
1

9.5.2023

Center for AI and Data Science (CAIDAS)
Fakultät für Mathematik und Informatik

Universität Würzburg

CreativeCommons Attribution-NonCommercial-ShareAlike 4.0 International

3. Data Structures and Tolerant Retrieval
Prof. Dr. Goran Glavaš

2

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

After this lecture, you’ll...

▪ Know what data structures are used for implementing inverted index

▪ Understand the pros and cons of hash tables and trees

▪ Know how to handle wildcard queries

▪ Be familiar with methods for handling spelling errors and typos in IR

3

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Outline

▪ Recap of Lecture #2

▪ Data structures for inverted index

▪ Wild-card queries

▪ Spelling correction

4

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Recap of the previous lecture

▪ Boolean retrieval
▪ Q: How are queries represented in Boolean retrieval?
▪ Q: How are documents represented for Boolean retrieval?
▪ Q: How do we find relevant documents for a given query?

▪ Inverted index and finding relevant documents
▪ Q: What is inverted index and what does it consist of?
▪ Q: What are posting lists?
▪ Q: How to merge posting lists?
▪ Q: What is the computational complexity of the merge algorithm?
▪ Q: What are skip pointers and what is their purpose?

▪ Phrase and proximity queries
▪ Q: What is a biword index and what are its shortcomings?

▪ Q: What is a positional index?
▪ Q: How do we use positional index to answer phrase and proximity queries?

5

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Recap of the previous lecture

▪ Inverted index is a data structure for computationally efficient retrieval

▪ Inverted index contains a list of references to documents for all index terms
▪ For each term t we store the list of all documents that contain t

▪ Documents are represented with their identifier numbers (ordinal, starting from 1)

„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046]

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]

„blue” -> [2, 3, 24, 2001]

▪ The list of documents that contains a term is called a posting list (or just posting)

▪ Q: Postings are always sorted. Why?

6

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Recap of the previous lecture

▪ So far, we learned how to handle
▪ Regular Boolean queries

▪ Standard merge algorithm over posting lists

▪ Multi-term queries – optimizing according to lengths of posting lists

▪ Phrase queries
▪ Biword index

▪ Positional index

▪ Proximity queries
▪ Positional index

▪ Today we’ll examine
▪ Data structures for implementing the inverted index

▪ How to handle wild-card queries and spelling errors

7

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Outline

▪ Recap of Lecture #2

▪ Data structures for inverted index

▪ Wild-card queries

▪ Spelling correction

8

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Data structures for inverted index

▪ Conceptually, an inverted index is a dictionary
▪ Vocabulary terms (i.e., index terms) are keys

▪ Posting lists are values

„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046]

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]

„blue” -> [2, 3, 24, 2001]

▪ But the exact implementation is undefined
▪ What data structures to use?

▪ Where exactly to store different pieces of information – document frequencies,
pointers to posting lists, skip pointers, token positions, ...?

9

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Data structures for inverted index

▪ A naïve dictionary – an array of structures

▪ Q: How to efficiently store the inverted index / dictionary in memory?

▪ Q: How to quickly look up elements at query time?

Term Doc. freq. Pointer

a 656 265 →

aachen 65 →

blue 10 321 →

...

frodo 221 →

▪ Each element of the array is a structure
consisting of:
▪ The term itself
▪ The number of documents in the collection in

which the term appears
▪ A pointer to the posting list of the term

▪ Structure size: char[N], int, pointer (int/long)

10

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Data structures for inverted index

▪ Two main choices for implementing the inverted index dictionary
▪ Hash tables

▪ Trees

▪ Both are regularly used in IR systems

▪ Both have advantages and shortcomings

11

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Inverted index dictionary as a hash table

▪ Hash table is a common data structure for implementing dictionaries, i.e., a
structure that maps keys to values as associative arrays

▪ Hash tables rely on hash functions – functions that for a given input value (i.e.,
key) computes the index in the array where the value is stored
▪ Perfect hash function – assigns each key a different index

▪ Most hash functions are imperfect – they may compute the same value for several
different keys – this is called a collision
▪ Q: how to account for collisions?

▪ Each vocabulary term is „hashed” into an integer value

▪ hf(„Frodo”) = 1, hf(„Sam”) = 19, hf(„blue”) = 204

12

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Inverted index dictionary as a hash table

▪ hf(„Frodo”) = 1, hf(„Sam”) = 19, hf(„blue”) = 204, hf(„orc”) = 1

▪ Associative array

▪ If the hash function maps the key to the bucket with more than one entry, then
the linear search through the bucket is performed

1 ... 19 ... 204

„Frodo” -> [1, 2, ..., 2046]
„orc” -> [2, 3, ..., 1137]

„Sam” -> [14, 21, ..., 246] „blue” -> [8, 11, ..., 1132]

13

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Inverted index dictionary as a hash table

▪ The main advantage of hash table is fast lookup

▪ Q: What is the complexity of the lookup?

▪ A: O(1)

▪ Shortcomings:
▪ Hash functions are sensitive to minor differences in strings

▪ Close strings not assigned same or close buckets
▪ E.g., hf(„judgment”) = 12, hf(„judgement”) = 354)

▪ As such, they do not support prefix search
▪ Important for tolerant retrieval

▪ Constant vocabulary growth means occasional rehashing for all terms
▪ Q: Why do we need to rehash if the vocabulary grows?

14

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Inverted index dictionary as a tree

▪ Trees divide the vocabulary in the hierarchical form
▪ Each node in the tree captures the subset of the vocabulary

▪ Nodes closer to the root represent larger vocabulary subsets

▪ Nodes closer to leaves encompass narrower subsets

▪ Actual vocabulary terms are found in leaf nodes of the tree

▪ The division of vocabulary is usually alphabetical

▪ Trees should be created in a balanced fashion
▪ Each node in the tree should have approximately the same number of children

▪ Subtrees of nodes at the same depth should have approx. the same number of leaves

15

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Inverted index dictionary as a tree

root

a-i
j-p

r-z

a-cu
cy-ga

ge-i j-le
li-na

ne-p r-so
sp-va

ve-z

...

aachen izzard ramstein zygot

16

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Inverted index dictionary as a tree

▪ Q: What is the lookup complexity for a balanced tree with a node degree N which
stores vocabulary containing |V|?
▪ A: Lookup complexity is equal to the depth of the tree, so the complexity is

O(logN|V|)

▪ The central design decision is the degree of the nodes in an index tree, i.e., the
number of child nodes a parent node should have
▪ Large node degree N

▪ Shallow trees, but a large number of children to go through linearly

▪ Small node degree N
▪ Small number of children to linearly search, but deep trees

▪ Advantage
▪ Can handle prefix search

▪ Shortcoming
▪ Lookup complexity (O(logN|V|)) bigger than for hash tables (O(1))

17

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Outline

▪ Recap of Lecture #2

▪ Data structures for inverted index

▪ Wild-card queries

▪ Spelling correction

18

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Wild-card queries

▪ Wild-card queries are queries in which an asterisk sign stands for any sequence
of characters
▪ Wild-card term (with an asterisk) represents a group of terms and not a single term

▪ Trailing wild-card queries (aka prefix queries, * at the end)
▪ E.g., „mon*” is looking for all documents containing any word beginning with „mon”

▪ Easy to handle with B-tree dictionary: retrieve all words w in range mon ≤ w < moo

▪ Leading wild-card queries (* at the beginning)
▪ E.g., „*mon” is looking for all documents containing any word ending with „mon”

▪ Can be handled with an additional B-tree that indexes vocabulary terms backwards
▪ Retrieve all words w in range: nom ≤ w < non

▪ Q: How to handle queries with the wild-card in the middle?
▪ Retrieve documents containing any word satisfying the wild-card query „co*tion”?

19

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Wild-card queries

▪ Example query
▪ „co*tion” (we want: coordination, comotion, cohabitation, connotation, ...)

Idea:
1. Lookup „co*” in the forward B-tree of the vocabulary

2. Lookup „*tion” in the backward B-tree of the vocabulary

3. Intersect the two obtained term sets

▪ Unfortunately, this is too expensive (too slow) for most real-time IR settings
▪ We need to fetch the relevant documents with a single lookup into index

▪ We need to enrich the index somehow

▪ This will increase the index size, but memory is usually not an issue

20

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Wild-card queries and permuterm index

▪ Idea: index all character-level permutations of terms

▪ Permuterm index additionally stores permutations of vocabulary terms

▪ We add a special „end-of-term” character ($) and store all permutations:
▪ E.g., „comotion” -> „$comotion”, „n$comotio”, „on$comoti”, „ion$comot”,

„tion$como”, „otion$com”, „motion$co”, „omotion$c”

▪ Q: How to use permuterm index for middle-wild-card queries?
▪ A: Permute the wild-card query until you obtain a trailing query (asterisk at the end)

▪ E.g., „co*tion” -> „$co*tion” -> „tion$co*”

▪ We know how to handle trailing wild-card queries – „tion$co*” can now be handled
by a single permutex index tree

21

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Wild-card queries and permuterm index

▪ Queries supported by permuterm index
▪ Exact queries: for „X” we look up „$X”

▪ Trailing wild-card query: for „X*” we look up „$X*”

▪ Leading wild-card query: for „*X” we look up „X$*”

▪ General wild-card query: for „X*Y” we look up „Y$X*”

▪ Q: How would you handle the query „X*Y*Z” with the permuterm index?
▪ A: Here we have no option but to fire two lookups into the index

1. Retrieve the postings for „X*Z” (by looking up „Z$X*”)

2. Retrieve the posting list for the query „*Y*” (by looking for „$Y*”)

3. Intersect the two retrieved lists of terms

22

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Character indexes

▪ Next idea:
▪ How about we index all character n-grams (sequences of n characters) instead of

whole terms?

▪ We surround all terms with term-boundary symbols and create lists of all sequences
of n consecutive character within terms

▪ Example: „Frodo and Sam fought the orcs” (stopwords removed; lemmatized)
▪ Terms: $frodo$, sam, $fight$, orc

▪ Char. 3-grams: fr, fro, rod, odo, do; sa, sam, am; fi, fig, igh, ght, ht; or, orc, rc

▪ We need to keep the second inverted index
▪ For each character n-gram maintain the list of vocabulary terms that contain it

▪ E.g., „$fr” -> [„freak”, „freedom”, ..., „frodo”, „frozen”]

„sam” -> [„asamoah”, „balsam”, „disambiguate”, ..., „sam”, „subsample”]

23

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Wild-card queries and character indexes

▪ Query for character n-grams and merge results (AND operator)

▪ Example: query „mon*” and 2-gram character indexing
▪ Query is transformed into: „$m” AND „mo” AND „on”

▪ Q: What might be the issue with this transformation?

▪ A: Conjunction of character 2-grams might yield false positives
▪ For example: moon, motivation, moderation, etc.

▪ Compare this issue with the false positives of biword index from Lecture #2

▪ Retrieved terms must be post-filtered against the query to eliminate false positives
▪ Term contains „mon”?

▪ Resulting terms are then looked up in the term-document inverted index

24

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Character indexes

▪ Comparison with permuterm index
▪ Advantage: space efficient (less space needed than for permuterm index)

▪ Shortcoming: slower than using permuterm index
▪ A Boolean query (and term-level merges) needs to be performed for every query term

▪ Wild-card queries in general
▪ Often not supported by Web search engines (not at the character level anyways)

▪ Found in some desktop or library search systems

▪ Wild-cards are conceptually troubling as well
▪ User must know what they don’t know (i.e., where to put the asterisk)

▪ If we have several options in mind, we can just run several concrete queries

25

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Outline

▪ Recap of Lecture #2

▪ Data structures for inverted index

▪ Wild-card queries

▪ Spelling correction

26

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Spelling correction

▪ Primary use-cases for spelling correction
1. Correcting documents during indexing

2. Correcting user queries on-the-fly

▪ Two flavors of spelling correction
1. Isolated words

▪ Check each word on its own for errors in spelling

▪ Will not catch typos that result in another valid word

▪ E.g., „from” → „form”

2. Context-sensitive spelling correction
▪ Correctness evaluated by looking at surrounding words as well

▪ E.g., „Frodo went form Gondor to Mordor”

27

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Document correction

▪ Correction should occur prior to indexing
▪ Aiming to have only valid terms in the vocabulary

▪ Smaller vocabulary, i.e., the term dictionary contains fewer entries

▪ We do not change the original documents
▪ Just perform correction when normalizing terms before indexing

▪ Common types of errors for certain types of documents
1. OCR-ed documents – „rn” vs. „m”, „O” vs. „D”

2. Digitally-born documents often have QWERTY keyboard typos – errors from close
keys – „O” vs. „I”, „A” vs. „S”, etc.

28

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Query correction

▪ Primary focus is on correcting errors from queries
▪ Q: Failing to fix errors in queries has more serious consequences than omitting to fix

errors in documents. Why?

▪ With respect to user interface, we have two options
1. Silently retrieving documents according to the corrected query

2. Return several suggested „corrected” query alternatives to the user
▪ „Did you mean?” option

29

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Isolated word correction

▪ The idea: using reference lexicon of correct spellings (i.e., lexicon of valid terms)

▪ Two approaches for obtaining a reference lexicon
1. Existing lexicons like

▪ Standard wide-coverage lexicon of a language (e.g., Webster’s English dictionary)

▪ Domain-specific lexicons (e.g., lexicon of legal terms)

2. Lexicon built from large corpora
▪ E.g., all the words on the web or in Wikipedia

▪ Q: Do we want to keep absolutely all terms from corpora?

30

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Isolated word correction

▪ Given a reference lexicon and the query term (a character sequence from the
query), we do the following:

1. Check if the query term Q is in the reference lexicon

2. If the term Q is not in the reference lexicon, find the entry Q’ from the lexicon that
is „closest” to the query term Q

▪ How do we define „closest”?
▪ We need some similarity/distance measure

▪ We will examine several options
1. Edit distance (also known as Levenshtein distance)

2. Weighted edit distance

3. Character n-gram overlap

31

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Spelling correction – edit distance

▪ Edit distance between two strings S and S’ is the minimal number of operations required
to transform one string into the other
▪ What are the „operations”?

▪ We typically consider operations at the character level
▪ Character insertion („frod” → „frodo”)

▪ Character deletion („frpodo” → „frodo”)

▪ Character replacement („frido” → „frodo”)

▪ Less often: transposition of adjacent characters („fordo” → „frodo”)

▪ Transposition equals „deletion” + „insertion”?

▪ Q: Why introducing it as a separate operation?

▪ Levenshtein distance: counts insertions, deletions and replacements

▪ Damerau-Levenshtein distance: additionally counts transpositions as a single operation

▪ Algorithm based on dynamic programming

32

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Dynamic programming

▪ For detailed explanation of dynamic programming see
Cormen, Leiserson, Rivest, and Stein. „Introduction to Algorithms”

▪ Optimal substructure: the optimal solution of the problem contains within itself
the subsolutions, i.e., the optimal solutions to subproblems

▪ Overlapping subsolutions: we can recycle subsolutions – i.e., avoiding repeating
the computation for the same subproblems over and over again

▪ Q: What would be a „subproblem” for the edit distance computation?
▪ A: the edit distance between two prefixes of input strings

▪ Q: Do we have many subproblem repetition for edit distance?
▪ A: most distances between same pair of prefixes are needed 3 times (as a

subproblem of computing distance for insertion, deletion, and substitution)

33

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Levenshtein distance

▪ Let a and b be two strings between which we measure edit distance (with |a|
and |b| being their respective lengths):

▪ Mathematically, the Levenshtein distance leva,b(|a|, |b|) is computed as follows:

▪ Where 1(ai ≠ bj) is the indicator function equal to 0 if ai = bj and 1 otherwise

▪ Once we compute leva,b(i, j) for some pair (i, j) we store it in memory so we don’t
compute it again when needed in another recursive thread

▪ Directly implementing this formula requires recursion

34

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Example – Levenshtein recursively

▪ For the example, we will follow only one thread of recursion (first subproblem)

▪ „sany” vs. „sam”
▪ min(lev(„san”, „sam”) + 1, lev(„sany”, „sa”) + 1, lev(„san”, „sa”) + 1)

▪ „san” vs. „sam”
▪ min(lev(„sa”, „sam”) + 1, lev(„san”, „sa”) + 1, lev(„sa”, „sa”) + 1)

▪ „sa” vs. „sam”
▪ min(lev(„s”, „sam”) + 1, lev(„sa”, „sa”) + 1, lev(„s”, „sa”) + 1)

▪ „s” vs. „sam”
▪ min(lev(„”, „sam”) + 1, lev(„s”, „sa”) + 1, lev(„”, „sa”) + 1)

▪ „” vs. „sam”
▪ return 3

35

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Levenshtein distance – non-recursive version

▪ We can avoid the recursion if we start from the recursive algorithm’s end
condition – return max(i, j) if min(i, j) = 0

▪ Then compute the edit distances of larger prefixes from smaller prefixes

36

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Example – Levenshtein non-recursively

_ s a m

_ 0 1 2 3

s 1 0 1 2

a 2 1 0 1

n 3 2 1 1

y 4 3 2 2

37

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Damerau-Levenshtein distance

▪ Standard edit distance counts transposition of adjacent characters as two edits
▪ E.g., „frodo” vs. „fordo”

▪ two character replacements: „r” -> „o” in position 2 and „o” -> „r” in position 3

▪ However, transposing adjacent characters is usually a single typing error
▪ Damerau-Levenshtein distance introduces transposition as the fourth atomic

distance operation

▪ Q: How would you integrate transposition as a single distance operation into the edit
distance algorithm?

▪ A: d(i,j) additionally needs to consider d(i-2, j-2) + 1(ai-1 = bj & ai = bj-1) when looking
the edit distances of prefixes

38

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Weighted edit distance

▪ Sometimes we want to assign smaller distance to common errors
▪ The weight of an operation (deletion, insertion, replacement, transposition) depends

on the caharcter(s) involved

▪ Motivation: better capture common OCR or typing errors
▪ E.g., On a QWERTY keyboard, letter „m” is much more likely to be mis-typed as „n”

than as „q”
▪ Thus, the replacement operation „m” -> „n” should be assigned smaller edit distance

than „m” -> „q”

▪ Additional input required
▪ Data structure (e.g., weight matrix) containing operation weights for (combinations

of) characters

▪ Q: How to integrate weighting into the edit distance algorithm based on dynamic
programming?

39

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Using edit distances

▪ Given a (misspelled) query we need to find the closest dictionary term

▪ Q: How do we know (or assume) that the query is misspelled in the first place?
▪ A: We don’t find the query term in the vocabulary dictionary

▪ With this strategy, we cannot capture typos like „from” -> „form”

▪ Finding closest dictionary term
▪ Compute edit distance between the query term and each of the dictionary terms?

▪ Too slow (the dictionaries are usually rather large)

▪ We need to somehow pre-filter the „more promising” dictionary entries

40

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

N-gram index for spelling correction

▪ Idea: use the character n-gram index to pre-filter dictionary candidates

1. Enumerate all character n-grams in the query string
▪ E.g., 3-grams in „frodso” -> „fro”, „rod”, „ods”, „dso”

2. Retrieve all vocabulary terms containing any of the obtained character n-grams
▪ Using the inverted index of character n-grams

3. Treshold the obtained list of candidates on the number or percentage of matching
character n-grams

4. Compute the edit distances between the query term and the remaining dictionary
candidates

5. Select the candidate with the smallest edit distance as the correction

41

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Character n-gram overlap

▪ Can be used as
▪ A measure for pre-filtering candidates in order to reduce the number of edit distance

computation

▪ As a self-standing distance measure, alternative to Levenshtein distance

▪ Example
▪ Suppose the query is „fpodo bigginss” and the text is „frodo baggins” and we are

computing the overlap in character 3-grams

▪ {„fpo”, „pod”, „odo”, „big”, „igg”, „ggi”, „ins”, „nss”} vs.

{„fro”, „rod”, „odo”, „bag”, „agg”, „ggi”, „ins”}

▪ We have 3 matching 3-grams: „odo”, „ggi”, and „ins”
▪ That’s 3 out of 8 for the query and 3 out of 7 for the text

▪ Q: What should we take as measure of proximity/distance?
▪ Is raw count of matching n-grams good choice?

42

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Character n-gram overlap

▪ Raw count of matching character n-grams is not a good choice
▪ Does not account for the length of terms in comparison

▪ Two distinct but long terms may have a large raw count of matching n-grams
▪ E.g., „collision” and „collaboration” have 3 matching 3-grams

▪ We need to normalize the score with the length of terms

▪ Jaccard coefficient – a commonly used measure of set overlap

▪ Simple alternative: averaged length-normalized overlap

YXYX  /

()YYXXYX //5.0 +

43

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Context-sensitive spelling correction

▪ Example:
▪ Suppose the text is „Frodo fled from Mordor back to Gondor”

▪ Suppose the query is „fled form Gondor”

▪ To identify the misspelling „form” -> „from” we need to take into account the
context, i.e., surrounding words

▪ Context-sensitive error correction steps
1. For each term of the query, retrieve dictionary terms that are sufficiently close

▪ „fled” -> {„fled”, „flew”, „flea”}; „form” -> {„form”, „from”}; „gondor” -> {„gondor”}

2. Combine all possibilities (i.e., all combinations of candidates for each term)
▪ „fled form gondor”, „fled from gondor”, „flew form gondor”, „flew from gondor”,

„flea form gondor”, „flea from gondor”,

3. Rank the possibilities according to some criteria

44

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Context-sensitive spelling correction

▪ Hit-based spelling correction
▪ Rank the candidate combinations according to the number of hits (relevant

documents)

▪ Return the candidate with the largest number of hits

▪ Log-based spelling correction
▪ Rank the candidates according to the number of appearances in the query logs (i.e.,

the number of times the same query was posed before)

▪ Useful only if you have a lot of users who fire a lot of queries

▪ Probabilistic spelling correction (e.g., based on language modeling)
▪ Ranking according to probabilities of term sequences

▪ E.g., P(„fled form gondor”) = P(„fled”) * P(„form” | „fled”) * P(„gondor” | „form”)

45

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Now you...

▪ Know what data structures you can use for implementing inverted index

▪ Understand the pros and cons of hashtables and trees

▪ Know how to handle wildcard queries

▪ Are familiar with methods for handling spelling errors and typos in IR

	Default Section
	Slide 1: 3. Data Structures and Tolerant Retrieval
	Slide 2: After this lecture, you’ll...
	Slide 3: Outline
	Slide 4: Recap of the previous lecture
	Slide 5: Recap of the previous lecture
	Slide 6: Recap of the previous lecture
	Slide 7: Outline
	Slide 8: Data structures for inverted index
	Slide 9: Data structures for inverted index
	Slide 10: Data structures for inverted index
	Slide 11: Inverted index dictionary as a hash table
	Slide 12: Inverted index dictionary as a hash table
	Slide 13: Inverted index dictionary as a hash table
	Slide 14: Inverted index dictionary as a tree
	Slide 15: Inverted index dictionary as a tree
	Slide 16: Inverted index dictionary as a tree
	Slide 17: Outline
	Slide 18: Wild-card queries
	Slide 19: Wild-card queries
	Slide 20: Wild-card queries and permuterm index
	Slide 21: Wild-card queries and permuterm index
	Slide 22: Character indexes
	Slide 23: Wild-card queries and character indexes
	Slide 24: Character indexes
	Slide 25: Outline
	Slide 26: Spelling correction
	Slide 27: Document correction
	Slide 28: Query correction
	Slide 29: Isolated word correction
	Slide 30: Isolated word correction
	Slide 31: Spelling correction – edit distance
	Slide 32: Dynamic programming
	Slide 33: Levenshtein distance
	Slide 34: Example – Levenshtein recursively
	Slide 35: Levenshtein distance – non-recursive version
	Slide 36: Example – Levenshtein non-recursively
	Slide 37: Damerau-Levenshtein distance
	Slide 38: Weighted edit distance
	Slide 39: Using edit distances
	Slide 40: N-gram index for spelling correction
	Slide 41: Character n-gram overlap
	Slide 42: Character n-gram overlap
	Slide 43: Context-sensitive spelling correction
	Slide 44: Context-sensitive spelling correction
	Slide 45: Now you...

