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9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

After this lecture, you’ll...

▪ Know what data structures are used for implementing inverted index

▪ Understand the pros and cons of hash tables and trees

▪ Know how to handle wildcard queries

▪ Be familiar with methods for handling spelling errors and typos in IR
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Outline

▪ Recap of Lecture #2

▪ Data structures for inverted index

▪ Wild-card queries

▪ Spelling correction
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Recap of the previous lecture

▪ Boolean retrieval
▪ Q: How are queries represented in Boolean retrieval?
▪ Q: How are documents represented for Boolean retrieval?
▪ Q: How do we find relevant documents for a given query?

▪ Inverted index and finding relevant documents
▪ Q: What is inverted index and what does it consist of?
▪ Q: What are posting lists?
▪ Q: How to merge posting lists? 
▪ Q: What is the computational complexity of the merge algorithm?
▪ Q: What are skip pointers and what is their purpose?

▪ Phrase and proximity queries
▪ Q: What is a biword index and what are its shortcomings?

▪ Q: What is a positional index?
▪ Q: How do we use positional index to answer phrase and proximity queries?
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Recap of the previous lecture

▪ Inverted index is a data structure for computationally efficient retrieval

▪ Inverted index contains a list of references to documents for all index terms
▪ For each term t we store the list of all documents that contain t

▪ Documents are represented with their identifier numbers (ordinal, starting from 1)

„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046]

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]

„blue” -> [2, 3, 24, 2001]

▪ The list of documents that contains a term is called a posting list (or just posting)

▪ Q: Postings are always sorted. Why?
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Recap of the previous lecture

▪ So far, we learned how to handle 
▪ Regular Boolean queries

▪ Standard merge algorithm over posting lists

▪ Multi-term queries – optimizing according to lengths of posting lists

▪ Phrase queries
▪ Biword index

▪ Positional index

▪ Proximity queries
▪ Positional index

▪ Today we’ll examine
▪ Data structures for implementing the inverted index

▪ How to handle wild-card queries and spelling errors
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Outline

▪ Recap of Lecture #2

▪ Data structures for inverted index

▪ Wild-card queries

▪ Spelling correction
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Data structures for inverted index

▪ Conceptually, an inverted index is a dictionary
▪ Vocabulary terms (i.e., index terms) are keys

▪ Posting lists are values

„Frodo” -> [1, 2, 7, 19, 174, 210, 331, 2046]

„Sam” -> [2, 3, 4, 7, 11, 94, 210, 1137]

„blue” -> [2, 3, 24, 2001]

▪ But the exact implementation is undefined
▪ What data structures to use?

▪ Where exactly to store different pieces of information – document frequencies, 
pointers to posting lists, skip pointers, token positions, ...?
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Data structures for inverted index

▪ A naïve dictionary – an array of structures

▪ Q: How to efficiently store the inverted index / dictionary in memory?

▪ Q: How to quickly look up elements at query time?

Term Doc. freq. Pointer

a 656 265 →

aachen 65 →

blue 10 321 →

... ... ...

frodo 221 →

▪ Each element of the array is a structure 
consisting of:
▪ The term itself
▪ The number of documents in the collection in 

which the term appears
▪ A pointer to the posting list of the term

▪ Structure size: char[N], int, pointer (int/long)
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Data structures for inverted index

▪ Two main choices for implementing the inverted index dictionary
▪ Hash tables

▪ Trees

▪ Both are regularly used in IR systems

▪ Both have advantages and shortcomings
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Inverted index dictionary as a hash table

▪ Hash table is a common data structure for implementing dictionaries, i.e., a 
structure that maps keys to values as associative arrays

▪ Hash tables rely on hash functions – functions that for a given input value (i.e., 
key) computes the index in the array where the value is stored
▪ Perfect hash function – assigns each key a different index

▪ Most hash functions are imperfect – they may compute the same value for several 
different keys – this is called a collision
▪ Q: how to account for collisions?

▪ Each vocabulary term is „hashed” into an integer value

▪ hf(„Frodo”) = 1, hf(„Sam”) = 19, hf(„blue”) = 204
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Inverted index dictionary as a hash table

▪ hf(„Frodo”) = 1, hf(„Sam”) = 19, hf(„blue”) = 204, hf(„orc”) = 1

▪ Associative array

▪ If the hash function maps the key to the bucket with more than one entry, then 
the linear search through the bucket is performed

1 ... 19 ... 204

„Frodo” -> [1, 2, ..., 2046]
„orc” -> [2, 3, ..., 1137]

„Sam” -> [14, 21, ..., 246] „blue” -> [8, 11, ..., 1132]
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Inverted index dictionary as a hash table

▪ The main advantage of hash table is fast lookup

▪ Q: What is the complexity of the lookup?

▪ A: O(1)

▪ Shortcomings:
▪ Hash functions are sensitive to minor differences in strings

▪ Close strings not assigned same or close buckets
▪ E.g., hf(„judgment”) = 12, hf(„judgement”) = 354)

▪ As such, they do not support prefix search
▪ Important for tolerant retrieval

▪ Constant vocabulary growth means occasional rehashing for all terms
▪ Q: Why do we need to rehash if the vocabulary grows?
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Inverted index dictionary as a tree

▪ Trees divide the vocabulary in the hierarchical form
▪ Each node in the tree captures the subset of the vocabulary

▪ Nodes closer to the root represent larger vocabulary subsets

▪ Nodes closer to leaves encompass narrower subsets

▪ Actual vocabulary terms are found in leaf nodes of the tree 

▪ The division of vocabulary is usually alphabetical

▪ Trees should be created in a balanced fashion
▪ Each node in the tree should have approximately the same number of children

▪ Subtrees of nodes at the same depth should have approx. the same number of leaves
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Inverted index dictionary as a tree

root

a-i
j-p

r-z

a-cu
cy-ga

ge-i j-le
li-na

ne-p r-so
sp-va

ve-z

...                 ...                    ...        

aachen izzard ramstein zygot



16

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Inverted index dictionary as a tree

▪ Q: What is the lookup complexity for a balanced tree with a node degree N which 
stores vocabulary containing |V|?
▪ A: Lookup complexity is equal to the depth of the tree, so the complexity is 

O(logN|V|)

▪ The central design decision is the degree of the nodes in an index tree, i.e., the 
number of child nodes a parent node should have 
▪ Large node degree N

▪ Shallow trees, but a large number of children to go through linearly

▪ Small node degree N
▪ Small number of children to linearly search, but deep trees

▪ Advantage
▪ Can handle prefix search

▪ Shortcoming 
▪ Lookup complexity (O(logN|V|)) bigger than for hash tables (O(1))
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Outline

▪ Recap of Lecture #2

▪ Data structures for inverted index

▪ Wild-card queries

▪ Spelling correction
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Wild-card queries

▪ Wild-card queries are queries in which an asterisk sign stands for any sequence 
of characters
▪ Wild-card term (with an asterisk) represents a group of terms and not a single term

▪ Trailing wild-card queries (aka prefix queries, * at the end)
▪ E.g., „mon*” is looking for all documents containing any word beginning with „mon”

▪ Easy to handle with B-tree dictionary: retrieve all words w in range mon ≤ w < moo

▪ Leading wild-card queries (* at the beginning)
▪ E.g., „*mon” is looking for all documents containing any word ending with „mon”

▪ Can be handled with an additional B-tree that indexes vocabulary terms backwards
▪ Retrieve all words w in range: nom ≤ w < non

▪ Q: How to handle queries with the wild-card in the middle?
▪ Retrieve documents containing any word satisfying the wild-card query „co*tion”?
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Wild-card queries

▪ Example query
▪ „co*tion” (we want: coordination, comotion, cohabitation, connotation, ...)

Idea:
1. Lookup „co*” in the forward B-tree of the vocabulary

2. Lookup „*tion” in the backward B-tree of the vocabulary

3. Intersect the two obtained term sets

▪ Unfortunately, this is too expensive (too slow) for most real-time IR settings
▪ We need to fetch the relevant documents with a single lookup into index

▪ We need to enrich the index somehow

▪ This will increase the index size, but memory is usually not an issue
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Wild-card queries and permuterm index

▪ Idea: index all character-level permutations of terms

▪ Permuterm index additionally stores permutations of vocabulary terms

▪ We add a special „end-of-term” character ($) and store all permutations: 
▪ E.g., „comotion” -> „$comotion”, „n$comotio”, „on$comoti”, „ion$comot”, 

„tion$como”, „otion$com”, „motion$co”, „omotion$c”

▪ Q: How to use permuterm index for middle-wild-card queries?
▪ A: Permute the wild-card query until you obtain a trailing query (asterisk at the end) 

▪ E.g., „co*tion” -> „$co*tion” -> „tion$co*”

▪ We know how to handle trailing wild-card queries – „tion$co*” can now be handled 
by a single permutex index tree 
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Wild-card queries and permuterm index

▪ Queries supported by permuterm index
▪ Exact queries: for „X” we look up „$X”

▪ Trailing wild-card query: for „X*” we look up „$X*” 

▪ Leading wild-card query: for „*X” we look up „X$*”

▪ General wild-card query: for „X*Y” we look up „Y$X*”

▪ Q: How would you handle the query „X*Y*Z” with the permuterm index?
▪ A: Here we have no option but to fire two lookups into the index

1. Retrieve the postings for „X*Z” (by looking up „Z$X*”)

2. Retrieve the posting list for the query „*Y*” (by looking for „$Y*”)

3. Intersect the two retrieved lists of terms
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Character indexes

▪ Next idea:
▪ How about we index all character n-grams (sequences of n characters) instead of 

whole terms?

▪ We surround all terms with term-boundary symbols and create lists of all sequences 
of n consecutive character within terms

▪ Example: „Frodo and Sam fought the orcs” (stopwords removed; lemmatized)
▪ Terms: $frodo$, $sam$, $fight$, $orc$

▪ Char. 3-grams: $fr, fro, rod, odo, do$; $sa, sam, am$; $fi, fig, igh, ght, ht$; $or, orc, rc$  

▪ We need to keep the second inverted index 
▪ For each character n-gram maintain the list of vocabulary terms that contain it

▪ E.g., „$fr” -> [„freak”, „freedom”, ..., „frodo”, „frozen”]

„sam” -> [„asamoah”, „balsam”, „disambiguate”, ..., „sam”, „subsample”]
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Wild-card queries and character indexes

▪ Query for character n-grams and merge results (AND operator)

▪ Example: query „mon*” and 2-gram character indexing
▪ Query is transformed into: „$m” AND „mo” AND „on”

▪ Q: What might be the issue with this transformation?

▪ A: Conjunction of character 2-grams might yield false positives 
▪ For example: moon, motivation, moderation, etc.

▪ Compare this issue with the false positives of biword index from Lecture #2

▪ Retrieved terms must be post-filtered against the query to eliminate false positives
▪ Term contains „mon”?

▪ Resulting terms are then looked up in the term-document inverted index
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Character indexes

▪ Comparison with permuterm index
▪ Advantage: space efficient (less space needed than for permuterm index)

▪ Shortcoming: slower than using permuterm index
▪ A Boolean query (and term-level merges) needs to be performed for every query term

▪ Wild-card queries in general
▪ Often not supported by Web search engines (not at the character level anyways)

▪ Found in some desktop or library search systems

▪ Wild-cards are conceptually troubling as well
▪ User must know what they don’t know (i.e., where to put the asterisk)

▪ If we have several options in mind, we can just run several concrete queries



25

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Outline

▪ Recap of Lecture #2

▪ Data structures for inverted index

▪ Wild-card queries

▪ Spelling correction
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Spelling correction

▪ Primary use-cases for spelling correction
1. Correcting documents during indexing

2. Correcting user queries on-the-fly

▪ Two flavors of spelling correction
1. Isolated words

▪ Check each word on its own for errors in spelling

▪ Will not catch typos that result in another valid word

▪ E.g., „from” → „form”

2. Context-sensitive spelling correction
▪ Correctness evaluated by looking at surrounding words as well

▪ E.g., „Frodo went form Gondor to Mordor”
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Document correction

▪ Correction should occur prior to indexing
▪ Aiming to have only valid terms in the vocabulary

▪ Smaller vocabulary, i.e., the term dictionary contains fewer entries

▪ We do not change the original documents
▪ Just perform correction when normalizing terms before indexing

▪ Common types of errors for certain types of documents
1. OCR-ed documents – „rn” vs. „m”, „O” vs. „D” 

2. Digitally-born documents often have QWERTY keyboard typos – errors from close 
keys – „O” vs. „I”, „A” vs. „S”, etc.
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Query correction

▪ Primary focus is on correcting errors from queries 
▪ Q: Failing to fix errors in queries has more serious consequences than omitting to fix 

errors in documents. Why?

▪ With respect to user interface, we have two options
1. Silently retrieving documents according to the corrected query

2. Return several suggested „corrected” query alternatives to the user
▪ „Did you mean?” option
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Isolated word correction

▪ The idea: using reference lexicon of correct spellings (i.e., lexicon of valid terms)

▪ Two approaches for obtaining a reference lexicon
1. Existing lexicons like 

▪ Standard wide-coverage lexicon of a language (e.g., Webster’s English dictionary)

▪ Domain-specific lexicons (e.g., lexicon of legal terms)

2. Lexicon built from large corpora
▪ E.g., all the words on the web or in Wikipedia 

▪ Q: Do we want to keep absolutely all terms from corpora?



30

9.5.2023Information Retrieval, Lecture 3: Data Structures and Tolerant Retrieval

Isolated word correction

▪ Given a reference lexicon and the query term (a character sequence from the 
query), we do the following:

1. Check if the query term Q is in the reference lexicon

2. If the term Q is not in the reference lexicon, find the entry Q’ from the lexicon that 
is „closest” to the query term Q

▪ How do we define „closest”?
▪ We need some similarity/distance measure

▪ We will examine several options
1. Edit distance (also known as Levenshtein distance)

2. Weighted edit distance

3. Character n-gram overlap
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Spelling correction – edit distance

▪ Edit distance between two strings S and S’ is the minimal number of operations required 
to transform one string into the other
▪ What are the „operations”?

▪ We typically consider operations at the character level
▪ Character insertion („frod” → „frodo”)

▪ Character deletion („frpodo” → „frodo”)

▪ Character replacement („frido” → „frodo”)

▪ Less often: transposition of adjacent characters („fordo” → „frodo”)

▪ Transposition equals „deletion” + „insertion”? 

▪ Q: Why introducing it as a separate operation?

▪ Levenshtein distance: counts insertions, deletions and replacements

▪ Damerau-Levenshtein distance: additionally counts transpositions as a single operation

▪ Algorithm based on dynamic programming
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Dynamic programming

▪ For detailed explanation of dynamic programming see 
Cormen, Leiserson, Rivest, and Stein. „Introduction to Algorithms” 

▪ Optimal substructure: the optimal solution of the problem contains within itself 
the subsolutions, i.e., the optimal solutions to subproblems 

▪ Overlapping subsolutions: we can recycle subsolutions – i.e., avoiding repeating 
the computation for the same subproblems over and over again

▪ Q: What would be a „subproblem” for the edit distance computation?
▪ A: the edit distance between two prefixes of input strings

▪ Q: Do we have many subproblem repetition for edit distance?
▪ A: most distances between same pair of prefixes are needed 3 times (as a 

subproblem of computing distance for insertion, deletion, and substitution)
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Levenshtein distance

▪ Let a and b be two strings between which we measure edit distance (with |a| 
and |b| being their respective lengths):

▪ Mathematically, the Levenshtein distance leva,b(|a|, |b|) is computed as follows:

▪ Where 1(ai ≠ bj) is the indicator function equal to 0 if ai = bj and 1 otherwise 

▪ Once we compute leva,b(i, j) for some pair (i, j) we store it in memory so we don’t 
compute it again when needed in another recursive thread

▪ Directly implementing this formula requires recursion
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Example – Levenshtein recursively

▪ For the example, we will follow only one thread of recursion (first subproblem)

▪ „sany” vs. „sam”
▪ min(lev(„san”, „sam”) + 1, lev(„sany”, „sa”) + 1, lev(„san”, „sa”) + 1)

▪ „san” vs. „sam”
▪ min(lev(„sa”, „sam”) + 1, lev(„san”, „sa”) + 1, lev(„sa”, „sa”) + 1)

▪ „sa” vs. „sam”
▪ min(lev(„s”, „sam”) + 1, lev(„sa”, „sa”) + 1, lev(„s”, „sa”) + 1)

▪ „s” vs. „sam”
▪ min(lev(„”, „sam”) + 1, lev(„s”, „sa”) + 1, lev(„”, „sa”) + 1)

▪ „” vs. „sam”
▪ return 3
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Levenshtein distance – non-recursive version

▪ We can avoid the recursion if we start from the recursive algorithm’s end 
condition – return max(i, j) if min(i, j) = 0

▪ Then compute the edit distances of larger prefixes from smaller prefixes
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Example – Levenshtein non-recursively

_ s a m

_ 0 1 2 3

s 1 0 1 2

a 2 1 0 1

n 3 2 1 1

y 4 3 2 2
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Damerau-Levenshtein distance

▪ Standard edit distance counts transposition of adjacent characters as two edits 
▪ E.g., „frodo” vs. „fordo”

▪ two character replacements: „r” -> „o” in position 2 and „o” -> „r” in position 3

▪ However, transposing adjacent characters is usually a single typing error
▪ Damerau-Levenshtein distance introduces transposition as the fourth atomic 

distance operation

▪ Q: How would you integrate transposition as a single distance operation into the edit 
distance algorithm?

▪ A: d(i,j) additionally needs to consider d(i-2, j-2) + 1(ai-1 = bj & ai = bj-1) when looking 
the edit distances of prefixes
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Weighted edit distance

▪ Sometimes we want to assign smaller distance to common errors
▪ The weight of an operation (deletion, insertion, replacement, transposition) depends 

on the caharcter(s) involved

▪ Motivation: better capture common OCR or typing errors
▪ E.g., On a QWERTY keyboard, letter „m” is much more likely to be mis-typed as „n”

than as „q”
▪ Thus, the replacement operation „m” -> „n” should be assigned smaller edit distance 

than „m” -> „q”

▪ Additional input required
▪ Data structure (e.g., weight matrix) containing operation weights for (combinations 

of) characters

▪ Q: How to integrate weighting into the edit distance algorithm based on dynamic 
programming?
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Using edit distances

▪ Given a (misspelled) query we need to find the closest dictionary term

▪ Q: How do we know (or assume) that the query is misspelled in the first place?
▪ A: We don’t find the query term in the vocabulary dictionary

▪ With this strategy, we cannot capture typos like „from” -> „form”

▪ Finding closest dictionary term
▪ Compute edit distance between the query term and each of the dictionary terms?

▪ Too slow (the dictionaries are usually rather large)

▪ We need to somehow pre-filter the „more promising” dictionary entries
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N-gram index for spelling correction

▪ Idea: use the character n-gram index to pre-filter dictionary candidates

1. Enumerate all character n-grams in the query string
▪ E.g., 3-grams in „frodso” -> „fro”, „rod”, „ods”, „dso” 

2. Retrieve all vocabulary terms containing any of the obtained character n-grams
▪ Using the inverted index of character n-grams

3. Treshold the obtained list of candidates on the number or percentage of matching 
character n-grams

4. Compute the edit distances between the query term and the remaining dictionary 
candidates 

5. Select the candidate with the smallest edit distance as the correction
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Character n-gram overlap

▪ Can be used as 
▪ A measure for pre-filtering candidates in order to reduce the number of edit distance 

computation

▪ As a self-standing distance measure, alternative to Levenshtein distance

▪ Example
▪ Suppose the query is „fpodo bigginss” and the text is „frodo baggins” and we are 

computing the overlap in character 3-grams

▪ {„fpo”, „pod”, „odo”, „big”, „igg”, „ggi”, „ins”, „nss”} vs.

{„fro”, „rod”, „odo”, „bag”, „agg”, „ggi”, „ins”}

▪ We have 3 matching 3-grams: „odo”, „ggi”, and „ins”
▪ That’s 3 out of 8 for the query and 3 out of 7 for the text

▪ Q: What should we take as measure of proximity/distance?
▪ Is raw count of matching n-grams good choice?
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Character n-gram overlap

▪ Raw count of matching character n-grams is not a good choice
▪ Does not account for the length of terms in comparison

▪ Two distinct but long terms may have a large raw count of matching n-grams
▪ E.g., „collision” and „collaboration” have 3 matching 3-grams 

▪ We need to normalize the score with the length of terms

▪ Jaccard coefficient – a commonly used measure of set overlap

▪ Simple alternative: averaged length-normalized overlap

YXYX  /

( )YYXXYX //5.0 +
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Context-sensitive spelling correction

▪ Example:
▪ Suppose the text is „Frodo fled from Mordor back to Gondor”

▪ Suppose the query is „fled form Gondor”

▪ To identify the misspelling „form” -> „from” we need to take into account the 
context, i.e., surrounding words

▪ Context-sensitive error correction steps
1. For each term of the query, retrieve dictionary terms that are sufficiently close

▪ „fled” -> {„fled”, „flew”, „flea”}; „form” -> {„form”, „from”}; „gondor” -> {„gondor”}

2. Combine all possibilities (i.e., all combinations of candidates for each term)
▪ „fled form gondor”, „fled from gondor”, „flew form gondor”, „flew from gondor”, 

„flea form gondor”, „flea from gondor”, 

3. Rank the possibilities according to some criteria
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Context-sensitive spelling correction

▪ Hit-based spelling correction
▪ Rank the candidate combinations according to the number of hits (relevant 

documents)

▪ Return the candidate with the largest number of hits

▪ Log-based spelling correction
▪ Rank the candidates according to the number of appearances in the query logs (i.e., 

the number of times the same query was posed before)

▪ Useful only if you have a lot of users who fire a lot of queries

▪ Probabilistic spelling correction (e.g., based on language modeling)
▪ Ranking according to probabilities of term sequences

▪ E.g., P(„fled form gondor”) = P(„fled”) * P(„form” | „fled”) * P(„gondor” | „form”)
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Now you...

▪ Know what data structures you can use for implementing inverted index

▪ Understand the pros and cons of hashtables and trees

▪ Know how to handle wildcard queries

▪ Are familiar with methods for handling spelling errors and typos in IR
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