
Multilingual NLP

2. Neural Language Modeling & Tokenization

Prof. Dr. Goran Glavaš

Center for AI and Data Science (CAIDAS), Uni Würzburg

Image: Alexander Mikhalchyk

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

After this lecture, you’ll...

• Get the core idea behing neural languge modeling

• Learn about different ways to tokenize text

• Understand he details of most popular tokenization strategies used in

(Transformer-based) neural language models

Content

• What is Language Modeling?
• Neural Language Modeling

• Tokenization
• Word-Level vs. Character-Level
• Subwords

What is Language Modeling?

• Guess the next word in the sequence:

I see three people standing on the ___

• Which is more likely?
• beach or wardrobe
• mountain or cat
• sidewalk or bookshelf

What is Language Modeling?

• (Probabilistic) Language modeling aims to determine the
probabilities of sequences of words in a language

P(I see three people standing on the bridge) = ?
or generally P(w1w2...wm) = ?

• Q: How could we estimate this P?

• Maximum likelihood estimation (MLE)
• Large corpus C = all the text we can get our hands on
• Count the number of occurrences of c(w1w2...wm) in C
• Divide the count with the size of C

P(w1w2...wm) = c(w1w2...wm)/|C|

What is Language Modeling?

• C = all text ever produced in the history of human kind
P(an unicorn riding a crocodile while drinking wine) = ?

Image generated with Stable Diffusion:
https://stablediffusionweb.com/#demo

https://stablediffusionweb.com/#demo

N-gram Language Modeling

• Symbolic NLP: every word/token a different symbol
• Meaning of text stems from the set of symbols it contains

• Under such a view, language is very sparse
• The longer the sequence w1w2...wn (i.e., the larger n is), the less

likely it is that will have been observed in C, no matter the size of C

• N-gram language models are (a partial) remedy

P(w1w2...wm) = P(w1) P(w2|w1) P(w3|w1w2) ... P(wm|w1w2...wm-1)

P(wm|w1w2...wm-1) ≈ P(wm|wm-n+1...wm-1)

. . . .

N-gram Language Modeling

• N-gram language models are (a partial) remedy

P(w1w2...wm) = P(w1) P(w2|w1) P(w3|w1w2) ... P(wm|w1w2...wm-1)

P(wm|w1w2...wm-1) ≈ P(wm|wm-n+1...wm-1)

• Unigram LM: n = 1
• P(wm|w1w2...wm-1) ≈ P(wm)
• P(w1w2...wm) ≈ P(w1) P(w2) ... P(wm-1) P(wm)

• Bigram LM: n = 2
• P(wm|w1w2...wm-1) ≈ P(wm | wm-1)
• P(w1w2...wm) ≈ P(w1) P(w2|w1) ... P(wm-1|wm-2) P(wm|wm-1)

. . . .

. . . .

. . . .

N-gram Language Modeling

• Shortcomings of n-gram LM-ing (i.e., symbolic LM-ing)

• Generating language with n-gram LMs with small n leads to
incoherent (non-sensical) text

• E.g., n = 3, we start with „a blue unicorn”
• argmaxw P(w|”blue unicorn”) → e.g., t-shirt
• argmaxw P(w|”unicorn t-shirt”) → e.g., shop
• argmaxw P(w|”t-shirt shop”) → e.g., bankruptcy

„a blue unicorn t-shirt shop bankruptcy...” ?!

• This can be somewhat remedied (but not much) with:
• Smoothing schemes
• Searching for „globally” best probability (e.g., w. beam search)

N-gram Language Modeling

• Shortcomings of n-gram LM-ing (i.e., symbolic LM-ing)

• Sparsity of symbols in language prevents n-gram LMs large n’s
• But large n would only lead to repetition of n-grams from the training set

(on which we estimated conditional probabilities)

• No semantic relations whatsoever between symbols
• If we know cat is similar to dog
• Then observing ”I pet a white cat” should affect P(dog | pet a white)

• The core idea of neural language modeling:
• By establishing semantic relations between symbols, we can alleviate

the issue of sparsity of language (in terms of symbols)

• Q: How to determine such semantic relations? By LM-ing ☺

Content

• What is Language Modeling?
• Neural Language Modeling

• Tokenization
• Word-Level vs. Character-Level
• Subwords

Neural Language Modeling

• Traditional N-gram LM-ing is discrete
• Any two words equally (dis)similar
• Vocabulary of N words → corresponds to an N-dim.

vector space, each word one axis

• Neural language modeling is continuous
• words → „dense” vectors in continous space
• Q: how to obtain meaningful vectors?

• Words with similar meaning get similar vectors
• Vectors that enable better language modeling

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

1. Assign to each word in the vocabulary „a distributed feature vector”

• We assume we have a vocabulary V
• Each word w ∈ V gets a d-dimensional vector vw∈ ℝd

• d usually much smaller than V

• Vectors vw of all |V| vocabulary words stacked in a matrix

W ∈ ℝ|V| x d

• We will call W an embedding matrix of the LM
• Supposed to encode context-independent meanings of words

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

2. Define language modeling probabilities as a function of vector
representations (i.e., embeddings) of words

P(wm|w1w2...wm-1) ≈ g(vm-n+1, ..., vm-2, ..., vm-1 |ω)

• „The function g may be implemented by a feed forward or recurrent
neural network or another parametrized function, with parameters ω”

• „The overall set of parameters” of the model is θ = (W, ω)

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Recap: (Supervised) Machine Learning

(Supervised) machine learning always has three components:

1. A model h(x|θ): defines how the output is computed from input x
• In deep learning models are highly parametrized compositions of

non-linear functions (each individual function is a „layer”)
• θ – model’s parameters

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

wm-n+1 wm-2

vm-2

wm-1

vm-n+1 vm-1 lookup into the
embedding matrix

W

• Input: concatenation of embeddings
of context words

x = vm-n+1⊕ ... vm-2 ⊕vm-1
• x is of length (n-1)d

.

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

wm-n+1 wm-2

vm-2

wm-1

vm-n+1 vm-1 lookup into the
embedding matrix

W

• Bengio’s Neural LM: The Model

ෝy= tanh(W1x + b1)W2 + W3x + b2

• Layer #1: non-linear down-projection of x
• x(1) = tanh(W1x + b1)
• tanh = hyperbolic tangent

• W1 ∈ ℝ h x (n-1)d and b1 ∈ ℝh

parameters that downproject x
from size (n-1)d to size h

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

wm-n+1 wm-2

vm-2

wm-1

vm-n+1 vm-1 lookup into the
embedding matrix

W

ෝy = W2 tanh(W1x + b1) + W3x + b2

• Layer #2: linear projection of x’ into a vector
of length |V| (vocabulary size)
• x(2) = W2x(1) + b2

• W2 ∈ ℝ|V| x h and b2∈ ℝ|V|

parameters that up-project x(1)

from hidden size h to size |V|

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

wm-n+1 wm-2

vm-2

wm-1

vm-n+1 vm-1 lookup into the
embedding matrix

W

ෝy = W2 tanh(W1x + b1) + W3x + b2

• Layer #3: parallel linear up-projection of x into
a vector of length |V| (vocabulary size)
• x(3) = W3x
• This we will call „residual connection”

• W3 ∈ ℝ|V| x (n-1)d

• Finally, ෝy = x(1) + x(2) + x(3)

• Vector of |V| scores, one for each vocab. word
• These unnormalized scores are called logits

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

wm-n+1 wm-2

vm-2

wm-1

vm-n+1 vm-1 lookup into the
embedding matrix

W

ෝy = W2 tanh(W1x + b1) + W3x + b2

• ෝy ∈ ℝ|V| is a vector of logits

• But we need P(w | wm-n+1...wm-1) for each
word w from the vocabulary V

• Need to convert ෝy into a probability
distribution

• Softmax function:

ොyi →
𝑒
yi

σ
𝑗=1
|𝑉|

𝑒
yj

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Recap: (Supervised) Machine Learning

(Supervised) machine learning always has three components:

1. Model
2. An objective function – quantifies „how correct” model’s prediction

prediction h(x|θ) is w.r.t. to the desired output y
• Most commonly we minimize a loss function

Objective of Bengio’s LM:
• For an observed sequence wm-n+1...wm-1wm

• We want to maximize P(w | wm-n+1...wm-1) for the true word wm

• We want P = 1 for wm and P = 0 for all other words from vocabulary V

• Common loss function in LMs: negative log-likelihood

• L(x, y |θ) = -σ𝑖=1
|𝑉|

yi ln(ොyi) or - ln P(wm | wm-n+1...wm-1)

Recap: (Supervised) Machine Learning

(Supervised) machine learning always has three components:

1. Model
2. Objective function

3. Optimization algorithm – an algorithm that finds values 𝜽 for the
model’s parameters that optimize the objective function on the
training dataset D = {(x, y)}

𝜽 = argmin𝜽 L(D|𝛉)

• In deep learning: numerical optim. with gradient-based algorithms
• Layerwise, from last layer to the first – backpropagation (Lecture 3)

Neural Language Modeling

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic

Language Model. Journal of Machine Learning Research, 3, 1137-1155.

wm-n+1 wm-2

vm-2

wm-1

vm-n+1 vm-1 lookup into the
embedding matrix

W

• Bengio’s LM is from 2003!!!
• Today’s LLMs of are conceptually

virtually identical!

• Q: why did it take 15-20 years for neural
LMs to become „a thing”

• Short answer: hardware
• softmax over large vectors is slow
• Prevented Bengio’s LM to be trained

on (very) large text collections

https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Types of Language Modeling

• Autoregressive (aka causal) LM-ing

• Only preceding context available

• Better for lang. generation tasks

• Naturally, more of a „decoder”

• Masked LM-ing

• Whole context available

• Better for lang. understanding tasks

• Naturally, more of an „encoder”

Autoregressive LM-ing

talk on language

models

Masked LM-ing

talk on ___

language

models

Neural Language Modeling

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

• Fast forward 10 years: word embedding models
• Two models: Skip-Gram and CBOW in a software package word2vec

• Shallower model than Bengio’s LM
• Word representations only parameters
• Two vectors for each word from the vocabulary

• Correspondingly, two embedding matrices

W1 ∈ ℝ|V| x d and W2 ∈ ℝd x |V|

• v1(w): vector of word w in W1 (a row in the matrix)
• v2(w): vector of word w in W2 (a column in the matrix)

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

W1 W2

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

W1 W2

• W1 ∈ ℝ|V| x d and W2 ∈ ℝd x |V|

• Continous Bag-of-Words (CBOW)
• predict central word from context
• Effectively, masked LM-ing

• Input: wi-k...wi-1[wi]wi+1 ...wi+k

• Model:

• Layer #1: vc =
1

2𝑘
σ𝑗= −𝑘
𝑘 𝐯1(wi+j)

• Layer #2: ෝy = softmax(vc W2)

• y = one-hot encoding of wi

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

W1 W2

• W1 ∈ ℝ|V| x d and W2 ∈ ℝd x |V|

• Skip-Gram
• Predict each of context words from

the center word
• One training instance is one pair

wi and wi+j (j between –k and k)
• Model:

• „Layer #1”: just lookup – vc is the
row of W1 that corresponds to wi

• Layer #2: ෝy = softmax(vc W2)

• y = one-hot encoding of wi+j

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

W1 W2

• Both Skip-Gram and CBOW:

ෝy = softmax(vc W2)

• Lesson from Bengio: softmax over large
vectors is slow

• Trick: Negative sampling
• Multiply vc only with a small subset of

columns from W2

• Must include the column of the „gold”
word to be predicted („positive”)N
randomly selected columns –
„negatives”

• Softmax over a vector of length N+1

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Neural Language Modeling

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. Advances in
neural information processing systems, 26.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic
Language Model. Journal of Machine Learning Research, 3, 1137-1155.

vs.

Q: Which model is more expressive/powerful?
• Skip-Gram/CBOW: produces only static word vectors

• The vector of the word is always the same, regardless of the context

• Bengio’s LM has more parameters than just word embeddings: these
parameters essentialy contextualize word vectors against each other

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Content

• What is Language Modeling?
• Neural Language Modeling

• Tokenization
• Word-Level vs. Character-Level
• Subwords

Tokenization

• So far, we always assumed a vocabulary V
• What „words” should be in that vocabulary?

• In neural LM-ing, we typically build the vocabulary from a large
training corpus on which we intend to train the LM

• Two key considerations (especially important for multilingual LMs):
• Coverage

• Minimize the number of tokens that are unknown (UNK) to the
LM (i.e., unseen in the training corpus)

• Memory
• A very large vocabulary means a very large embedding matrix,
• Neural LMs are trained on GPUs with „limited” VRAM

Word-level tokenization

• Whitespace tokenization: simply split the text on whitespaces
• Some tweaks needed, e.g., for punctuation „ain’t that funny.”
• Rule-based word-level tokenizers (typically language-specific)

• Issues: word-level tokenization is „sparse“

• Languages that do not use whitespaces to delimit words
• E.g., Mandarin Chinese (Simplified):今天是维尔茨堡的一个好日子
• E.g., Komposita in German: „Rhabarberbarbarabarbarbaren”

• Word-level tokenization doesn’t reflect morphosyntax of the language
• tokenization vs. token
• tokenization vs. industrialization

• Word-level tokenization results in very large vocabularies
• Nonetheless, any word not seen in training data is UNK

https://www.youtube.com/watch?v=gG62zay3kck&ab_channel=winmic7

Character-level tokenization

• How about each character being its own token
• Through LM-ing, we learn an embedding for each character

• Advantages
• Small vocabulary
• Even if we collect all characters from all scripts in the world, still

merely a few thousand symbols
• Simple and super-fast!

Character-level tokenization

• How about each character being its own token
• Through LM-ing, we learn an embedding for each character

• Shortcomings
• Embedding vectors supposed to encode context-independent

meaning of tokens

• Characters have no intrinsic meaning* (recall: morphemes)
• What’s the context-independent meaning of „a”?

• Hard to obtain meaningful representations for units that do have
meaning – morphemes or words – from character embeddings
• Character-level tokenization commonly leads to performance loss

• Texts/sentences (e.g., in classification) very long sequences of
character embeddings – only short texts would fit into GPU memory

Content

• What is Language Modeling?
• Neural Language Modeling

• Tokenization
• Word-Level vs. Character-Level
• Subwords

Subword tokenization

• Sweet spot between word- and character level tokenization

• Searching for the optimal tradeoff between
• Memory footprint of an LM and
• LM’s ability to learn semantically meaningful text representations

• Subword tokenization is:
• More memory-efficient than word-level tokenization
• More semantically meaningful than character-level tokenization

Subword tokenization

• What we know from early work on LMs (Bengio, Mikolov):
• Token frequency correlates with embedding quality

• Core ideas of subword tokenization:

1. Frequent words should not be split into smaller parts

2. Less frequent words split into subwords that occur more frequently

• Example: „token” vs. „tokenization”
• „tokenization” split into subwords „token” and „ization”
• both „token” and „ization” will have larger corpus frequency

• Q: how to decide (1) what to split and (2) how to split it?

Subword tokenization

• What we know from early work on LMs (Bengio, Mikolov):
• Token frequency correlates with embedding quality

• Q: how to decide (1) what to split and (2) how to split it?

• Different subword tokenization algorithms

• Byte-Pair Encoding (BPE)
• WordPiece
• SentPiece

Byte-Pair Encoding

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

• Introduced in the context of neural machine translation (NMT),
before pretraining of LLMs was „a thing”

• Requires a (typically language-specific) pre-tokenizer
• E.g., whitespace or rule-based tokenizer

• Result of pre-tokenization of the training corpus:
• A set of word-level tokens with occurrence frequencies

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

• Step 1: pre-tokenize and produce the set of word-level tokens Vw

Toy example: Vw = {son:8, ton: 4, top:12, pop:3, sons:4}

• Step 2: build the initial base vocabulary

• Initial base vocabulary: all characters in words from Vw

VB = {n, o, p, s, t}

• Vw (as per VB): {s, o, n: 8; t, o, n: 4; t, o, p: 12; p, o, p: 3; s, o, n, s: 4}

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

• Step 3 (repeat until desired vocabulary size is reached):

• Count the frequency of each pair of „tokens” from VB

• Merge the two tokens VB with highest frequency of occurrence across the
words from Vw

Vw = {s, o, n: 9; t, o, n: 4; t, o, p: 12; p, o, p: 3; s, o, n, s: 4}
VB = {n, o, p, s, t} (desired vocab size: 8 tokens)

Iteration #1: „o”+„n” have the highest frequency of 17 („son”, ton”, and „sons”)

• Merge „o” and „n” into „on” in all corresponding words from Vw

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

• Step 3 (repeated until desired vocabulary size is reached):

• Count the frequency of each pair of „tokens” from VB

• Merge the two tokens VB with highest frequency of occurrence across the
words from Vw

Vw = {s, on: 9; t, on: 4; t, o, p: 12; p, o, p: 3; s, on, s: 4}
VB = {n, o, p, s, t, on} (desired vocab size: 8 tokens)

Iteration #2: „o”+„p” have the highest frequency of 15 („top”, and „pop”)

• Merge „o” and „p” into „op” in all corresponding words from Vw

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

• Step 3 (repeated until desired vocabulary size is reached):

• Count the frequency of each pair of „tokens” from VB

• Merge the two tokens VB with highest frequency of occurrence across the
words from Vw

Vw = {s, on: 9; t, on: 4; t, op: 12; p, op: 3; s, on, s: 4}
VB = {n, o, p, s, t, on, op}

Iteration #3: „s”+„on” have the highest frequency of 13 („son”, and „sons”)

• Merge „s” and „on” into „son” in all corresponding words from Vw

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

• Step 3 (repeated until desired vocabulary size is reached):

• Count the frequency of each pair of „tokens” from VB

• Merge the two tokens VB with highest frequency of occurrence across the
words from Vw

Vw = {son: 9; t, on: 4; t, op: 12; p, op: 3; son, s: 4}
VB = {n, o, p, s, t, on, op, son}

• We reached the desired vocabulary size of 8 tokens
• Merge rules we obtained: 1. o+n -> on, 2. o+p -> op, 3. s+on -> son

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

• Inference: applying the tokenizer once we obtained the vocabulary VB

• Closely mirrors the training process

Step 1: apply the same pre-tokenizer on the new text
E.g., „no nop sonop” → {no; nop; opt}

Step 2: start from individual characters for each word-level token
• keep merging using the merge rules learned in training

n, o → no rule applies, separate into two tokens [n, o]

Merge rules
1. o+n -> on
2. o+p -> op
3. s+on -> son

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

• Inference: applying the tokenizer once we obtained the vocabulary VB

• Closely mirrors the training process

Step 1: apply the same pre-tokenizer on the new text
E.g., „no nop sonop” → {no; nop; opt}

Step 2: start from individual characters for each word-level token
• keep merging using the merge rules learning in training

n, o, p → 2. merge rule applies, separate into two tokens [n, op]

Merge rules
1. o+n -> on
2. o+p -> op
3. s+on -> son

https://aclanthology.org/P16-1162.pdf

Byte-Pair Encoding

Sennrich, R., Haddow, B., & Birch, A. 2016. Neural Machine Translation of Rare Words with
Subword Units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. 1715-1725).

• Inference: applying the tokenizer once we obtained the vocabulary VB

• Closely mirrors the training process

Step 1: apply the same pre-tokenizer on the new text
E.g., „no nop sonop” → {no; nop; opt}

Step 2: start from individual characters for each word-level token
• keep merging using the merge rules learning in training

s, o, n, o, p → all three rules apply (in order of rules),
separate into two tokens [son, op]

Merge rules
1. o+n -> on
2. o+p -> op
3. s+on -> son

https://aclanthology.org/P16-1162.pdf

WordPiece Tokenization

Kenton, J. D. M. W. C., & Toutanova, L. K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-
HLT (pp. 4171-4186).

• Tokenization algorithm proposed with BERT
• Training similar to BPE, with two main differences:

1. Initial vocabulary base VB distinguishes characters that start words
from those that are inside of the word-level tokens

Toy example: Vw = {son:8, ton: 4, top:12, pop:3, sons:4}
VB = {p, s, t, ##o, ##n, ##p, ##s} (## prefix for „inside” chars)

https://arxiv.org/pdf/1810.04805.pdf

WordPiece Tokenization

Kenton, J. D. M. W. C., & Toutanova, L. K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-
HLT (pp. 4171-4186).

• Tokenization algorithm proposed with BERT
• Training similar to BPE, two main differences:

2. Merge of tokens based on relative frequency score

• In essence very similar to pointwise mutual information (PMI)
• Prioritizes merging of pairs with lower-frequency parts

• E.g., „like” and „##ly” will not be merged early

f(t1t2)

f(t1)f(t2)

WordPiece Tokenization

Kenton, J. D. M. W. C., & Toutanova, L. K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-
HLT (pp. 4171-4186).

• Tokenization algorithm proposed with BERT

• Inference is very different from BPE
• WordPiece keeps only the final vocabulary VB

• Not the merge rules

• Greedy splitting: find the longest substring that is in VB

• Split on it and repeat for the remainder of the word-level token

• E.g., {transform, ##ers, trans, ##form, transformer, ##s} all in VB

• Q: how will WordPiece tokenize „transformers”?

SentencePiece Tokenization

Kudo, T., & Richardson, J. (2018, November). SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Processing. In
Proceedings of EMNLP Processing: System Demonstrations (pp. 66-71).

• BPE and WordPiece rely on a pre-tokenizer and its word tokenization
• Word-level tokenization is, in principle, language-specific
• Some languages don’t have „words” as such
• Problem for multilingual LMs

• SentencePiece
• Does not require a pre-tokenizer, creates VB from raw sentences

• It does need sentence segmentation, but this is more
consistent across languages

SentencePiece Tokenization

Kudo, T., & Richardson, J. (2018, November). SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Processing. In
Proceedings of EMNLP Processing: System Demonstrations (pp. 66-71).

• SentencePiece is essentially BPE, but

• Whitespace (denoted with underscore „_”) is a character-level
token, like any other character

• Each sentence in the corpus is now for SentencePiece what a
„word-level” token was for BPE

• „today is my day” → [t, o, d, a, y, _, i, s, _, m, y, _, d, a, y]

The End

Image: Alexander Mikhalchyk

	Slide 1: Multilingual NLP
	Slide 2: After this lecture, you’ll...
	Slide 3: Content
	Slide 4: What is Language Modeling?
	Slide 5: What is Language Modeling?
	Slide 6: What is Language Modeling?
	Slide 7: N-gram Language Modeling
	Slide 8: N-gram Language Modeling
	Slide 9: N-gram Language Modeling
	Slide 10: N-gram Language Modeling
	Slide 11: Content
	Slide 12: Neural Language Modeling
	Slide 13: Neural Language Modeling
	Slide 14: Neural Language Modeling
	Slide 15: Neural Language Modeling
	Slide 16: Recap: (Supervised) Machine Learning
	Slide 17: Neural Language Modeling
	Slide 18: Neural Language Modeling
	Slide 19: Neural Language Modeling
	Slide 20: Neural Language Modeling
	Slide 21: Neural Language Modeling
	Slide 22: Recap: (Supervised) Machine Learning
	Slide 23: Recap: (Supervised) Machine Learning
	Slide 24: Neural Language Modeling
	Slide 25: Types of Language Modeling
	Slide 26: Neural Language Modeling
	Slide 27: Neural Language Modeling
	Slide 28: Neural Language Modeling
	Slide 29: Neural Language Modeling
	Slide 30: Neural Language Modeling
	Slide 31: Neural Language Modeling
	Slide 32: Content
	Slide 33: Tokenization
	Slide 34: Word-level tokenization
	Slide 35: Character-level tokenization
	Slide 36: Character-level tokenization
	Slide 37: Content
	Slide 38: Subword tokenization
	Slide 39: Subword tokenization
	Slide 40: Subword tokenization
	Slide 41: Byte-Pair Encoding
	Slide 42: Byte-Pair Encoding
	Slide 43: Byte-Pair Encoding
	Slide 44: Byte-Pair Encoding
	Slide 45: Byte-Pair Encoding
	Slide 46: Byte-Pair Encoding
	Slide 47: Byte-Pair Encoding
	Slide 48: Byte-Pair Encoding
	Slide 49: Byte-Pair Encoding
	Slide 50: WordPiece Tokenization
	Slide 51: WordPiece Tokenization
	Slide 52: WordPiece Tokenization
	Slide 53: SentencePiece Tokenization
	Slide 54: SentencePiece Tokenization
	Slide 55: The End

