Information Retrieval Project

Prof. Dr. Goran Glavaš **Fabian David Schmidt Benedikt Ebing**

Center for AI and Data Science (CAIDAS) Fakultät für Mathematik und Informatik Universität Würzburg

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

Team project

Schedule

- Topics published: May 24
- Topics selected and confirmed: June 04

Project coaching:

Ask questions to Fabian/Benedikt in case you are stuck

Project presentations: July 18

- Present what you did: methods/models, implementation, evaluation
- 10 minutes per team + 5 min Q&A
- All team members should present and clearly state what their contribution was

Team Project

- Purpose: "hands-on" experience implementing and evaluating information retrieval model(s) and performing IR tasks
 - Best way to understand something is to (try to) implement it
- Other goals:
 - Experiencing teamwork
 - Exercising how to clearly present results of your work

Topics

- 1. Learning to Rank (Supervised Retrieval)
- 2. Cross-Lingual Sentence Retrieval
- 3. Efficient Vector Space Retrieval
- 4. Sentiment Analysis with Text Similarity and Link Analysis Algorithms
- 5. Retrieval with Pretrained Neural Language Models

Topic 1: Learning to Rank (Supervised Retrieval)

- In some settings, we have enough relevance judgements to train supervised retrieval models
- Learning to rank (L2R, LETOR): training supervised machine models for IR
- Task:

- Implement and evaluate two L2R models
 - One *point-wise* L2R model
 - One *pair-wise* L2R model
- Design good, informative features for both models
 - Different unsupervised ranking functions can be used as features
- Evaluate the performance of the models on test collections

Topic 1: Learning to Rank (Supervised Retrieval)

- Point-wise L2R model
 - One training instance is a query-document pair (q, d)
 - You are predicting whether the document is relevant for the query
 - Ranking: order documents by the classifier's confidence
- Pair-wise L2R model
 - One training instance is a triple (q, d1, d2) consisting of a query and two documents
 - You are predicting which of the two documents (first or second) is more relevant for the query
 - Ranking: merging pairwise decisions into consistent ordering
- Datasets:

- Medical Information Retrieval dataset:
 - <u>https://tinyurl.com/nfcorpus</u>

Topic 1: Learning to Rank (Supervised Retrieval)

Task:

- Own implementations of features, but you may use
- Existing implementations of L2R algorithms
- Existing implementations of evaluation metrics (MAP, MRR, NDCG)
- RankLib a L2R library you may use
 - https://sourceforge.net/p/lemur/wiki/RankLib

Topic 2: Cross-Lingual Information Retrieval (CLIR)

- Cross-lingual retrieval: query is in a different language from document collection
- Creating a retrieval system, that can, given a sentence in one language recognize its translation from a large collection of sentences in another language

Topic 2: Cross-Lingual Sentence Retrieval

- Inducing a multilingual embedding space from monolingual word embeddings
 - Many ways to do it:
 - https://arxiv.org/pdf/1902.00508.pdf
 - https://arxiv.org/pdf/1710.04087.pdf
 - http://aclweb.org/anthology/P18-1073
 - Simplest way to do it:

\mathbf{S}						\mathbf{T}				
bird pretty	-1.18 0.23	0.21 -0.53	 	0.11 0.34	$\cdot \mathbf{M} =$	0.59 -0.34	1.01 -0.27	 	0.37 0.41	Vogel schön
eat	 _ 0.78	 1.33		 -0.47		 0.81	 -0.31	····	 0.29	 essen

Topic 2: Cross-Lingual Sentence Retrieval

Task:

- You may use some pre-trained multilingual word embeddings
 - E.g., <u>https://github.com/Babylonpartners/fastText_multilingual</u> https://github.com/facebookresearch/MUSE
- Implementation of the supervised classification for recognizing sentence translation pairs using multilingual word embeddings
- Evaluation of the models on EuroParl datasets
- Datasets:
 - EuroParl parallel corpora: <u>http://opus.nlpl.eu/Europarl.php</u> (sentence-level CLIR)

13

17.2.2020.

Topic 3: Efficient Vector Space Retrieval

- Efficient IR system needs to be able to retrieve results, in real-time, from very large document collections
- The goal is to implement the Vector Space Model model with all "tricks" for efficient retrieval

Topic 3: Efficient Vector Space Retrieval

Task:

- Own implementation of the basic VSM model (TF-IDF weighting + cosine ranking)
- Own Implementation of speed-ups (inverted index, pre-clustering)
- Evaluation of all VSM variants in terms of both retrieval performance and efficiency
- Datasets:
 - Medical Information Retrieval dataset: <u>https://tinyurl.com/nfcorpus</u>
- Tip:
 - FAISS: a library for fast computation of vector similarity/distance
 - https://github.com/facebookresearch/faiss

Topic 4: Sentiment Propagation with Link Analysis

- 16
- Propagating properties between texts based on their mutual similarity, using link analysis algorithms (PageRank)
- Task:
 - You're given some product reviews with assigned sentiment ratings, and others without the sentiment ratings
 - Implement a measure of similarity between texts
 - Induce a (fully-connected) similarity graph by computing the similarity between all pairs of documents
 - Use the induced graph and link analysis algorithms (PageRank) to learn the ratings of unannotated reviews from the ratings of the reviews for which you know the rating

Topic 4: Sentiment Propagation with Link Analysis

Graph computation

- For every two texts, compute some score of (semantic) similarity
 - E.g., VSM similarity and/or
 - Semantic similarity using word embeddings
- These scores become weights of the graph edges
- Label propagation:
 - Compute the sentiment scores for uknown nodes
 - PageRank

Topic 4: Sentiment Propagation with Link Analysis

Task:

- Implement a measure of similarity between product review texts:
 - 1. Based on sparse text representation: cosine similarity over TF-IDF vectors
- Induce the fully-connected graph of reviews and induce the sentiment of unlabeled reviews using:
 - PageRank (own implementation)
- Evaluation
- Datasets:
 - Amazon reviews dataset: <u>http://jmcauley.ucsd.edu/data/amazon</u>

Topic 5: Ad-Hoc Retrieval with Pretrained Neural LMs

Task:

- Use some of the pre-trained neural language encoders (PLM), e.g., BERT or XLM, and apply them to (document and sentence) retrieval
- Unsupervised retrieval
 - Use PLM to obtain text representations
 - Unsupervised retrieval based on cosine similarity
- Starting literature:
 - https://arxiv.org/pdf/1810.04805.pdf (BERT)
 - https://arxiv.org/pdf/1903.10972.pdf (BERT-based ad-hoc retrieval)

19

17.2.2020.

Organization

- Form groups of 3 students
- Each group is allowed to pick a topic they like the most
- Topic selection and team forming
 - Deadline: Sunday, June 04 (23:59)
 - Send the email with:
 - Student names and IDs (Matrikelnummer)
 - Selected topic

Organization

Submitting the project results is via WueCampus

- Upload results on WueCampus
- Code (software) as one archive and presentation as PDF file
- Deadline for submission: ???
- Evaluation
 - 0 to 3 points