
Multilingual Natural
Language Processing
Team Projects
Goran Glavaš, Benedikt Ebing, Fabian David Schmidt

Project Overview

• All groups (3 students) will tackle the same base task named
entity recognition

• Groups can select approach on how to tackle the task
• Short project presentations (~10 minutes) will be held 14th July
• Coaching sessions with TAs on demand (at most 2)
• Grading on 4-point scale from 0 to 3 points that count toward

exam bonus
• Take this nevertheless as a learning experience!

Token Classification for Named Entity Recognition
with Transformer Models: Task at a Glance

Input
Tokens
Input
Labels

Tokenizer

Wall Street ponders Rubin ‘s role if Obama wins .

win s

5 6 0 1 0 0 0 1 0 0

.Obamapond ersWall Street Rubin ‘s role if

Mapped
Labels 0 0 010 0 15 6 0 0 0

Dataset

Pre-
process

Training

Post-
process

Transformer

Predict 0 0 010 0 10 6 0 0 0

Evaluate
0 0 010 0 15 6 0 0 0

Token-level micro F1

Token Classification for Named Entity Recognition
with Transformers: Task Details
• Base model: smaller pre-trained multilingual transformers
• Goal: implement entire token classification pipeline &

architectural/model tweak by yourselves
• Datasets:

• Source language: CoNLL 2003 English / (WikiANN English)
• Target language(s): MasakhaNER

• Infrastructure: Google Colab / Kaggle
• Key: split tasks wisely!

Intermittent Language Modelling for Better Cross-
Lingual Transfer

Rationale
• While multilingual language

models span 100+ languages,
vast majority of 7K languages are
un(der)represented in today’s
models

• Post-hoc language modelling
greatly improves transfer
capabilities to unseen languages
(provided tokenizer can tokenize
unseen language meaningfully)

Language Modelling Project
• Bilingual Language Modelling of

Source & Target Language
(English + Yoruba)

• Perform zero-shot transfer from
CoNLL (news-domain) to
languages part of MasakhaNER

• Comparative Evaluation and
Analysis between bilingually
specialized and original
multilingual model

• Bilingual language modelling
simultaneously on source &
target language improves and
stabilizes cross-lingual transfer

• Representations re-fined from
multilingual representation space

• Suitable for post-hoc addition of
language unseen in initial
multilingual pre-training

BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer, NAACL 2022, https://aclanthology.org/2022.naacl-main.130/
Yoruba data: https://github.com/ajesujoba/YorubaTwi-Embedding
Zero-shot Cross-lingual Transfer is Under-specified Optimization, Repl4NLP 2022, https://arxiv.org/pdf/2207.05666.pdf

Parameter-Efficient Fine-Tuning (PEFT)

Rationale
• Storage & training requirements

are proportional to model size
• Model size keeps on increasing

(albeit maybe starting to hit
limits)

• Practical issue: hardly feasible to
fine-tune large models since they
do not fit on GPU VRAM

PEFT strategies need less VRAM
• PEFT strategies fine-tune only a

small fraction (0.1-3%) of the
parameter count of the original
model

• PEFT keeps (most often close to)
performance of `full fine-tuning’

• Strategies:
• BitFit: only fine-tune bias terms

of layers
• Prefix-Tuning: add new input

embeddings
• Adapters, LoRA, …

Project
• Implement BitFit or Prefix-Tuning

from scratch (w/o dedicated
frameworks) and compare
against full fine-tuning

• Perform zero-shot transfer
evaluation from both WikiANN
(wiki-domain) and CoNLL (news-
domain) to languages part of
MasakhaNER (African languages
in news domain)

BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models, ACL 2022, https://aclanthology.org/2022.acl-short.1/
Prefix-Tuning: Optimizing Continuous Prompts for Generation, ACL 2021, https://aclanthology.org/2021.acl-long.353.pdf

SLICER: Sliced Fine-Tuning for Low-Resource Cross-
Lingual Transfer for NER

Rationale
• Premise: fine-tuning named

entity recognition
decontextualizes word
representations

• Implication: implicit `overfitting‘
on monolingual token properties
(casing, prefixes, suffixes)

• Effect: quality of cross-lingual
transfer to distant languages
suffers, as no subwords overlap
and syntax often is very different

SLICER Project
• Implement SLICER training step

from scratch and compare
against full fine-tuning

• Perform zero-shot cross-lingual
transfer evaluation from both
WikiANN (wiki-domain) and
CoNLL (news-domain) to
languages part of MasakhaNER
(African languages in news
domain)

SLICER: Sliced Fine-Tuning for Low-Resource Cross-Lingual Transfer for Named Entity Recognition, EMNLP 2022, https://aclanthology.org/2022.emnlp-main.740/

• SLICER is an approach to force
token representations to retain
more contextualization in
monolingual fine-tuning, leading
to more robust transfer in
challenging scenarios

• Intuition: train classification on
slices (sub-segments, cf. multi-
head attention) of token
representations, disabling the
transformer to co-adapt on
redundancies; inference
‘ensemble’ over slices

Roadmap for the project

• Write the LightningModule
• Use „xlm-roberta-base“ as encoder
• Write your own model head for token classification
• Train your model minimizing cross entropy loss
• Evaluate your models on micro F1
• Use the AdamW optimizer with:

• Learning rate: 2e-5
• Weight decay: 0.05

• Add you projection specific modifications

Roadmap for the project

• Write the LightningDataModule
• Datasets to use:

• Train, Validation:
• https://huggingface.co/datasets/conll2003
• https://huggingface.co/datasets/wikiann

• Test: https://huggingface.co/datasets/masakhaner
• Take care when preprocessing the data (token classification task!)
• Additional resource: https://huggingface.co/learn/nlp-course/chapter7/2?fw=pt

• Take care of multiple test datasets (one for each target language)
• https://lightning.ai/docs/pytorch/LTS/guides/data.html

Roadmap for the project

• Write the final training script
• Train for 10 epochs on ConLL / 5 epochs on WikiAnn
• Test the model performance on the last checkpoint

Do’s & Don’ts

Do’s Don’ts

• Blindly copy available open-source code
• Turn a group project into a single person

effort

• Use AutoModel.from_pretrained
• Write your own classification head

tailored to the token classification task
• Use available frameworks to simplify

boilerplate code (pre-processing, post-
processing, CLI, etc.) and transformer
implementation

• Refer to existing code with code
comment citations

