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Aufgabe 1 – Wurzelspannbäume und ungerichtete Bäume

Sei G = (V, E) ein gerichteter Graph und s ein ausgezeichneter Knoten. Zeigen Sie:

Der gerichtete Graph G ist genau dann ein s-Wurzelspannbaum, wenn der G zugrunde
liegende ungerichtete Graph ein Baum ist, für jedes v ∈ V \ { s } : indeg(v) = 1 gilt und
indeg(s) = 0. 4 Punkte

Hinweis: Verwenden Sie die genaue Definition eines s-Wurzelspannbaums aus der Vor-
lesung und denken Sie daran beide Richtungen zu zeigen.

Aufgabe 2 – Eigenschaften von Wurzelspannbäumen

Sei G = (V, E) ein gerichteter Graph und s ∈ V ein ausgezeichneter Knoten.

Ein Knoten w ist von einem Knoten v erreichbar, wenn es einen v–w-Weg gibt. Die Er-
reichbarkeitsmenge E(v) eines Knotens v ist die Menge aller Knoten, die von v erreichbar
sind. Insbesondere ist v ∈ E(v).

Beweisen oder widerlegen Sie die folgenden Aussagen.

a) Falls E(s) = V , dann besitzt G einen s-Wurzelspannbaum. 3 Punkte

b) Wenn G kreisfrei ist (d. h. ohne gerichtete Kreise) und einen Wurzelspannbaum be-
sitzt, dann ist dieser eindeutig bestimmt. 2 Punkte

c) Wenn G kreisfrei ist (d. h. ohne gerichtete Kreise) und zwei Wurzelspannbäume
besitzt, dann haben beide dieselbe Wurzel. 2 Punkte



Aufgabe 3 – Wurzelspannbäume in azyklischen Graphen

Sei G = (V, E) ein gerichteter azyklischer Graph, d. h. ein Graph ohne gerichtete Krei-
se, und s ∈ V ein Knoten, von dem aus alle anderen Knoten erreichbar sind. Sei
c : E → R≥0 eine Funktion, die jeder Kante ein nichtnegatives Gewicht zuordnet.

a) Zeigen Sie: Der Algorithmus von Jarník-Prim mit Startknoten s berechnet im Allge-
meinen keinen minimalen s-Wurzelspannbaum von G, selbst wenn er die Kanten-
richtungen beachtet und immer nur ausgehende Kanten erkundet. 2 Punkte

b) Um den Algorithmus von Kruskal auf G anwenden zu können, ignorieren wir die
Kantenrichtungen. Zeigen Sie: Der Algorithmus von Kruskal berechnet im Allge-
meinen keinen minimalen s-Wurzelspannbaum von G. 2 Punkte

Betrachten Sie nun den folgenden Algorithmus (wie oben beschrieben ist von s aus
jeder Knoten in G erreichbar). Dabei gibt arg minx∈X f(x) ein x ∈ X aus, für das der
Funktionswert f(x) unter allen Elementen aus X minimal ist.

DAG_MST(gerichteter azyklischer Graph G = (V, E), Knoten s, Kantenkostenfkt. c)
E ′ = ∅
foreach v ∈ V \ { s } do

e(v) = arg min(u,v)∈E c((u, v))
E ′ = E ′ ∪ {e(v)}

return T = (V, E ′)

c) Zeigen Sie: DAG_MST berechnet einen s-Wurzelspannbaum von G. 3 Punkte

d) Zeigen Sie: Der von DAG_MST berechnete Wurzelspannbaum ist minimal.
2 Punkte
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