

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

Multilingual NLP

3. Training Deep Neural Networks

Prof. Dr. Goran Glavaš Center for Al and Data Science (CAIDAS), Uni Würzburg

After this lecture, you'll...

- Understand how neural LMs unify tackling of various NLP tasks
- Know the common building blocks of neural LMs
- Understand how we train deep NNs (i.e., optimize their parameters)
- Know what "dropout" is

Content

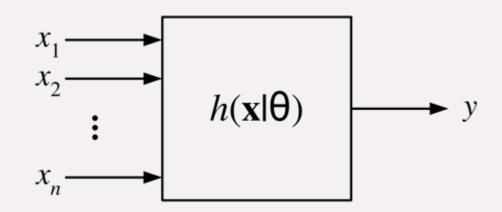
• Uniformity of NLP with Neural LMs

- Training Neural LMs
 - Gradient Descent & Backpropagation
- Adaptive Optimization
 - Momentum, AdaGrad, RMSProp, Adam
- Dropout

Recap: (Supervised) Machine Learning

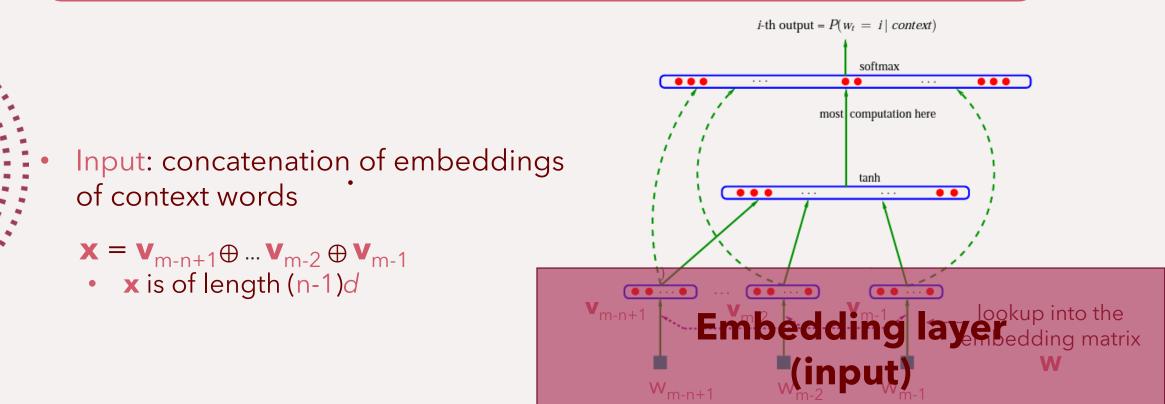
(Supervised) machine learning always has three components:

- 1. A model $h(\mathbf{x}|\boldsymbol{\theta})$: defines how the output is computed from input \mathbf{x}
 - In deep learning models are highly parametrized compositions of non-linear functions (each individual function is a *"layer"*)
 - **θ** model's parameters



Neural Language Modeling

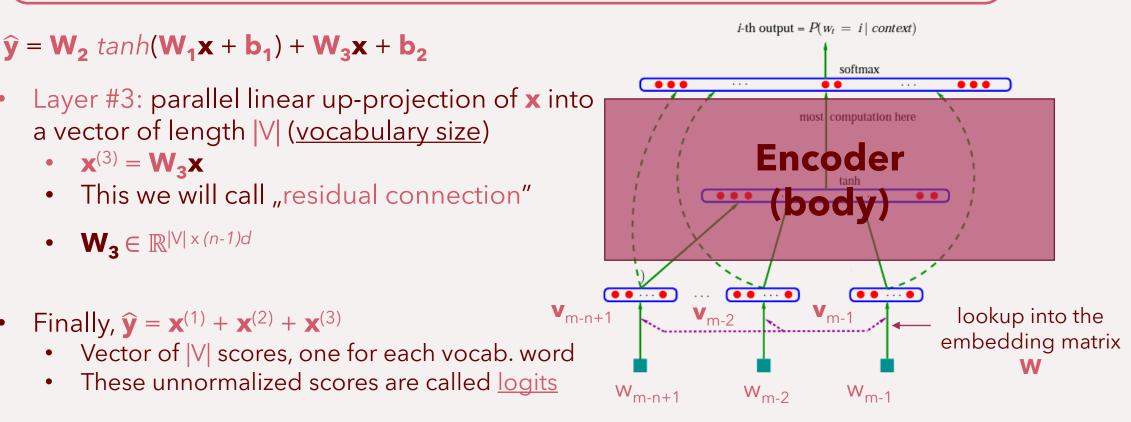
Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). <u>A Neural Probabilistic</u> <u>Language Model</u>. *Journal of Machine Learning Research*, *3*, 1137-1155.



Neural Language Modeling

•

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). <u>A Neural Probabilistic</u> Language Model. Journal of Machine Learning Research, 3, 1137-1155.



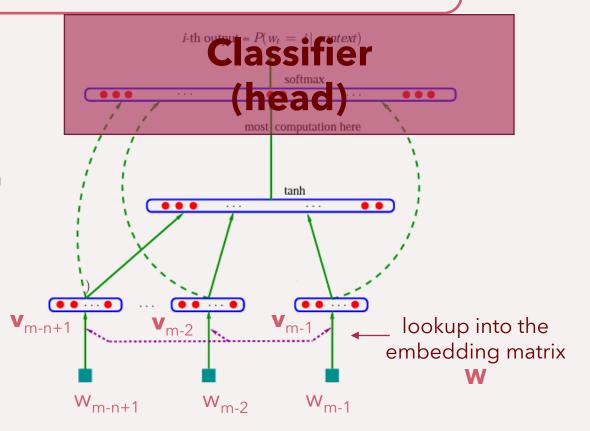
Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). <u>A Neural Probabilistic</u> <u>Language Model</u>. *Journal of Machine Learning Research*, *3*, 1137-1155.

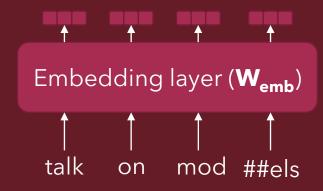
$$\widehat{\mathbf{y}} = \mathbf{W}_2 tanh(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1) + \mathbf{W}_3\mathbf{x} + \mathbf{b}_2$$

- $\widehat{\mathbf{y}} \in \mathbb{R}^{|V|}$ is a vector of *logits*
- But we need P(w | w_{m-n+1}...w_{m-1}) for each word w from the vocabulary V
- Need to convert $\widehat{\boldsymbol{y}}$ into a probability distribution
- **Softmax** function:

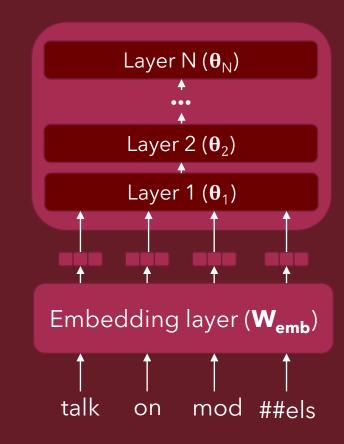
$$\hat{\mathbf{y}}_{i} \rightarrow \frac{e^{\hat{\mathbf{y}}_{i}}}{\sum_{j=1}^{|V|} e^{\hat{\mathbf{y}}_{j}}}$$



- All neural LMs have the same three main components
- 1. Embedding layer ("feet" of the model)
 - Embedding matrix W_{emb} contains embeddings for all terms from vocabulary V
 - Input text is tokenized into tokens $t_1, ..., t_T$
 - Embedding layer is simply a lookup into W_{emb}, fetches embeddings t₁, t₂, ..., t_T

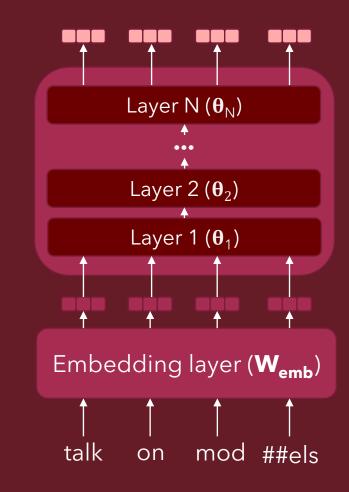


- All neural LMs have the same three main components
- 2. Encoder (body of the model)
 - Conceptually: just a parametrized function
 - Reality: very complex and highly parametrized function
 - **Composition** of smaller (typically nonlinear) parametrized functions, called **layers**

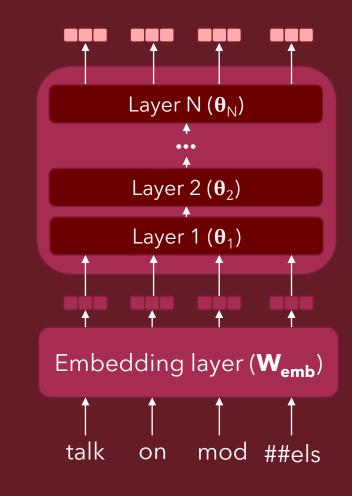


- All neural LMs have the same three main components
- 2. Encoder (body of the model)
 - $\mathbf{t}_1^{N}, \mathbf{t}_2^{N}, ..., \mathbf{t}_T^{N} = \mathbf{enc}(\mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_T | \boldsymbol{\theta}_{enc})$
 - Encoder: a composition of layer functions
 - $\begin{aligned} & \text{enc}(\mathbf{t}_{1}, \mathbf{t}_{2}, ..., \mathbf{t}_{T} \mid \boldsymbol{\theta}_{\text{enc}}) \\ &= lay_{N}(\mathbf{t}_{1}^{N-1}, \mathbf{t}_{2}^{N-1}, ..., \mathbf{t}_{T}^{N-1} \mid \boldsymbol{\theta}_{N}) \\ &= lay_{N}(lay_{N-1}(\mathbf{t}_{1}^{N-2}, \mathbf{t}_{2}^{N-2}, ..., \mathbf{t}_{T}^{N-2} \mid \boldsymbol{\theta}_{N-1}) \mid \boldsymbol{\theta}_{N}) \\ &= ... \\ &= lay_{N}(lay_{N-1}(...(lay_{1}(\mathbf{t}_{1}, \mathbf{t}_{2}, ..., \mathbf{t}_{T} \mid \boldsymbol{\theta}_{1})... \mid \boldsymbol{\theta}_{N-1}) \mid \boldsymbol{\theta}_{N}) \end{aligned}$

Encoder parameters: $\boldsymbol{\theta}_{enc} = \{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_{N-1}, \boldsymbol{\theta}_N\}$



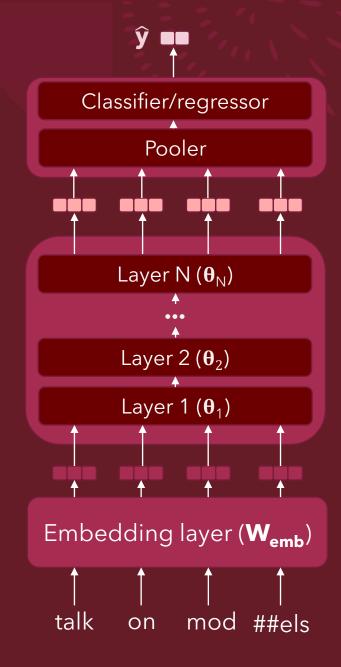
- All neural LMs have the same three main components
- 2. Encoder (body of the model)
 - $\mathbf{t}_1^N, \mathbf{t}_2^N, \dots, \mathbf{t}_T^N = lay_N(lay_{N-1}(\dots(lay_1(\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_T \mid \mathbf{\theta}_1) \dots \mid \mathbf{\theta}_{N-1}) \mid \mathbf{\theta}_N)$
 - In most modern neural LMs, layers are identical
 - Same parametrized function, $lay_N = lay_{N-1} = ... = lay_1 = lay_1$
 - But each layer has its own set of parameters!
 - Parameters, in principle, not shared across layers
 - Encoder parameters: $\boldsymbol{\theta}_{enc} = \{\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_{N-1}, \boldsymbol{\theta}_N\}$
 - Each layer itself is again a composition of parametrized functions, which we'd commonly call sublayers



- All neural LMs have the same three main components
- 3. Classifier (or regressor; head of the model)
 - Its architecture depends on the concrete task for which we're training the neural LM model
 - Typically has two sub-components
 - **1. Pooling layer** (or pooler) produces an aggregate representation of the input
 - Commonly a parameterless function (e.g., average)

 $\mathbf{x} = \operatorname{agg}(\mathbf{t}_1^{N}, \mathbf{t}_2^{N}, ..., \mathbf{t}_T^{N})$

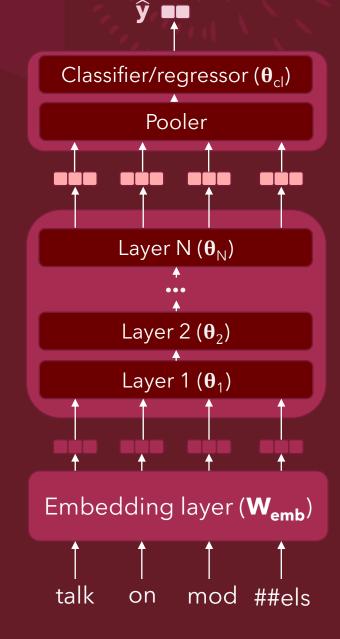
In token-level tasks, there's typically no pooling



- All neural LMs have the same three main components
- 3. Classifier (or regressor; head of the model)
 - Its architecture depends on the concrete task for which we're training the neural LM model
 - Typically has two size composed P with Neural LMs
 - 2. Classification/regression model
 - We usually don't need many parameters in the classifier.
 - **Q**: Why?
 - A single-hidden-layer feed-forward neural network

 $\hat{\mathbf{y}} = classifier(\mathbf{x} \mid \mathbf{\theta}_{cl}) = \mathbf{W}_{2} tanh(\mathbf{W}_{1}\mathbf{x} + \mathbf{b}_{1})$

- Classifier's parameters: $\theta_{cl} = \{ W_1, b_1, W_2 \}$
- C = number of classes (in regression tasks, C=1), $\mathbf{W}_2 \in \mathbb{R}^{h \times C}$



Recap: (Supervised) Machine Learning

(Supervised) machine learning always has three components:

- 1. (Neural LM) Model
 - Embedding layer (feet) + Encoder (body) + Classifier (head)
 - All model's parameters:

 $\boldsymbol{\theta} = \{ \boldsymbol{W}_{emb}, \boldsymbol{\theta}_{enc}, \boldsymbol{\theta}_{cl} \}$

- 2. An objective function
 - Depends on the nature of the classification/regression task
- 3. Optimization algorithm
 - End-to-end training/optimization: we optimize all parameters θ during one (the same) training/optimization procedure

Uniforming NLP with Neural LMs

- (One of the) problem(s) of traditional NLP
 - Different model for each task
 - Task-specific features precomputed from the symbolic text input
- Neural LMs make NLP much more uniform
 - Every NLP task benefits from semantic representations of input (embedding layer)
 - Every NLP task benefits from contextualization of token embeddings against each other (encoder)
 - Embedding layer & encoder: the same, regardless what the task is
 - Classifier: depends on the task-type (but not concrete task itself)

Uniform NLP with Neural LMs

- The vast majority of NLP tasks fall into one of three categories
 - Sequence classification
 - Token classsification
 - Text generation
- Notable exceptions (need task-specific heads)
 - Syntactic parsing
 - Coreference resolution

Sequence classification

- Sequence classification (or regression) denotes tasks in which a label (class or score) is to be assigned to the whole input
- Examples:
 - Classifying product reviews for sentiment
 - Topical classification of news stories
 - Predicting semantic similarity for a pair of sentences/texts
 - Natural language inference: predict if one sentence is logically entailed by the other sentence
 - We <u>pool</u> the encoded token representations and feed the aggregation into the classifier/regressor
 - Averaging is the most commonly used pooling function

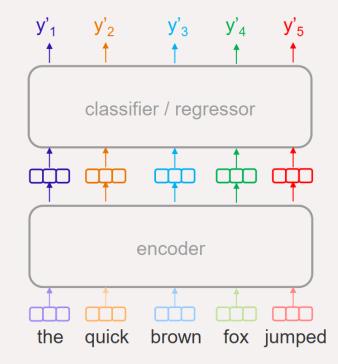
$$\mathbf{x} = \operatorname{agg}(\mathbf{t}_1^{N}, \mathbf{t}_2^{N}, ..., \mathbf{t}_T^{N}) \qquad \widehat{\mathbf{y}} = classifier(\mathbf{x}|\boldsymbol{\theta}_{cl})$$
$$= \frac{1}{T} \sum_{i=1}^{T} \mathbf{t}_i^{N}$$

Token classification

- Token-level classification (or regression), also known as sequence labeling, denotes tasks in which a label (class or score) is to be assigned to <u>each input token</u>
- Examples:
 - Part-of-speech tagging
 - Named entity recognition
 - Any of the other IE tasks where we need to extract
 - the span of tokens hat represent a concept instance

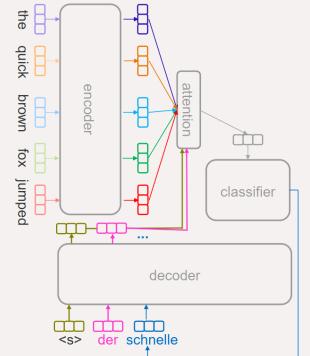
<u>No pooling</u>, the encoded representation of each token is fed to the classifier

 $\widehat{\mathbf{y}}_{\mathbf{i}} = classifier(\mathbf{t}_{i}^{N} | \mathbf{\theta}_{cl}), i \in \{1, ..., T\}$



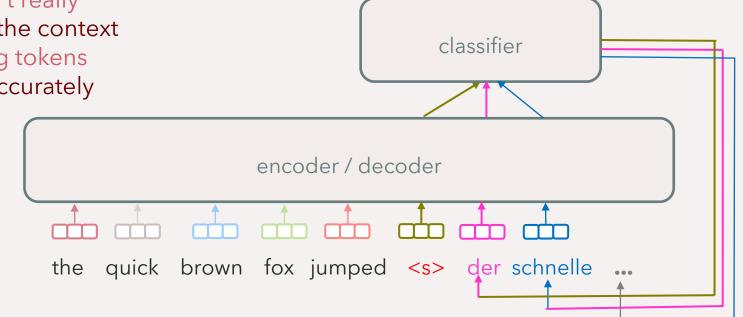
Generation tasks

- **Text generation** denotes tasks in which the model (neural LM) is to generate text starting from some given/preceding context
- Example tasks:
 - Text summarization
 - Machine translation
 - Data-to-text generation
 - Dialogue ("Conversational AI")
 - Traditional neural generation:
 - What we called "encoder" in generic neural LM becomes a decoder
 - <u>Pooling</u> across the representations of the context <u>and</u> previously generated tokens



Generation tasks

- **Text generation** denotes tasks in which the model (neural LM) is to generate text starting from some given/preceding context
- Example tasks:
 - Text summarization, Machine translation, Data-to-text generation, Dialogue
 - Modern neural generation:
 - Powerful neural LMs: we don't really need a separate encoder of the context
 - Context just fed as preceding tokens
 - LLMs can semantically accurately
 - encode long contexts
 - (GPT-4: 32K tokens)
 - In generation tasks commonly C = |V|
 - "classes" are vocabulay tokens



Content

- Uniformity of NLP with Neural LMs
- Training Neural LMs
 - Gradient Descent & Backpropagation
- Adaptive Optimization
 - Momentum, AdaGrad, RMSProp, Adam
- Dropout

- **Objective functions** with neural LMs
 - Loss functions that we're trying to minimize
- Classification
 - Binary cross-entropy (for one-class binary classification)
 - Negative log-likelihood (or cross-entropy loss)
- Regression
 - Mean Squared Error

- x denotes the representation being classified
 - Sequence or token encoding, output of the encoder
 - Of hidden size dimension h
- Binary cross-entropy loss (for one-class binary classification)
 - An instance being classified either belongs to the class of interest (is c) or it doesn't (not c)
 - We only care about c, "not c" is not a "real" class
 - E.g., spam detection we care about recognizing spam
 - The classifier is essentially logistic regression
 - Prediction: $\hat{y} = \sigma(\mathbf{w}^T \mathbf{x} + \mathbf{b})$; w, $\mathbf{b} \in \mathbb{R}^h$ = $1/(1 + e^{-(\mathbf{w}^T \mathbf{x} + \mathbf{b})})$
 - **Loss**: $L_{BCE} = -y \ln \hat{y} (1 y) \ln (1 \hat{y})$

- x denotes the representation being classified
 - Sequence or token encoding, output of the encoder
- Negative log-likelihood (for multi-class classification)
 - Aka (regular) cross entropy loss
 - The classifier is essentially softmax regression
 - Prediction: $\widehat{\mathbf{y}} = \operatorname{softmax}(\mathbf{Wx} + \mathbf{b}); \mathbf{W} \in \mathbb{R}^{C \times h}, \mathbf{b} \in \mathbb{R}^{C}$
 - **Loss**: $L_{NLL} = -\sum_{i=1}^{C} y_i \ln \hat{y}_i$
 - $y_{i=c} = 1$ only for the index i that corresponds to the actual class c of the example, all other $y_{i \neq c} = 0$
 - So, $L_{NLL} = \ln \hat{y}_{i=c}$

- x denotes the representation being classified
 - Sequence or token encoding, output of the encoder
- (Mean) Squared error (for regression)
 - The "regressor" outputs a score
 - **Prediction**: $\hat{y} = g(\mathbf{w}^T \mathbf{x} + \mathbf{b}); \mathbf{w} \in \mathbb{R}^h, \mathbf{b} \in \mathbb{R}^C$
 - *g* is the score normalization function, identity function if no normalization
 - **Loss**: $L_{MSE} = (y \hat{y})^2$

- Loss functions L defined for a single training example (**x**, **y**)
- But we normally do not train our neural LMs with individual examples
- Training dataset: $D = \{(\mathbf{x}_{k'}, \mathbf{y}_{k})\}_{k=1}^{N}$
 - The actual loss that we minimize is an average over losses of individual examples:

$$L_{D} = \sum_{k=1}^{N} L(\widehat{\mathbf{y}}_{k}, \mathbf{y}_{k}))$$

• $\widehat{\mathbf{y}}_{k} = model(\mathbf{x}_{k}|\mathbf{\theta})$

- Model training means solving the following
 - $\widehat{\mathbf{\theta}} = \operatorname{argmin}_{\mathbf{\theta}} \mathsf{L}_{\mathsf{D}}$
 - With model(x|θ) being a complex neural LM and D being a (very) large dataset, this equation clearly has <u>no closed-form solution</u>

Optimization algorithm

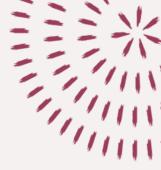
• We resort to (typically unconstrainted) numerical optimization

Numerical Optimization

Numerical optimization refers to optimizing real-valued functions $f(\theta): \mathbb{R}^n \rightarrow \mathbb{R}, \theta = \theta_1, \theta_2, ..., \theta_n \in \mathbb{R}$. This means finding values $\theta_1, \theta_2, ..., \theta_n$ for which f obtains the minimal or maximal value.

- Concretely, optimization of deep NNs relies on gradient-based optimization, i.e., variants of gradient descent
- **Gradient descent** optimization algorithm that uses function differentiation (w.r.t. parameters) to find the minimum of a function

Optimization algorithm



• Our loss function L_D needs to be differentiable w.r.t. all parameters $\boldsymbol{\theta} = \{\theta_1, \theta_2, ..., \theta_n\}$

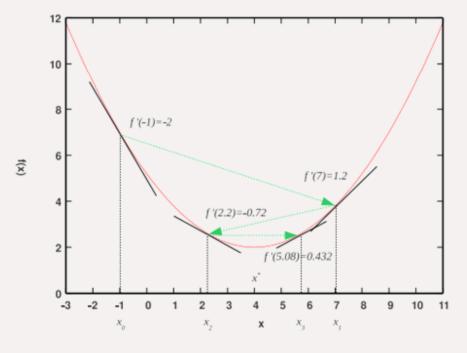
Gradient of a differentiable function

A function of multiple parameters $f(\theta = \theta_1, \theta_2, ..., \theta_n)$ is differentiable if its **gradient** $\nabla_{\theta} f$ - a vector of **partial derivatives** $\nabla_{\theta} f = [\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial \theta_2}, ..., \frac{\partial f}{\partial \theta_n}]$ - exists for every point on the input domain that is $\subseteq \mathbb{R}^n$.

• If function is differentiable, then it also continuous. Most continuous functions used in NNs are differentiable.

Gradient Descent

- **Gradient descent** is a method that moves the parameter values in the direction opposite of the function's gradient in the current point
 - This is guaranteed to lead to a **minimum** only for **convex** functions*
 - Loss functions for tasks solved with neural LMs are most certainly <u>not globally convex</u>



Gradient Descent

Gradient Descent

Gradient descent (sometimes also called steepest descent) is an <u>iterative</u> <u>algorithm</u> for (continuous) optimization that finds a minimum of a convex (single) differentiable function.

• In each iteration GD moves the values of parameters $\theta = \{\theta_1, \theta_2, ..., \theta_n\}$ in the direction **opposite** to the gradient in the current point

$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \boldsymbol{\eta} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta}^{(k)})$$

- ∇_θf(θ) value of the gradient (a vector of same dimensionality as θ) of the function f in the point θ
- η learning rate, defines by how much to move the parameters in the direction opposite of the gradient

- To update some parameter θ_i we need to compute in closed-form the partial derivative of the loss L_D w.r.t. $\theta_i : \frac{\partial L_D}{\partial \theta_i}$
- Our L_D is a complex composition of non-linear parametrized functions
 - Because it's computed on the output of the model

•
$$L_{D} = \sum_{k=1}^{N} L(\widehat{\mathbf{y}}_{k}, \mathbf{y}_{k}))$$

- $= \sum_{k=1}^{N} L(model(\mathbf{x}_{k}|\boldsymbol{\theta}), \mathbf{y}_{k}))$ = $\sum_{k=1}^{N} L(lay_{N}(lay_{N-1}(...(lay_{1}(\mathbf{x}|\boldsymbol{\theta}_{1})...|\boldsymbol{\theta}_{N-1})|\boldsymbol{\theta}_{N}), \mathbf{y}_{k}))$

- $$\begin{split} \mathsf{L}_{\mathsf{D}} &= \sum_{k=1}^{N} \mathsf{L}(\widehat{\mathbf{y}}_{k}, \mathbf{y}_{k})) \\ &= \sum_{k=1}^{N} \mathsf{L}(model(\mathbf{x}_{k}|\boldsymbol{\theta}), \mathbf{y}_{k})) \\ &= \sum_{k=1}^{N} \mathsf{L}(\mathsf{lay}_{\mathsf{N}}(\mathsf{lay}_{\mathsf{N-1}}(...(\mathsf{lay}_{1}(\mathbf{x}||\boldsymbol{\theta}_{1})...||\boldsymbol{\theta}_{\mathsf{N-1}})||\boldsymbol{\theta}_{\mathsf{N}}), \mathbf{y}_{k})) \end{split}$$
- Let θ_{ij} denote the j-th parameter of the i-th layer of the model
- Computing <u>∂L_p</u> in <u>closed form</u> for params θ_{Nj} of the last layer is <u>easy</u>
 But it gets progressively more cumbersome and difficult the earlier the
- But it gets progressively more cumbersome and difficult the earlier the layer of the parameter is

- Computing $\frac{\partial L_D}{\partial \theta}$ in <u>closed form</u> gets progressively more cumbersome and difficult the earlier the layer of the parameter is
- **Backpropagation** leverages the chain rule of differentiation to avoid computation of closed-form gradients for "deeper" parameters
 - Gradients of parameters from layer K are estimated from gradients of parameters from layer K+1

$$\frac{\partial L_{D}}{\partial \theta_{ij}} = \frac{\partial L_{D}}{\partial L} \frac{\partial L}{\partial model} \frac{\partial model}{\partial lay_{N}} \frac{\partial lay_{N}}{\partial lay_{N-1}} \dots \frac{\partial lay_{i+1}}{\partial lay_{i}} \frac{\partial lay_{i}}{\partial \theta_{ij}}$$

$$\frac{\partial L_{D}}{\partial \theta_{ij}} = \frac{\partial L_{D}}{\partial L} \frac{\partial L}{\partial model} \frac{\partial model}{\partial lay_{N}} \frac{\partial lay_{N}}{\partial lay_{N-1}} \dots \frac{\partial lay_{i+1}}{\partial lay_{i}} \frac{\partial lay_{i}}{\partial \theta_{ij}}$$

- For the last layer:
 - $\frac{\partial L_D}{\partial \theta_{Nj}} = \frac{\partial L_D}{\partial L} \frac{\partial L}{\partial model} \frac{\partial model}{\partial lay_N} \frac{\partial lay_N}{\partial \theta_{ij}}$

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (**1986**). <u>Learning representations by</u> <u>back-propagating errors</u>. Nature, 323(6088), 533-536.

$$\frac{\partial L_{D}}{\partial \theta_{ij}} = \frac{\partial L_{D}}{\partial L} \frac{\partial L}{\partial model} \frac{\partial model}{\partial lay_{N}} \frac{\partial lay_{N}}{\partial lay_{N-1}} \dots \frac{\partial lay_{i+1}}{\partial lay_{i}} \frac{\partial lay_{i}}{\partial \theta_{ij}}$$

• For layer N-1 (and then so on backwards for all layers): • $\frac{\partial L_D}{\partial \theta_{N_1'j}} = \frac{\partial L_D}{\partial L} \frac{\partial L}{\partial model} \frac{\partial model}{\partial lay_N} \frac{\partial lay_N}{\partial lay_{N_1}} \frac{\partial lay_N}{\partial \theta_{N_1'j}}$

 $\frac{\partial L_D}{\partial \theta_{N-1'j}} = \delta_N \frac{\partial lay_N}{\partial lay_{N-1}} \frac{\partial lay_N}{\partial \theta_{N-1'j}}$ $\frac{\partial L_{D}}{\partial \theta_{ii}} = \delta_{i+1} \frac{\partial lay_{i+1}}{\partial lay_{i}} \frac{\partial lay_{i}}{\partial \theta_{ii}}$ $\frac{\partial L_{D}}{\partial \theta_{1i}} = \mathbf{\delta}_{2} \frac{\partial lay_{2}}{\partial lay_{1}} \frac{\partial lay_{1}}{\partial \theta_{1i}}$

- With backprop we avoid having to explicitly compute gradient functions for all layers/parameters
- But we have to compute gradients in the inverse order of layers ☺
- Gradient of a subsequent layer needed for the computation of the gradient of the preceding layer

Stochastic gradient descent

- We never compute the exact gradient of the loss function on the whole training set D = {(x_k, y_k)}^N_{k=1}
 - Q: Why not?
 - Conceptual reason: gradient descent is guaranteed to lead to the closest local minimum (if η small enough)
 - Practical reason: we cannot fit all training examples into memory (GPU VRAM) at once
- Stochastic gradient descent (SGD) compute the loss, gradients, and update the parameters based on a single training instance
 - Repeat for all training instances
 - Order of instances random (hence the name stochastic)
 - Many parameter updates <u>slow training</u>

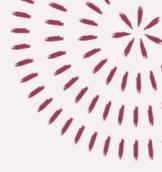
Mini-batch Gradient Descent

- Mini-batch GD: sweet spot between full GD and SGD
 - We train in the so-called mini-batches of B examples (e.g., B = 32)
 - Iteratively (mini-batch after mini-batch):
 - 1. Select B training examples from the training set D
 - 2. Compute the loss L_B and gradient $\nabla_{\theta}L_B(\theta)$ based on B (using the backpropagation algorithm)
 - 3. Update the parameters $\theta^{(t+1)} = \theta^{(t)} \eta \nabla_{\theta} L_{B}(\theta^{(t)})$
 - MBSG more resilient to local minima than GD and faster than SGD

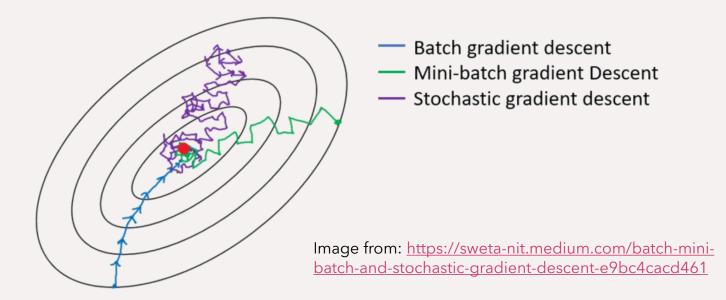
Training epoch: model updated on all mini-batches B from D,

- Each training example part of exactly one mini-batch
- It is common to train neural LMs for multiple epochs

Mini-batch gradient descent



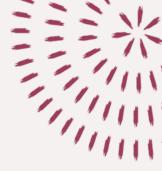
- Mini-batch GD: sweet spot between full GD and SGD
 - We train in the so-called mini-batches of B examples (e.g., B = 32)
 - MBSG more resilient to local minima than GD and faster than SGD



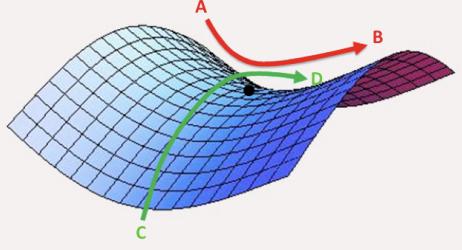
Content

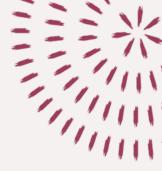
- Uniformity of NLP with Neural LMs
- Training Neural LMs
 - Gradient Descent & Backpropagation
- Adaptive Optimization
 - Momentum, AdaGrad, RMSProp, Adam
- Dropout

Adapted GD Algorithms



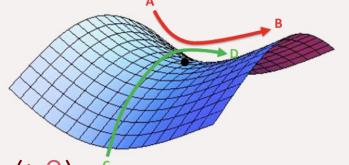
- Let t be the counter of the number of updates to model's parameters
 - $t = 1 \rightarrow$ first update of parameters, based on gradient of first mini-batch
 - **Mini-batch GD**: $\theta^{(t+1)} = \theta^{(t)} \eta(t) \nabla_{\theta} L_{B}(\theta^{(t)})$
 - Update size determined with learning rate, $\eta(t)$, and the gradient $\nabla_{\theta} L_{B}(\theta^{(t)})$
 - Problem in saddle points
 - Gradient is zero or close to zero
 - Learning effectively stops





Gradient Descent with Momentum

- To avoid this "stopping", adaptations of GD keep information about the momentum, i.e., previous sizes of parameter changes
 - **GD**: change(t) = $\eta(t)\nabla_{\theta}L_{B}(\theta^{(t)})$, $\theta^{(t+1)} = \theta^{(t)}$ -change(t)
 - GD with Momentum:
 - $change(t) = \beta * \eta(t)\nabla_{\theta}L_{B}(\theta^{(t)}) + (1-\beta) * change(t-1)$
 - $change(t-1) = \beta * \eta(t-1)\nabla_{\theta}L_{B}(\theta^{(t-1)}) + (1-\beta) * change(t-2)$
 - ...
 - change(t = 1) = $\eta(1)\nabla_{\boldsymbol{\theta}}L_{B}(\boldsymbol{\theta}^{(0)})$
 - Exponentially weighted averages of current and past updates
 - β is the hyperparameter of the momentum algorithm



Adaptive Gradient (AdaGrad)

- **GD** makes the step of the same size η in all directions (for all parameters)
 - But the gradient $\nabla_{\theta} L_{B}(\theta^{(t)})$ is not of the same size in all directions
 - Optimum is not equally distant from the current point in all dimensions
 - Q: A separate learning rate η_i for each parameter θ_i ?
 - Not feasible for neural LMs (100M+ parameters)
 - AdaGrad: adaptively scales the learning rate for each parameter the scaling factor is the sum of the sizes of the gradient squares across all updates $\theta^{(t+1)} = \theta^{(t)} \eta \frac{\nabla_{\theta} L_{B}(\theta^{(t)})}{\sum_{i=1}^{t} \nabla_{\theta}^{2} L_{B}(\theta^{(i)})}$
 - The size of the update to each parameter depends on the size of the current gradient with respect to the sum of all gradients up to now

Root Mean Square Propagation (RMSProp)

- The sum of the squares of all previous gradients in AdaGrad quickly becomes much larger than any current gradient
 - Updates become small, and optimization slow
- **RMSProp**: introduces a <u>decay</u> on the sum of gradient squares
- $g(t) = \nabla_{\theta} L_{B}(\theta^{(t)})$ gradient at time step t
- s(t) = sum of gradient squares with decay at time step t
- $s(t) = \beta * s(t-1) + (1 \beta)*g^{2}(t)$
- s(1) = g(1)

$$\mathbf{\Theta}^{(t+1)} = \mathbf{\Theta}^{(t)} - \eta \, \frac{\mathbf{g}(t)}{\mathbf{s}(t)}$$

Adaptive Moment Estimation (Adam)

Kingma, D. P., & Ba, J. (2015). <u>Adam: A method for stochastic optimization</u>. International Conference on Learning Representations (ICLR).

- Adam combines momentum and RMSProp (squared momentum)
 - Empirically shown to work very well in practice
 - The most common choice for optimization of neural LMs
 - Cited over 140K times!
- $g(t) = \nabla_{\theta} L_B(\theta^{(t)}) gradient at time step t$
- s₁(t) = sum of past gradients with decay at time step t
 - $s_1(t) = \beta_1 * s(t-1) + (1 \beta_1)*g(t)$
- s₂(t) = sum of past gradient squares with decay at time step t
 - $s_2(t) = \beta_2 * s(t-1) + (1 \beta_2) * g^2(t)$
- $s_1(1) = g(1)$
- $s_2(1) = g^2(1)$

 $\mathbf{\Theta}^{(t+1)} = \mathbf{\Theta}^{(t)} - \eta \, \frac{\mathbf{s}_1(t)}{\mathbf{s}_2(t)}$

Content

- Uniformity of NLP with Neural LMs
- Training Neural LMs
 - Gradient Descent & Backpropagation
- Adaptive Optimization
 - Momentum, AdaGrad, RMSProp, Adam
- Dropout

Dropout

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). <u>Dropout: a simple way to prevent neural networks from overfitting.</u> The journal of Machine Learning Research, 15(1), 1929-1958..

- Motivation: the risk of model's **overfitting** is related to the ratio of:
 - Number of model's parameters
 - Number of training examples
- If the number of parameters is much larger than the number of training examples, the model will likely overfit to the training data
 - Will <u>not</u> generalize well
- Neural LMs have a lot of parameters

Dropout

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). <u>Dropout: a simple way to prevent neural networks from overfitting.</u> The journal of Machine Learning Research, 15(1), 1929-1958..

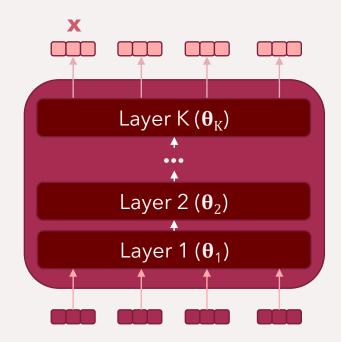
- Regularization by training multiple models (multiple instances of deep NNs) and ensembling their predictions is effective
 - But this is very <u>computationally prohibitive</u>!
 - Especially if models are LLMs with billions of parameters ©
- **Dropout**: a regularization method that simulates training many (slightly) different models in a single training procedure
 - By means of randomly dropping out "neurons"
 - Applied on per-layer basis, i.e., on the output of a layer

Dropout

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). <u>Dropout: a simple way to prevent neural networks from overfitting.</u> The journal of Machine Learning Research, 15(1), 1929-1958..

- Let **x** be any hidden representation, output of any layer (e.g., in our neural LM)
 - E.g., output of layer K
- Applying dropout on a layer means
 - To modify its output(s) **x** so that each element x_i becomes replaced with x'_i:

 $x'_i = 0$ with <u>dropout probability</u> p or $x'_i = x_i / (1-p)$ with the probability (1-p)



The End

ding +

in himmen to

Image: Alexander Mikhalchyk