6. Language Modeling for Retrieval

Prof. Dr. Goran Glavaš

Center for Al and Data Science (CAIDAS)
Fakultät für Mathematik und Informatik
Universität Würzburg

After this lecture, you'll...

- Know what a language model is
- Understand differences between different language models (unigram, bigram)
- Understand how to use language modeling for information retrieval
- Learn about different smoothing schemes for LM for IR
- Be able to compare LM for IR with vector space model and classic probabilistic models

Outline

- Recap of Lecture \#5
- Language Models
- Unigram LM
- Bigram LM
- Query likelihood model for ranking
- Smoothing schemes
- Projects
- Topics explained
- Organization

Recap of the previous lecture

- Probabilistic retrieval
- Q: Why probability theory in IR, and why probabilistic ranking?
- Q: What are the uncertainties of the IR process that we model probabilistically?
- Probability ranking principle
- Q: What does Robertson's probabilistic ranking principle say?
- Q: How do we formalize the probability ranking principle?
- Probabilistic ranking
- Q: What is the ranking task formulation in the probabilistic setting?
- Q: Starting from (log-)odds of relevance, how do we derive the general probabilistic ranking score?
- Binary independence model and extensions
- Q: What assumptions does binary independence model introduce?
- Q: What does the ranking function look like under these assumptions?
- Q: Derive the BIM ranking function with and without relevance judgements
- Q: How do Two Poisson, BM11, and BM25 extend BIM? What assumptions do they introduce?

Recap of the previous lecture

- The ranking score at the core of all probabilistic models:

$$
\log \left(\frac{P(D \mid Q, r)}{P(D \mid Q, \bar{r})}\right)
$$

- Ranking function of Binary Independence Model
- Without (left) and with (right) relevance judgements

$$
\begin{aligned}
\operatorname{rel}(D, Q) & =\sum_{t \in Q} \log \left(\frac{P\left(D_{t} \mid Q, r\right)}{P\left(D_{t} \mid Q, \bar{r}\right)}\right) & \operatorname{rel}(D, Q) & =\sum_{t \in Q} \log \left(\frac{P\left(D_{t} \mid Q, r\right)}{P\left(D_{t} \mid Q, \tilde{r}\right)}\right) \\
& =\sum_{t \in Q} \log \left(\frac{0.5}{\frac{N_{t}}{N}}\right) & & =\sum_{t \in Q} \log \left(\frac{\frac{r_{t}+0.5}{R+1}}{\frac{N_{1}-r+3.5}{N-R+1}}\right) \\
& =\sum_{t \in Q} \log \left(0.5 \cdot \frac{N}{N_{t}}\right) & & =\sum_{t \in Q} \log \left(\frac{\left(r_{t}+0.5\right) \cdot(N-R+1)}{(R+1) \cdot\left(N_{t}-r_{t}+0.5\right)}\right)
\end{aligned}
$$

Binary independence model - example \#1

- Example for BIM (without relevance judgements)
- Document collection consists of the following documents:
- d_{1} : „Frodo and Sam stabbed orcs"
- d_{2} : „Sam chased the orc with the sword"
- d_{3} : „Sam took the sword"
- The query is: „Sam stabbed orc"

	d_{1}			d_{2}		d_{3}
t	Sam	stabbed	orcs	Sam	orc	Sam
$P\left(D_{t} \mid q, r\right)$	0.5	0.5	0.5	0.5	0.5	0.5
$P\left(D_{t} \mid q, \bar{r}\right)$	$3 / 3$	$1 / 3$	$2 / 3$	$3 / 3$	$2 / 3$	$3 / 3$
w_{t}	0.5	1.5	0.75	0.5	0.75	0.5
$\sum w_{t}$		2.75		1.25	0.5	

- Note: computations in this example are done without taking the logarithm

Binary independence model - example \#2

- Example for BIM (with available relevance judgements)
- Document collection contains $\mathrm{N}=30$ documents, including:
- d_{1} : „Frodo and Sam stabbed orcs"
- d_{2} : „Sam chased the orc with the sword"
- d_{3} : „Sam took the sword"
- The query is: „Sam stabbed orc"
- User has indicated $R=6$ relevant documents for this query
- Query terms: $\mathrm{t}_{1}=$, $\mathrm{Sam}^{\prime \prime}, \mathrm{t}_{2}=$, stab", $^{2}=$, orc"
- Document frequencies of query terms in relevant documents and overall collection are given as follows:
- $r_{t 1}=3, N_{t 1}=15$
- $r_{\mathrm{t} 2}=4, \mathrm{~N}_{\mathrm{t} 2}=16$
- $r_{t 3}=2, N_{t 3}=14$

Binary independence model - example \#2

- Example for BIM (with available relevance judgements)

	d_{1}					d_{2}			
t	Sam	stabbed	orcs	Sam	orc	Sam			
$P(D \mid Q, r)=\frac{r_{t}+0.5}{R+1}$	0.5	0.64	0.36	0.5	0.36	0.5			
$P(D \mid Q, \bar{r})=\frac{N_{t}-r_{t}+0.5}{N-R+1}$	0.5	0.5	0.5	0.5	0.5	0.5			
w_{t}	1	1.28	0.72	1	0.72	1			
$\sum_{t} w_{t}$		3	1.72						

- Note: computations in this example are done without taking the logarithm

Outline

- Recap of Lecture \#5
- Language Models
- Unigram LM
- Bigram LM
- Query likelihood model for ranking
- Smoothing schemes

Language Modeling (for Information Retrieval)

- Language models are probabilistic models that capture the probabilities of sequences of words in a language
- Unigram model: how likely is the word „frodo" to appear (in a language)?
- P(„frodo") = ?
- Bigram model: given that current word is „frodo", what is the probability of next word being „baggins"?
- P(„baggins" | „frodo") = ?
- Trigram model: given the current sequence „frodo baggins", what is the probability of next word being „shire"?
- P(,„shire" | „frodo baggins") = ?
- Q: How do we estimate probabilities of words and sequences in a language?
- I.e., What do we use as a representation of the language?

Language Modeling (for Information Retrieval)

- We use the instantiations of the language to estimate the probabilities of words and sequences
- I.e., large corpora - the larger the corpora, it is the better approximation of the true word distributions in language
- In other applications we build language models largest corpora we can compile
- In information retrieval, we build language models

1. From individual documents
2. From the whole document collections

Language Modeling (for Information Retrieval)

- Language models for IR are also probabilistic models
- Language models for IR model the query generation process
- Given a documet d and a query q, what is the probability of query being sampled from the language model of the document
- In other words, we want to estimate $\mathrm{P}(\mathrm{Q}=\mathrm{q} \mid \mathrm{D}=\mathrm{d})$
- Q: Compare this with the probability we estimated in classic probabilistic retrieval
- $P(R=1 \mid Q=q, D=d)$
- The probability of a document generating a query is directly the function according to which we rank the documents
- I.e., We rank the documents in decreasing order of $P(Q=q \mid D=d)$
- Key question: how do we estimate $\mathrm{P}(\mathrm{Q}=\mathrm{q} \mid \mathrm{D}=\mathrm{d})$?

Language Bowl Metaphor

- Assume we have a document in with following occurrences of terms:
- „frodo" (5x), „baggins" (3x), ,"sam" (3x), „shire" (2x), „gandalf" (2x), „orc" (1x)
- Let's represent each term with balls of one color:
- "frodo" -> 5 blue balls, „baggins" -> 3 red balls, „sam" -> 3 yellow balls
- „shire" -> 2 green balls, „gandalf" -> 2 orange balls, „orc" -> 1 purple ball
- We put all balls into one bowl and randomly take them out one by one
- Q: What is the probability of drawing a yellow ball?
- $P(\bigcirc)=P\left(\right.$, sam" $\left.^{\prime \prime}\right)=3 /(5+3+3+2+2+1)=3 / 16$
- Q: What is the probability of drawing first orange then blue ball?
- Replacement: $P(\bigcirc, \bigcirc)=P(„$ gandalf", „frodo" $)=P(„$ gandalf" $) ~ * ~ P(„ f r o d o ")=2 / 16$ * 5/16
- No replacement: $\mathrm{P}(\bigcirc, \bigcirc)=\mathrm{P}($, gandalf", „frodo") = P(„gandalf") * P(„frodo" | „gandalf") - $=2 / 16 * 5 / 15$

Language Model - Generative Story

- Language model can be observed as a statistical model for generating data
- Example (toy language, consisting of four words):
- $P($, frodo" $)=0.3, P($, sam" $)=0.25, P($, gandalf" $)=0.35, P($, shire" $)=0.1$
- $P\left(„\right.$ sam" $^{\prime} \mid$ „frodo" $)=0.4, P(„$ gandalf" \mid „frodo" $)=0.4, P\left(„\right.$ shire" $^{\prime}$ „frodo" $)=0.2$
- Generative process:

1. Randomly draw the first word (e.g., from a uniform distribution)

frodo	sam	gandalf	shire

2. Draw the second word from conditional distribution of the first word (e.g., „frodo")

sam \| frodo	gandalf \| frodo	shire \| frodo

- Q: What is the probability of the sequence „frodo shire"?

Types of Language Models

- We want to estimate the probability of the sequence:

$$
P(\bigcirc \bigcirc \bigcirc)=P(\bigcirc) * P(\bigcirc \mid \bigcirc) * P(\bigcirc \mid \bigcirc \bigcirc) * P(\bigcirc \mid \bigcirc \bigcirc \bigcirc)
$$

- Unigram language model
- Word independence = probability of the word does not depend on previous words
- We ignore conditioning
$\mathrm{P}(\bigcirc \bigcirc \bigcirc)=\mathrm{P}(\bigcirc)$ * $\mathrm{P}(\bigcirc)$ * $\mathrm{P}(\bigcirc)$ * $\mathrm{P}(\bigcirc)$
- Bigram language model
- The probability of word appearing depends only on the immediately preceding word
- Conditioning only one one word before
$\mathrm{P}(\bigcirc \bigcirc \bigcirc)=\mathrm{P}(\bigcirc)$ * $\mathrm{P}(\bigcirc \mid \bigcirc)$ * $\mathrm{P}(\bigcirc \mid \bigcirc)$ * $\mathrm{P}(\bigcirc \mid \bigcirc)$
- Q: N -gram models for $\mathrm{N} \geq 3$ are rarely used in practice. Why?

Sparseness issue of language models

- Language models have a major issue
- The longer the phrase, the harder it is to estimate its true probability in language
- E.g., P(,„bilbo" | „frodo ran around house found ring") = ?
- Long phrases have very few appearances even in very large corpora
- Impossible to compute reliable estimates of their conditional probabilities
- This is why language models for $\mathrm{N} \geq 3$ are almost never used
- In practice, we use unigram and bigram language models
- In IR setting, we build language models from invidual documents
- Even bigram probability hard to estimate
- In IR, we most often employ the unigram language model

Estimating probabilities

- For the unigram language model we need to estimate
- P(term) for every term in the text
- For the bigram language model we additionally need to estimate
- P(term | previous term) for every pair of terms that appear one after another
- Q: How do we estimate these?
- Unigram language model
- $P\left(t_{i}\right)=n_{i} / n_{T}$
- n_{i} is the number of occurences of term t_{i} in the collection
- n_{T} is the total number of word occurences (i.e., tokens) in the collection
- Bigram language model
- $P\left(t_{i} \mid t_{i-1}\right)=n\left(t_{i-1}, t_{i}\right) / n\left(t_{i-1}\right)$
- $n\left(t_{i-1}, t_{i}\right)$ is the number of occurences of bigram $t_{i-1} t_{i}$ in the collection
- $n\left(t_{i-1}\right)$ is the number of occurrences of term t_{i-1} in the collection

Estimating probabilities - example

- We are given a toy collection consisting of three documents
- d_{1} : „Frodo and Sam stabbed orcs"
- d_{2} : „Sam chased the orc with the sword"
- d_{3} : „Sam took the sword"
- Estimating word probabilities for the unigram model:

t_{i}	Frodo	Sam	orc	chased	sword	\ldots
$P\left(t_{i}\right)$	$1 / 16$	$3 / 16$	$2 / 16$	$1 / 16$	$2 / 16$	\ldots

- Estimating the conditional probabilities for the bigram model:

t_{i-1}, t_{i}	Frodo, chased	the, sword	the, orc	\ldots
$P\left(t_{i} \mid t_{i-1}\right)$	0	$2 / 3$	$1 / 3$	\ldots

Outline

- Recap of Lecture \#5
- Language Models
- Unigram LM
- Bigram LM
- Query likelihood model for ranking
- Smoothing schemes

Query likelihood model for ranking

- Given a document collection D and a query q we need to estimate the probability $P(q \mid d)$ for every document d in D
- In the query likelihood model, we estimate the probability P(q\|d) as the probability that the language model built from d generates the query q
- Algorithm

1. Compute the language model M_{i} for every document d_{i} in D
2. Compute the probability $\mathrm{P}(\mathrm{q} \mid \mathrm{Mi})$ for every language model M_{i}

- Intuition: Language models of relevant documents should assign higher probability for the query

Query likelihood model for ranking - example

- We are given a toy collection consisting of three documents
- d_{1} : ,,Sam chased the orc with the sword"
- d_{2} : „Frodo and Sam stabbed orcs"
- d_{3} : „Sam took the sword"
- We are given the query „Sam and orc and sword"
- Let's rank the documents according to unigram LM for IR (ignore stopwords)
- Step 1: Compute language models of individual documents
- $\mathrm{M}_{1}: \mathrm{P}($,,sam" $)=0.25, \mathrm{P}($,,chase" $)=0.25, \mathrm{P}($, orc" $)=0.25, \mathrm{P}($, sword" $)=0.25$
- $M_{2}: P($, frodo" $)=0.25, P($, sam" $)=0.25, P($,stab" $)=0.25, P($, orc" $)=0.25$
- $M_{3}: P($, sam" $)=0.33, P($, took" $)=0.33, P($, sword" $)=0.33$

Query likelihood model for ranking - example

- We are given a toy collection consisting of three documents
- d_{1} : ,,Sam chased the orc with the sword"
- d_{2} : „Frodo and Sam stabbed orcs"
- d_{3} : „Sam took the sword"
- We are given the query „Sam and orc and sword"
- Let's rank the documents according to unigram LM for IR (ignore stopwords)
- Step 2: Let's compute the probabilities $\mathrm{P}\left(\mathrm{q} \mid \mathrm{M}_{\mathrm{i}}\right)$
- $P\left(q \mid M_{1}\right)=P\left(\right.$, sam" $\left.\mid M_{1}\right)$ * $P\left(\right.$, orc" $\left.\mid M_{1}\right)$ * $P\left(\right.$, sword" $\left.\mid M_{1}\right)=0.25$ * 0.25 * 0.25
- $P\left(q \mid M_{2}\right)=P\left(\right.$, sam" $\left.\mid M_{2}\right)$ * $P\left(, \ldots\right.$ orc" $\left.\mid M_{2}\right)$ * $P\left(\right.$, sword" $\left.\mid M_{2}\right)=0.25 * 0.25$ * 0
- $P\left(q \mid M_{3}\right)=P\left(, \text { sam" } \mid M_{3}\right)^{*} P\left(\ldots \text { orc" } \mid M_{3}\right)^{*} P\left(\right.$, sword" $\left.\mid M_{3}\right)=0.33 * 0 * 0.33$
- Q: Is there any problem with query likelihoods given $L M s$ of d_{2} and d_{3} ?

Outline

- Recap of Lecture \#5
- Language Models
- Unigram LM
- Bigram LM
- Query likelihood model for ranking
- Smoothing schemes

Smoothing language models

- Zero frequency problem: Models we've considered so far give probability of $\mathbf{0}$ to queries containing any term that does not occur in the document
- We can prevent this by using smoothing techniques
- Smoothing techniques
- Change the probability distribution of terms in the language model
- Assign some small probability to unseen words
- Three prominent smoothing schemes
- Laplace smoothing
- Jelinek-Mercer smoothing
- Dirichlet smoothing

Laplace smoothing

- Laplace smoothing

1. Adds a fixed small count (often it's 1) to all word counts
2. Renormalizes to get a probability distribution

$$
P\left(t_{i} \mid M_{d}\right)=\frac{n_{i, d}+\alpha}{n_{d}+|V| \cdot \alpha}
$$

- The probability of any unseen word equals

$$
P\left(t_{u n s} \mid M_{d}\right)=\frac{\alpha}{n_{d}+|V| \cdot \alpha}
$$

- Q: What might be a potential shortcoming of the Laplace smoothing?

Jelinek-Mercer smoothing

- Laplace smoothing assumes that all unseen words are equally likely
- Jelinek-Mercer smoothing (also known as interpolated smoothing)

1. Additionally builds a language model M_{D} from the whole document collection D
2. Interpolates between probabilities of the query according to the

- Local LM - language model M_{d} built from the particular document d
- Global LM - language model M_{D} built from the whole collection

$$
P\left(t_{i} \mid M_{d}\right)=\lambda \cdot P\left(t_{i} \mid M_{d}\right)+(1-\lambda) \cdot P\left(t_{i} \mid M_{D}\right)
$$

- The probability of a word unseen in the document d still gets some probability from the global language model
- Probability of an unseen word depends on its frequency in whole collection
- Q: What if $P\left(\mathrm{t}_{\mathrm{i}} \mid \mathrm{M}_{\mathrm{D}}\right)=0$?

Dirichlet smoothing

- Dirichlet smoothing can be seen as a generalization of the Laplace smoothing
- Each word unseen in the document gets an artificial extra count
- But the extra count is not fixed, depends on the global probability of the term
- In this respect, Dirichlet smoothing is similar to Jelinek-Mercer smoothing

$$
P\left(t_{i} \mid M_{d}\right)=\frac{n_{i, d}+\mu \cdot P\left(t_{i} \mid M_{D}\right)}{n_{d}+\mu}
$$

- Less frequent words in the document get more probability from the global component
- The value of the constant μ determines the scale of the global probability's contribution

Language models for IR vs. VSM

- Let's compare the query likelihood model with the VSM model

1. Do we have a term frequency component in LM?

- Q: do query terms that are more frequent in the document contribute more to the relevance score?
- A: Yes! P(t_{i}) $=\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{T}}$

2. Do we have a document frequency component in LM?

- Q: does the global document frequency of the query term affect the relevance scores?
- A: No! If we use Jelinek-Mercer or Dirichlet smoothing, we take into consideration collection frequency, but not document frequency
- However, mixing term frequency (within document) and collection frequency has an effect similar to using IDF

Language models for IR vs. VSM

- Let's compare the query likelihood model with the VSM model

3. Does LM for IR account for different lengths of documents?

- Q: Does it somehow normalize the frequencies of query terms in documents with the document length?
- A: Yes! $\mathrm{P}\left(\mathrm{t}_{\mathrm{i}}\right)=\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{T}}$
- LM for IR vs. VSM: commonalities

1. Term frequency directly in the model
2. Contributions of terms are normalized to account for document length

- LM for IR vs. VSM: differences

1. LM for IR is based in probability theory, VSM in vector algebra
2. Collection frequency (LM) vs. Document frequency (VSM)

Now you...

- Know what a language model is
- Understand differences between different language models (unigram, bigram)
- Understand how to use language modeling for information retrieval
- Are familiar with different smoothing schemes for LM for IR
- Are able to compare LM for IR with vector space model and classic probabilistic models

