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After this lecture, you’ll...
S

= Know what data structures are used for implementing inverted index
= Understand the pros and cons of hash tables and trees
= Know how to handle wildcard queries

= Be familiar with methods for handling spelling errors and typos in IR
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= Recap of Lecture #2
= Data structures for inverted index

= Wild-card queries

= Spelling correction




Recap of the previous lecture
S

= Boolean retrieval
= Q: How are queries represented in Boolean retrieval?
= Q: How are documents represented for Boolean retrieval?
= Q: How do we find relevant documents for a given query?

" Inverted index and finding relevant documents
= Q: What is inverted index and what does it consist of?
" Q: What are posting lists?
" Q: How to merge posting lists?
= Q: What is the computational complexity of the merge algorithm?
= Q: What are skip pointers and what is their purpose?

= Phrase and proximity queries
" Q: What is a biword index and what are its shortcomings?
= Q: What is a positional index?
" Q: How do we use positional index to answer phrase and proximity queries?
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Recap of the previous lecture
B

" Inverted index is a data structure for computationally efficient retrieval

® |nverted index contains a list of references to documents for all index terms
= For each term t we store the list of all documents that contain t
= Documents are represented with their identifier numbers (ordinal, starting from 1)

,Frodo” ->[1, 2,7, 19, 174, 210, 331, 2046]
,Sam” ->1[2,3,4,7,11,94, 210, 1137]
Lblue” ->1[2, 3, 24, 2001]

= The list of documents that contains a term is called a posting list (or just posting)
" Q: Postings are always sorted. Why?
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Recap of the previous lecture
T

= So far, we learned how to handle

= Regular Boolean queries

= Standard merge algorithm over posting lists

= Multi-term queries — optimizing according to lengths of posting lists
= Phrase queries

= Biword index

= Positional index
= Proximity queries

= Positional index

= Today we’ll examine
= Data structures for implementing the inverted index
= How to handle wild-card queries and spelling errors
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Data structures for inverted index
T R

= Conceptually, an inverted index is a dictionary
= Vocabulary terms (i.e., index terms) are keys
= Posting lists are values

,Frodo” ->[1, 2,7,19, 174, 210, 331, 2046]
,Sam” ->1[2,3,4,7,11,94, 210, 1137]
,blue” ->12, 3,24, 2001]

= But the exact implementation is undefined

= What data structures to use?
= Where exactly to store different pieces of information — document frequencies,
pointers to posting lists, skip pointers, token positions, ...?




Data structures for inverted index
T

= A naive dictionary — an array of structures

m " Each element of the array is a structure

656 265 consisting of:
= The term itself
= The number of documents in the collection in
blue 10321 2 which the term appears
= A pointer to the posting list of the term
= Structure size: char[N], int, pointer (int/long)

aachen 65 -

frodo 221 -

* Q: How to efficiently store the inverted index / dictionary in memory?

=" Q: How to quickly look up elements at query time?
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Data structures for inverted index
T I

= Two main choices for implementing the inverted index dictionary
= Hash tables
= Trees

= Both are regularly used in IR systems

= Both have advantages and shortcomings




Inverted index dictionary as a hash table
S

= Hash table is a common data structure for implementing dictionaries, i.e., a
structure that maps keys to values as associative arrays

= Hash tables rely on hash functions — functions that for a given input value (i.e.,
key) computes the index in the array where the value is stored

= Perfect hash function — assigns each key a different index

= Most hash functions are imperfect — they may compute the same value for several
different keys — this is called a collision

= Q: how to account for collisions?

= Each vocabulary term is ,,hashed” into an integer value
" hf(,Frodo”) =1, hf(,Sam”) =19, hf(,blue”) = 204
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Inverted index dictionary as a hash table

= hf(,Frodo”) =1, hf(,Sam”) = 19, hf(,blue”) = 204, hf(,orc”) =1

= Associative array

1 19 204
,Frodo” -> 11, 2, ..., 2046] ,Sam” ->[14, 21, ..., 246] ,blue” ->[8, 11, ..., 1132]
,orc”->12,3, ..., 1137]

= |f the hash function maps the key to the bucket with more than one entry, then
the linear search through the bucket is performed




Inverted index dictionary as a hash table
-

= The main advantage of hash table is fast lookup
= Q: What is the complexity of the lookup?
= A: O(1)

= Shortcomings:

= Hash functions are sensitive to minor differences in strings
= Close strings not assigned same or close buckets
= E.g., hf(,judgment”) =12, hf(,judgement”) = 354)
= As such, they do not support prefix search
= |mportant for tolerant retrieval
= Constant vocabulary growth means occasional rehashing for all terms
= Q: Why do we need to rehash if the vocabulary grows?
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Inverted index dictionary as a tree
S

" Trees divide the vocabulary in the hierarchical form
= Each node in the tree captures the subset of the vocabulary
= Nodes closer to the root represent larger vocabulary subsets
= Nodes closer to leaves encompass narrower subsets
= Actual vocabulary terms are found in leaf nodes of the tree
= The division of vocabulary is usually alphabetical

= Trees should be created in a balanced fashion
= Each node in the tree should have approximately the same number of children
= Subtrees of nodes at the same depth should have approx. the same number of leaves
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Inverted index dictionary as a tree
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Inverted index dictionary as a tree
e

=" Q: What is the lookup complexity for a balanced tree with a node degree N which
stores vocabulary containing |V|?

= A: Lookup complexity is equal to the depth of the tree, so the complexity is
O(logy|V])
= The central design decision is the degree of the nodes in an index tree, i.e., the
number of child nodes a parent node should have

" Large node degree N
= Shallow trees, but a large number of children to go through linearly

= Small node degree N
= Small number of children to linearly search, but deep trees

= Advantage
= Can handle prefix search

= Shortcoming
= Lookup complexity (O(logy|V|)) bigger than for hash tables (O(1))
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Wild-card queries
-

= Wild-card queries are queries in which an asterisk sign stands for any sequence
of characters

= Wild-card term (with an asterisk) represents a group of terms and not a single term

= Trailing wild-card queries (aka prefix queries, * at the end)
= E.g., ,mon*” is looking for all documents containing any word beginning with ,,mon”
= Easy to handle with B-tree dictionary: retrieve all words w in range mon < w < moo

= Leading wild-card queries (* at the beginning)
= E.g.,,,*mon” is looking for all documents containing any word ending with ,,mon”

= Can be handled with an additional B-tree that indexes vocabulary terms backwards
= Retrieve all words w in range: nom < w < non

= Q: How to handle queries with the wild-card in the middle?
= Retrieve documents containing any word satisfying the wild-card query ,,co*tion”?
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Wild-card queries
T 1

= Example query
= co*tion” (we want: coordination, comotion, cohabitation, connotation, ...)

ldea:
1. Lookup ,co*” in the forward B-tree of the vocabulary
2. Lookup ,*tion” in the backward B-tree of the vocabulary
3. Intersect the two obtained term sets

= Unfortunately, this is too expensive (too slow) for most real-time IR settings
= We need to fetch the relevant documents with a single lookup into index
= We need to enrich the index somehow
= This will increase the index size, but memory is usually not an issue




Wild-card queries and permuterm index
B

" |dea: index all character-level permutations of terms

=" Permuterm index additionally stores permutations of vocabulary terms

= We add a special ,end-of-term” character (S) and store all permutations:

)

= E.g., ,,comotion” ->,Scomotion”, ,nScomotio”, ,onScomoti”, ,ionScomot”,

)

tionScomo”, ,, otionScom”, ,motionSco”, ,omotionSc”

= Q: How to use permuterm index for middle-wild-card queries?
= A: Permute the wild-card query until you obtain a trailing query (asterisk at the end)
= E.g., ,co*tion” ->,Sco*tion” -> ,tionSco*”

= We know how to handle trailing wild-card queries — ,tionSco*” can now be handled
by a single permutex index tree
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Wild-card queries and permuterm index
B

= Queries supported by permuterm index
= Exact queries: for ,X” we look up ,,SX”
= Trailing wild-card query: for ,X*” we look up ,, SX*”
= Leading wild-card query: for ,,*X” we look up , XS*”
= General wild-card query: for , X*Y” we look up ,YSX*”

= Q: How would you handle the query ,X*Y*Z” with the permuterm index?
= A: Here we have no option but to fire two lookups into the index
1. Retrieve the postings for ,X*Z” (by looking up ,ZSX*”)
2. Retrieve the posting list for the query ,*Y*” (by looking for ,SY*”)
3. Intersect the two retrieved lists of terms
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Character indexes
|

= Next idea:
= How about we index all character n-grams (sequences of n characters) instead of

whole terms?
= We surround all terms with term-boundary symbols and create lists of all sequences
of n consecutive character within terms

= Example: ,Frodo and Sam fought the orcs” (stopwords removed; lemmatized)

» Terms: SfrodoS, SsamS, SfightS, SorcS
= Char. 3-grams: Sfr, fro, rod, odo, doS; Ssa, sam, amS; Sfi, fig, igh, ght, htS; Sor, orc, rcS

= We need to keep the second inverted index
= For each character n-gram maintain the list of vocabulary terms that contain it

= E.g.,,Sfr” -> [, freak”, ,freedom”, ..., ,frodo”, ,frozen”]
,sam” ->[,asamoah”, ,balsam”, ,disambiguate”, ..., ,sam”, ,,subsample”]




Wild-card queries and character indexes
B

= Query for character n-grams and merge results (AND operator)

= Example: query ,mon*” and 2-gram character indexing
= Query is transformed into: ,Sm” AND ,mo” AND ,,on”
= Q: What might be the issue with this transformation?

= A: Conjunction of character 2-grams might yield false positives
= For example: moon, motivation, moderation, etc.
= Compare this issue with the false positives of biword index from Lecture #2

= Retrieved terms must be post-filtered against the query to eliminate false positives
= Term contains ,mon”?

= Resulting terms are then looked up in the term-document inverted index
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Character indexes
7S

= Comparison with permuterm index
= Advantage: space efficient (less space needed than for permuterm index)

= Shortcoming: slower than using permuterm index
= A Boolean query (and term-level merges) needs to be performed for every query term

= Wild-card queries in general
= Often not supported by Web search engines (not at the character level anyways)
= Found in some desktop or library search systems

= Wild-cards are conceptually troubling as well
= User must know what they don’t know (i.e., where to put the asterisk)
= |f we have several options in mind, we can just run several concrete queries
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Spelling correction
- 1

" Primary use-cases for spelling correction
1. Correcting documents during indexing
2. Correcting user queries on-the-fly

= Two flavors of spelling correction

1. Isolated words
= Check each word on its own for errors in spelling

= Will not catch typos that result in another valid word
" E.g., , from” 2> form”

2. Context-sensitive spelling correction
= Correctness evaluated by looking at surrounding words as well
= E.g., ,Frodo went form Gondor to Mordor”




Document correction
-2 4

= Correction should occur prior to indexing
= Aiming to have only valid terms in the vocabulary
= Smaller vocabulary, i.e., the term dictionary contains fewer entries

= We do not change the original documents
= Just perform correction when normalizing terms before indexing

= Common types of errors for certain types of documents
1. OCR-ed documents —,rn” vs.,m”, ,0” vs. ,D”
2. Digitally-born documents often have QWERTY keyboard typos — errors from close

IH

keys —,,0” vs. 1", ,A” vs. ,S”, etc.
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Query correction
T 1

" Primary focus is on correcting errors from queries

= Q: Failing to fix errors in queries has more serious consequences than omitting to fix
errors in documents. Why?

= With respect to user interface, we have two options
1. Silently retrieving documents according to the corrected query

2. Return several suggested ,corrected” query alternatives to the user
= Did you mean?” option




Isolated word correction
T

= The idea: using reference lexicon of correct spellings (i.e., lexicon of valid terms)

= Two approaches for obtaining a reference lexicon

1. Existing lexicons like
= Standard wide-coverage lexicon of a language (e.g., Webster’s English dictionary)
= Domain-specific lexicons (e.g., lexicon of legal terms)

2. Lexicon built from large corpora
= E.g., all the words on the web or in Wikipedia
= Q: Do we want to keep absolutely all terms from corpora?




Isolated word correction
T

= Given a reference lexicon and the query term (a character sequence from the
query), we do the following:

1. Check if the query term Q is in the reference lexicon

2. If the term Q is not in the reference lexicon, find the entry Q’ from the lexicon that
is ,,closest” to the query term Q

= How do we define , closest”?
* We need some similarity/distance measure

= We will examine several options
1. Edit distance (also known as Levenshtein distance)
2. Weighted edit distance
3. Character n-gram overlap
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Spelling correction — edit distance
W

= Edit distance between two strings S and S’ is the minimal number of operations required
to transform one string into the other

= What are the ,,operations”?

We typically consider operations at the character level

Character insertion (,,frod” = ,frodo”)

Character deletion (,,frpodo” = ,frodo”)

Character replacement (,,frido” = ,,frodo”)

Less often: transposition of adjacent characters (,,fordo” = ,,frodo”)
= Transposition equals ,deletion” + ,insertion”?

= Q: Why introducing it as a separate operation?
= Levenshtein distance: counts insertions, deletions and replacements

= Damerau-Levenshtein distance: additionally counts transpositions as a single operation

Algorithm based on dynamic programming
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Dynamic programming
B

" For detailed explanation of dynamic programming see
Cormen, Leiserson, Rivest, and Stein. ,,Introduction to Algorithms”

= Optimal substructure: the optimal solution of the problem contains within itself
the subsolutions, i.e., the optimal solutions to subproblems

= Overlapping subsolutions: we can recycle subsolutions —i.e., avoiding repeating
the computation for the same subproblems over and over again

= Q: What would be a ,,subproblem” for the edit distance computation?
= A: the edit distance between two prefixes of input strings

= Q: Do we have many subproblem repetition for edit distance?

= A: most distances between same pair of prefixes are needed 3 times (as a
subproblem of computing distance for insertion, deletion, and substitution)
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Levenshtein distance
N

= Let g and b be two strings between which we measure edit distance (with |a|
and |b| being their respective lengths):

= Mathematically, the Levenshtein distance lev, ,(/a/, [b])is computed as follows:

( max(i, §) if min(z, j) = 0,
levy (i, ) = levy (7 — 1,7) +1
Vab(2,] min { levyp (3,5 —1) +1 otherwise.
levep(i—1,5— 1)+ L(a;#b;)

\

" Where 1(a; # b;) is the indicator function equal to 0 if a, = b, and 1 otherwise

= Once we compute lev, ,(i, j) for some pair (i, j) we store it in memory so we don’t
compute it again when needed in another recursive thread

= Directly implementing this formula requires recursion
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Example — Levenshtein recursively

= For the example, we will follow only one thread of recursion (first subproblem)

- ,,sany Vs. ,,S

0 mm(lev(,,san , ,sam”) + 1, lev(,,sany”, ,sa”) + 1 -

0 ,,san VS. ,,sam

" ,,sa VsS. ,,S

0 mm(Iev(,,s ,,5am”) +1 -+ 1, lev(,s”, ,sa”) +1)

= s”vs.,sam”
= min(lev(,”, ,sam”) + 1, lev(,s”, ,sa”) + 1, lev(,”, ,sa”) + 1)

1 )

L7 Vs, sam

" return 3




Levenshtein distance — non-recursive version

3 5

= We can avoid the recursion if we start from the recursive algorithm’s end
condition — return max(i, j) if min(i, j) =0

= Then compute the edit distances of larger prefixes from smaller prefixes

LEVENSHTEINDISTANCE(S;. 52)

1

O O WO ~NO OV B W

P

for i + 0 to |s;

do m[i.0] =i
for j < 0 to |s
do m[0.j] =

for i < 1 to |s;
do for j < 1 to |sy|
do if si[i] = sy[/]
then m[i.j] = min{m[i-1.j]+1. m[i. j-1]+1. m[i-1.j-1]}
else m[i.j] = min{m[i-1./]+1, m[i.j-1]+1. m[i-1,j-1]+1}
return m(|s;|.|ss|]




Example — Levenshtein non-recursively




Damerau-Levenshtein distance
T

= Standard edit distance counts transposition of adjacent characters as two edits
= E.g., ,frodo” vs. ,fordo”
= two character replacements: ,r” ->,,0” in position 2 and ,,0” -> ,r” in position 3

= However, transposing adjacent characters is usually a single typing error

= Damerau-Levenshtein distance introduces transposition as the fourth atomic
distance operation

= Q: How would you integrate transposition as a single distance operation into the edit
distance algorithm?

= A: d(i,j) additionally needs to consider d(i-2, j-2) + 1(a;; = b; & a; = b; ;) when looking
the edit distances of prefixes
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Weighted edit distance
T

= Sometimes we want to assign smaller distance to common errors
= The weight of an operation (deletion, insertion, replacement, transposition) depends
on the caharcter(s) involved
= Motivation: better capture common OCR or typing errors

= E.g.,, On a QWERTY keyboard, letter ,m” is much more likely to be mis-typed as ,,n”
than as ,,q”

= Thus, the replacement operation ,m” -> ,n” should be assigned smaller edit distance
than ,m” ->,q”
= Additional input required
= Data structure (e.g., weight matrix) containing operation weights for (combinations
of) characters

= Q: How to integrate weighting into the edit distance algorithm based on dynamic
programming?
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Using edit distances
T

= Given a (misspelled) query we need to find the closest dictionary term

=" Q: How do we know (or assume) that the query is misspelled in the first place?
= A: We don’t find the query term in the vocabulary dictionary
= With this strategy, we cannot capture typos like ,,from” -> ,form”

" Finding closest dictionary term
= Compute edit distance between the query term and each of the dictionary terms?
= Too slow (the dictionaries are usually rather large)
= We need to somehow pre-filter the ,more promising” dictionary entries
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N-gram index for spelling correction
I

" |dea: use the character n-gram index to pre-filter dictionary candidates

1. Enumerate all character n-grams in the query string
= E.g.,3-grams in ,frodso” -> ,fro”, ,rod”, ,ods”, ,dso”

2. Retrieve all vocabulary terms containing any of the obtained character n-grams
= Using the inverted index of character n-grams

3. Treshold the obtained list of candidates on the number or percentage of matching
character n-grams

4. Compute the edit distances between the query term and the remaining dictionary
candidates

5. Select the candidate with the smallest edit distance as the correction
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Character n-gram overlap
B

= Can be used as

= A measure for pre-filtering candidates in order to reduce the number of edit distance
computation

= As a self-standing distance measure, alternative to Levenshtein distance

= Example

= Suppose the query is ,fpodo bigginss” and the text is ,frodo baggins” and we are
computing the overlap in character 3-grams

u {,fpo”, ,pod”, ,odo”, ,big”, ,igg”, ,ggi”, ,ins”, ,nss”} vs.
{,fro”, ,rod”, , 0do”, ,bag”, ,agg”, ,ggi”, ,ins”

= We have 3 matching 3-grams: ,,0odo”, ,ggi”, and ,,ins”
= That’s 3 out of 8 for the query and 3 out of 7 for the text

* Q: What should we take as measure of proximity/distance?
" |s raw count of matching n-grams good choice?
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Character n-gram overlap
7

= Raw count of matching character n-grams is not a good choice
= Does not account for the length of terms in comparison

= Two distinct but long terms may have a large raw count of matching n-grams
= E.g., ,collision” and ,collaboration” have 3 matching 3-grams
= We need to normalize the score with the length of terms

= Jaccard coefficient —a commonly used measure of set overlap
X AY||X Y]
= Simple alternative: averaged length-normalized overlap

0.5-(X AY[/|X|+|X AY|/Y])
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Context-sensitive spelling correction
Y

= Example:
= Suppose the text is ,Frodo fled from Mordor back to Gondor”
= Suppose the query is ,fled form Gondor”

= To identify the misspelling ,,form” -> ,,from” we need to take into account the
context, i.e., surrounding words

= Context-sensitive error correction steps
1. For each term of the query, retrieve dictionary terms that are sufficiently close

w fled” ->{,fled”, flew”, [flea”}; ,form” ->{, form”, from”}; ,gondor” ->{,gondor”}
2. Combine all possibilities (i.e., all combinations of candidates for each term)

=  fled form gondor”, ,fled from gondor”, , flew form gondor”, ,,flew from gondor”,
,flea form gondor”, ,,flea from gondor”,

3. Rank the possibilities according to some criteria




Context-sensitive spelling correction
B

= Hit-based spelling correction

= Rank the candidate combinations according to the number of hits (relevant
documents)

= Return the candidate with the largest number of hits

" Log-based spelling correction

= Rank the candidates according to the number of appearances in the query logs (i.e.,
the number of times the same query was posed before)

= Useful only if you have a lot of users who fire a lot of queries

" Probabilistic spelling correction (e.g., based on language modeling)

= Ranking according to probabilities of term sequences
= E.g., P(,fled form gondor”) = P(,,fled”) * P(,,form” | ,fled”) * P(,,gondor” | ,form”)
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Now you...
T I

= Know what data structures you can use for implementing inverted index
= Understand the pros and cons of hashtables and trees
= Know how to handle wildcard queries

= Are familiar with methods for handling spelling errors and typos in IR
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