varepsilon}(p) = \{ q \in X \mid d(p,q) \leq \varepsilon \}$.
- **Def.** A point $p \in X$ is called a **core point** iff $|N_{\varepsilon}(p)| \ge k$.
- **Def.** A point $p \in X$ is **directly density-reachable** from a point q iff:

$$p \in N_{\varepsilon}(q)$$
 $|N_{\varepsilon}(q)| \ge k (q \text{ is a core point})$

Not a symmetric relation!

- **Def.** A point $p \in X$ is **density reachable** from a point q if there exists a chain of direct density-reachability from q to p.
- **Def.** A point $p \in X$ is **density connected** to a point q if there exists a (core) point r such that both p and q are density-reachable from r.

DBSCAN example

Legend

k = 3

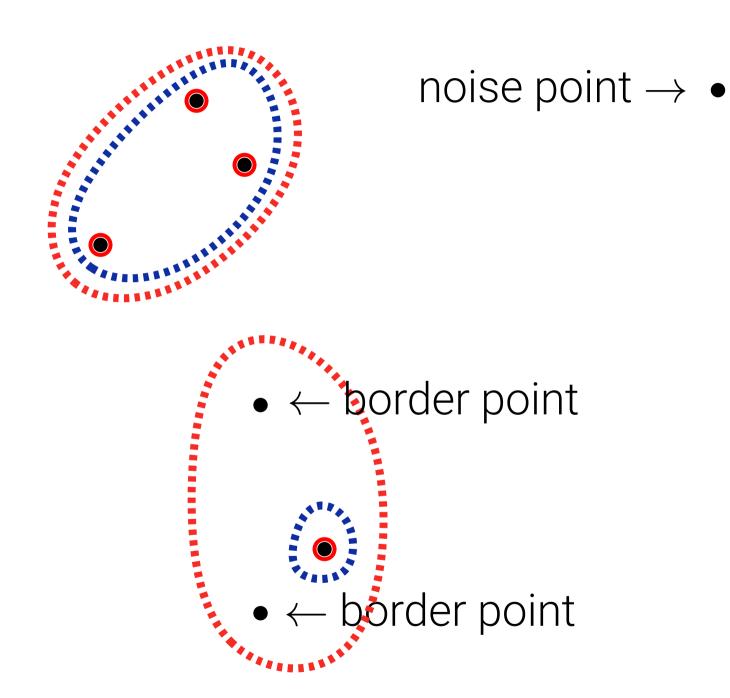
Distance ε

Core points

Density connected

DBSCAN clustering

DBSCAN* clustering



DBSCAN*:

DBSCAN:

p and q are in the same cluster $\Leftrightarrow p$ and q are density connected (and core pts.)

DBSCAN example

Legend

k = 3

Distance ε

Core points

Density connected

DBSCAN clustering

DBSCAN* clustering

Runtime

Naive algorithm runs in $O(n^2)$ time.

"Since the Eps-neighborhoods are expected to be small compared to the size of the whole data space, the average run time complexity of a single region query is $O(\log n)$. [...] Thus, the average run time complexity of DBSCAN is $O(n \log n)$."

DBSCAN:

p and q are in the same cluster $\Leftrightarrow p$ and q are density connected (and core pts.)

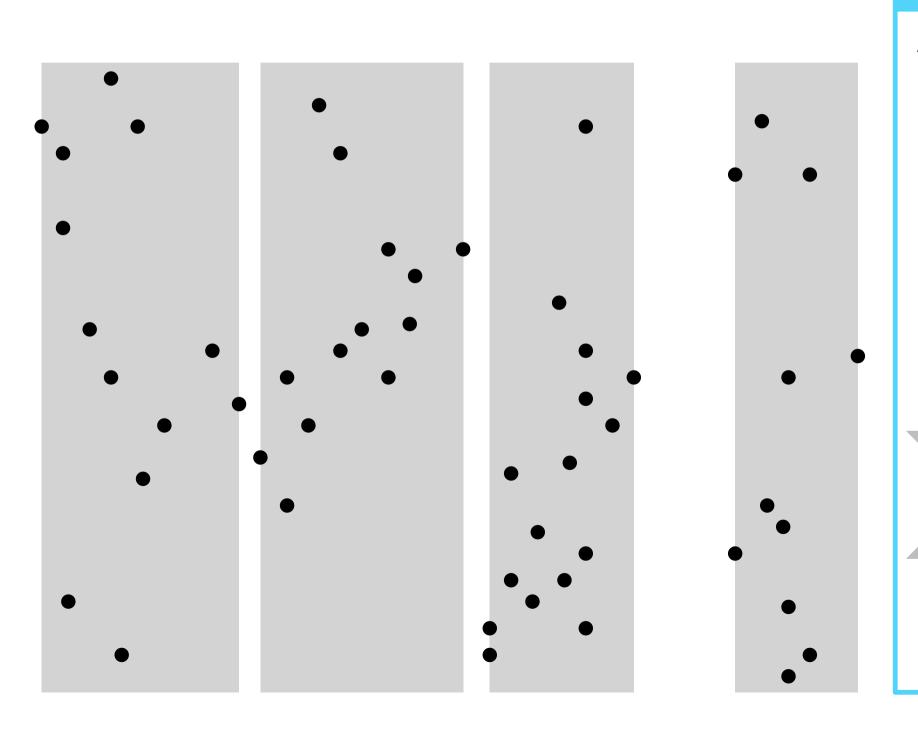
DBSCAN*:

De Berg, Gunawan, Roeloffzen (2017)

Everywhere: ε free, k fixed constant, Euclidean distances

	2D	dD
DBSCAN	$O(n \log n)$	$\mathcal{O}\big(n^{2-\frac{2}{\lceil d/2 \rceil+1}+\gamma}\big) \gamma > 0$
HDBSCAN	$O(n \log n)$ expected	×

Box graph g_{box}

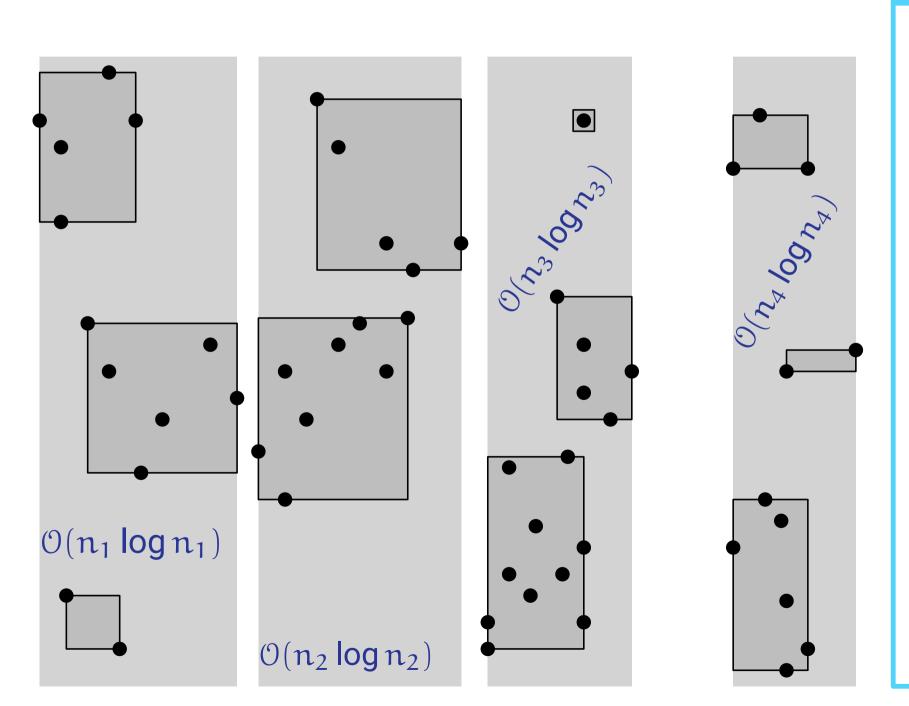


1. Construct boxes

Add points as long as strip width $\leq \varepsilon/\sqrt{2}$.

SORTED

Box graph 9_{box}



1. Construct boxes

Add points as long as strip width $\leq \varepsilon/\sqrt{2}$.

Per strip: add points to box as long as height $\leq \varepsilon/\sqrt{2}$.

Runtime:

Sort by x $O(n \log n)$

Sort by y per strip $\sum_{j} O(n_{j} \log n_{j})$

Total $O(n \log n)$

Box graph g_{box}

All points within a box... are in ε -neighbourhood.

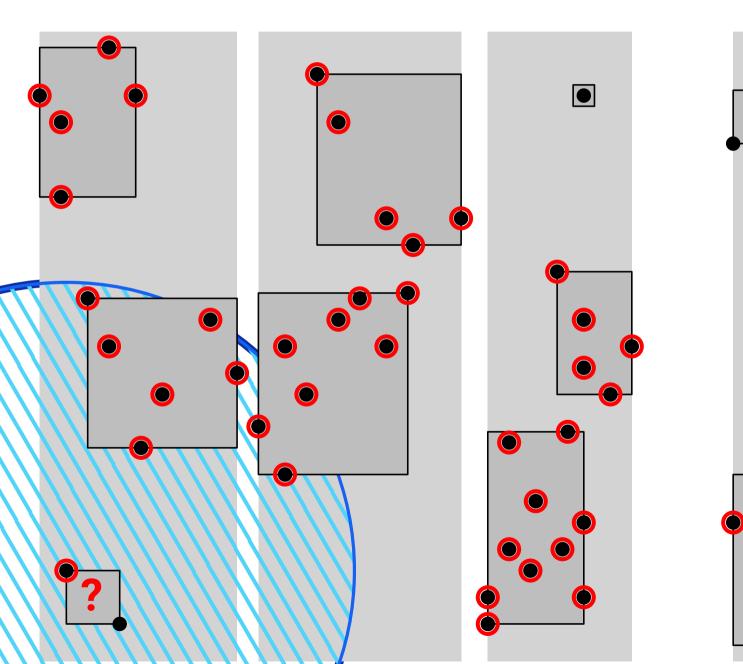
(Box width & height are each $\leq \varepsilon/\sqrt{2}$.)

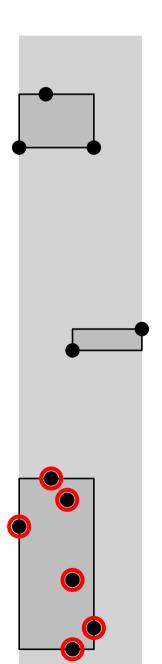
In boxes with at least k points, ...

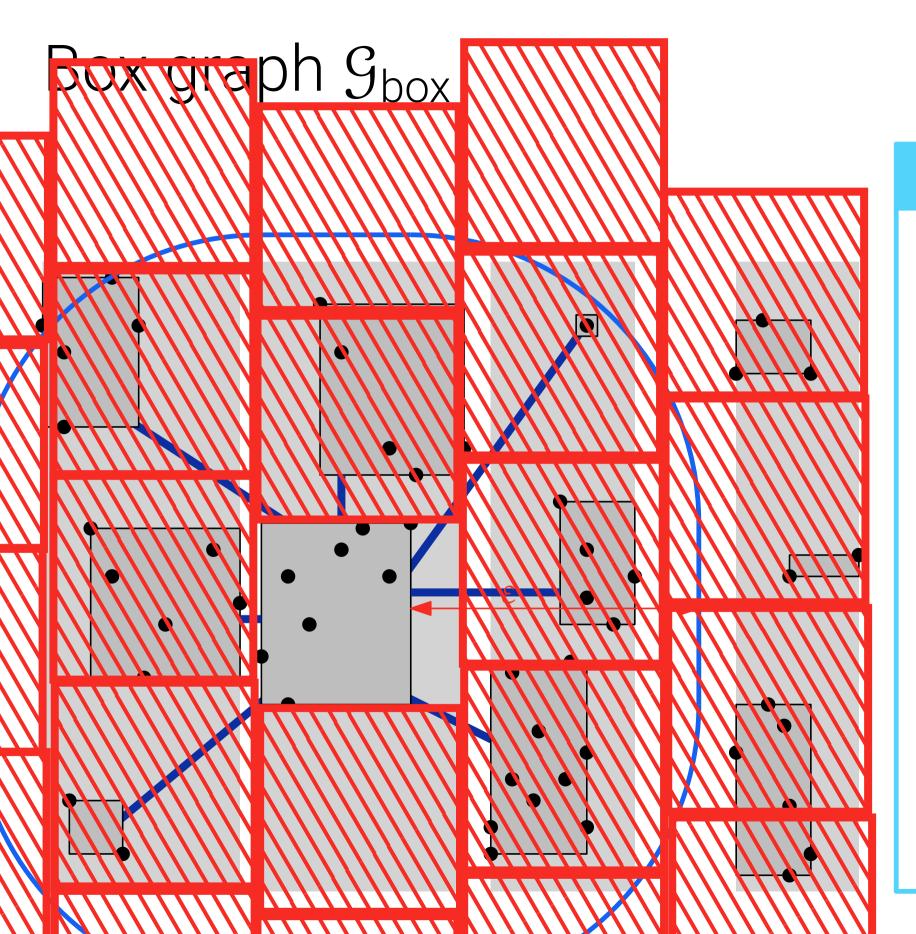
all points are core points.

In boxes with fewer than k points, ...

points can be core points.







Property of box pairs

Connect boxes with edge if distance between **boxes** is at most ε .

Nonneighbours in \mathcal{G}_{box} : none of these points are in ε -neighbourhood.

How many neighbours can a box have? $22 \in \mathcal{O}(1)$

Box graph g_{box}

$$\varepsilon/\sqrt{2}$$
:

Already have all core points in "crowded" boxes.

For all "sparse" boxes:
For all neighbour boxes:
... check all pairs.

Total runtime?

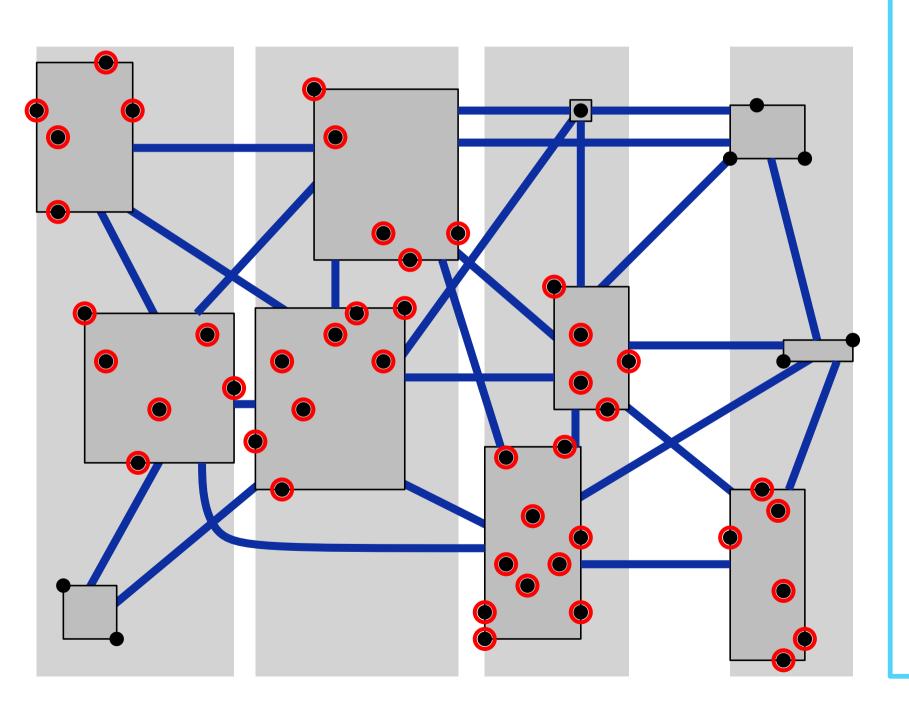
Other box is sparse:

$$\mathcal{O}(k^2) = \mathcal{O}(1)$$

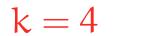
Other box is crowded:

Charge to crowded box:

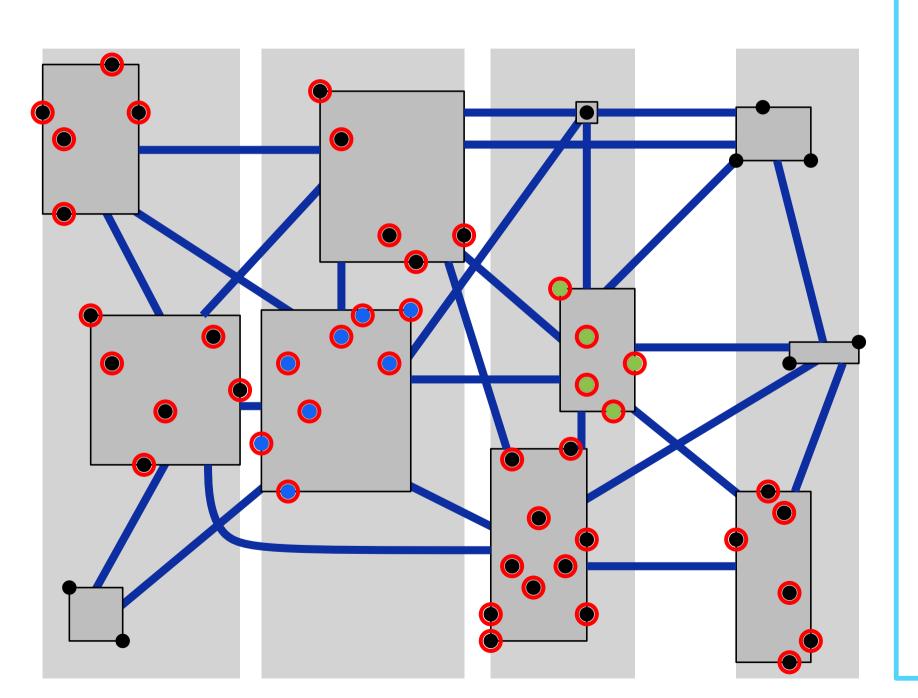
Point in crowded box checked ≤ 22k times (!!)



Box graph g_{box}



$$\varepsilon/\sqrt{2}$$
:

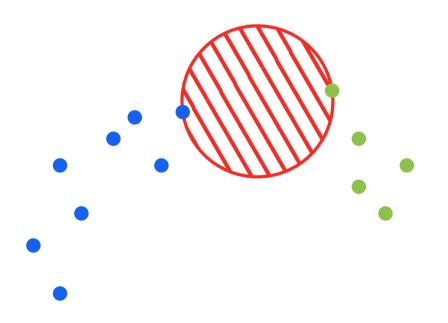


Pairs of crowded boxes

These are all core points.

Are they **the same cluster**?

Box graph 9_{box}



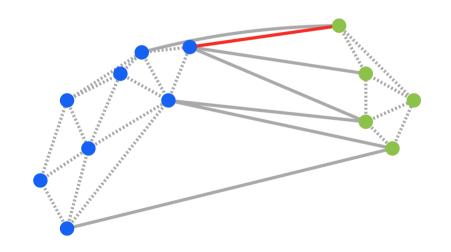
Pairs of crowded boxes

These are all core points.

Are they **the same cluster**?

BICHROMATIC CLOSEST PAIR
In Euclidean 2D?

Box graph 9_{box}



Pairs of crowded boxes

These are all core points.

Are they **the same cluster**?

BICHROMATIC CLOSEST PAIR

In Euclidean 2D?

Delaunay triangulation (DT)

contains this edge!

DT has O(n) edges, takes

 $O(n \log n)$ time for n pts.

Charge to edges in \mathcal{G}_{box} :

Edge ij gets charged

 $c_{ij}(n_i + n_j) \log(n_i + n_j).$

Total charge is $\mathcal{O}(n \log n)$ since $\sum_{ij \text{ is edge}} n_i \leq 22kn_i$.

Results

Everywhere: ε free, k fixed constant, Euclidean distances

2D	dD
DBSCAN $O(n \log n)$	$\mathbb{O}(n^{2-\frac{2}{\lceil d/2 \rceil + 1} + \gamma}) \gamma > 0$
HDBSCAN $O(n \log n)$	expected ×
1. Construct g_{box}	
2. Find core points	BICHROMATIC CLOSEST POINT instead of Delaunay triangulation.
3. Merge clusters	(Agarwal, Edelsbrunner, Schwarzkopf, 1991)

(4. Assign border points.)

Use DBSCAN* and sweep ε from 0 to ∞ .

Initially all points are noise; eventually everything is one cluster.

Three types of "events":

- Noise point becomes core point. Call this value $d_{core}(p)$.
- New cluster forms.
- Two clusters merge

Events only happen when $\varepsilon = d(p, q)$ for some p, q.

Store this tree structure of cluster creation and merges: HDBSCAN.

Mutual reachability

Starting at which value of ε will these points be in the same cluster?

Both need to be core points, so at least $d_{\text{core}}(p)$ and $d_{\text{core}}(q)$.

Either $\varepsilon \geqslant d(p,q)$, or they must be connected through other points.

Def. Let $d_{mr}(p, q) = max\{ d_{core}(p), d_{core}(q), d(p, q) \}.$

Def. Mutual reachability graph \mathcal{G}_{mr} : complete, edge weights d_{mr} .

Algorithm:

- 1. Compute d_{core} for all points. $O(n \log n)$ time [Vaidya, 1989]
- 2. Construct g_{mr} and compute a minimum spanning tree T.
- 3. Convert T into HDBSCAN tree. (by Kruskal's algorithm)

2. Construct g_{mr} and compute an MST.

Cannot look at all edges: too slow.

Def. $\{p, q\}$ is a Delaunay edge "iff" there exists a circle with:

- p and q on the boundaryk a "k-OD edge"
- k
 points in its interior

Theorem (Gudmundsson, Hammer, van Kreveld, 2002)

The k^{th} -order Delaunay graph has $\mathcal{O}(\mathfrak{n}(k+1))$ edges and can be computed in $\mathcal{O}(\mathfrak{n}(k+1)\log\mathfrak{n})$ expected time by randomized incremental construction.

Claim: The MST of g_{mr} uses only k-OD edges.

The MST of g_{mr} uses only k-OD edges.

Consider applying Kruskal's algorithm to g_{mr} :

- Looks at edges in order of increasing cost.
- \bullet With weights d_{mr} this corresponds to the HDBSCAN events.

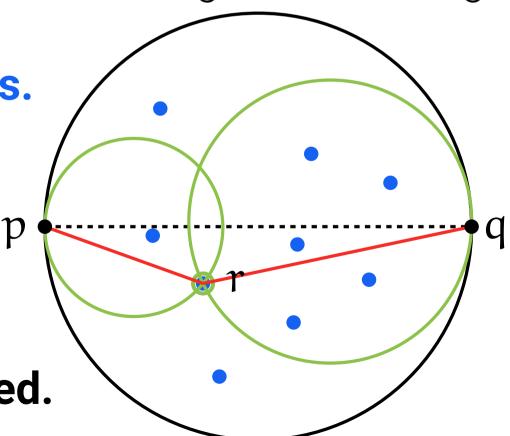
Claim: Whenever Kruskal looks at a non-k-OD edge $\{p, q\}$, p and q are already in the same cluster, and thus ignores the edge.

Not a k-OD edge, so more than k points.

Pick any point.

Recurse until only k-OD edges.

Kruskal has already considered those edges, so p and q are already connected.



Results

Everywhere: ε free, k fixed constant, Euclidean distances

	2D	dD
DBSCAN	$O(n \log n)$	$\mathcal{O}\big(n^{2-\frac{2}{\lceil d/2 \rceil+1}+\gamma}\big) \gamma > 0$
HDBSCAN	$O(n \log n)$ expected	×